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Abstract. Let L(X) be the free locally convex space over a Tychonoff space X. We prove that the following
assertions are equivalent: (i) every functionally bounded subset of X is finite, (ii) L(X) is semi-reflexive,
(iii) L(X) has the Grothendieck property, (iv) L(X) is semi-Montel. We characterize those spaces X, for
which L(X) is c0-quasibarrelled, distinguished or a (d f )-space. If X is a convergent sequence, then L(X) has
the Glicksberg property, but the space L(X) endowed with its Mackey topology does not have the Schur
property.

1. Introduction

The study of locally convex properties such as the Dunford–Pettis property, the Grothendieck property,
numerous weak barrelledness conditions, the property of being a (DF)-space or a (d f )-space, the property
of being a complete, quasi-complete or locally complete space, and others, is one of the main direction of
researches in the theory of locally convex spaces. These properties are studied mainly in the most important
special classes of locally convex spaces as, for example, the class of spaces C(X) of continuous functions
on a Tychonoff space X endowed with the pointwise topology or the compact-open topology. We refer the
reader to the classical books [16, 20, 24, 25] and the excellent recent survey [22].

One of the most important classes of locally convex spaces is the class of free locally convex spaces
introduced by Markov in [17]. The free locally convex space L(X) over a Tychonoff space X is a pair consisting
of a locally convex space L(X) and a continuous map i : X → L(X) such that every continuous map f from
X to a locally convex space E gives rise to a unique continuous linear operator ΨE( f ) : L(X) → E with
f = ΨE( f ) ◦ i. The free locally convex space L(X) always exists and is essentially unique.

The first description of the topology of the free locally convex space L(X) over X was obtained by Raı̆kov
[21, Theorem 1’] (all relevant notions will be defined below).

Theorem 1.1 ([21]). For every Tychonoff space X, the topology of the free locally convex space L(X) is the polar
topology on L(X) defined by the family of all equicontinuous pointwise bounded subsets of C(X).

Theorem 1.1 gives a polar description of the topology of the space L(X). For topological descriptions of the
topology of L(X), see [3, 8].

For a locally convex space E, we denote by E′ the space of all continuous functionals of E and let σ(E′,E)
denote the weak∗ topology on E′. The dual space E′ endowed with the strong topology β(E′,E) is denoted
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by E′β. In Proposition 3.1 we describe the strong dual of L(X). Using this result and a result of Schmets [24],
we characterize Tychonoff spaces X for which L(X) is distinguished, see Theorem 3.3.

Recall that a locally convex space E is said to have the Grothendieck property if every weak∗ convergent
sequence in E′β is weakly convergent. It is proved in [12] that for a µ-space X, the space L(X) has the
Grothendieck property if and only if every compact subset of X is finite. In Theorem 3.5 we obtain a
complete characterization of L(X) with the Grothendieck property. Moreover, in this theorem we show that
L(X) has the Grothendieck property if and only if it is a feral (semi-Montel or semi-reflexive) space.

Weak barrelledness concepts and the properties of being a Mackey space, a (DF)-space or a (d f )-space
are the cornerstone in the study of general locally convex spaces and have been intensively studied by many
authors, we refer the reader to [16, 20]. Characterizations of Tychonoff spaces X for which L(X) has one of
weak barrelledness properties or is a (DF)-space are given in [6, 9, 23]. Nevertheless, it was still unknown a
characterization of X such that L(X) is c0-quasibarrelled or a (d f )-space. We provide such characterizations
in Theorem 3.8 and Theorem 3.9.

2. Preliminaries

We start with some necessary definitions and notations used in the article. Set N := {1, 2, . . . } and
ω := {0, 1, 2, . . . }. All topological vector spaces are over the field F of real or complex numbers. The closed
unit ball of the field F is denoted byD.

Let X be a set. It is well known that the dual space (FX)′ of the Tychonoff product FX can be identified
with the space of functions µ : X→ F that have finite support supp(µ) := {x ∈ X : µ(x) , 0}. Such functions
µwill be called finitely supported sign-measures on X. The action of a sign-measure µ on a function f : X→ F
is defined by the formula

µ( f ) =
∑

x∈supp(µ)

µ(x) · f (x).

The norm of µ is defined as

∥µ∥ =
∑

x∈supp(µ)

|µ(x)|

(as usual, for µ = 0 we set supp(µ) = ∅ and ∥µ∥ = 0). For a subsetM ⊆ (FX)′, put

supp(M) :=
⋃
µ∈M

supp(µ) and ∥M∥ := sup
(
{∥µ∥ : µ ∈ M} ∪ {0}

)
∈ [0,+∞].

For a point x ∈ X, we denote by δx the Dirac measure δx : FX
→ F, δx : f 7→ f (x).

Let X be a Tychonoff space. The closure of a subset A of X is denoted by A or cl(A). We denote by C(X)
the space of all continuous F-valued functions on X. The Hewitt realcompactification of X is denoted by
υX. It is well known that the restriction operator R : C(υX) → C(X), R : f 7→ f↾X, is bijective. A subset A
of X is called functionally bounded if for every f ∈ C(X), the image f [A] = { f (x) : x ∈ A} of A has compact
closure in F. A Tychonoff space X is called pseudocompact if X is functionally bounded in X. We denote by
FB(X) the family of all functionally bounded subsets of X.

A Tychonoff space X is called a µ-space if every functionally bounded subset of X has compact closure.
By [4, Proposition 3], a Tychonoff space X is a µ-space if and only if X = X′′ where

X′′ =
⋃

B∈FB(X)

B ⊆ βX

is the bidual of X, which is defined as the union of closures in βX of functionally bounded subsets of X.
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The Stone-Čech extension βX of X is a µ-space and so are the Hewitt realcompactification υX and the
Dieudonné completion DX of X. For a Tychonoff space X its µ-envelope µX is defined as the smallest
µ-subspace of βX that contains X. Schmets [24, Definition II.6.1] calles µ-envelope le µ-espace associé à X.
The µ-envelope of X is equal to the intersection of all µ-subpaces of βX that contain X. It is also equal to the
union

⋃
α Xα of the transfinite sequence (Xα)α of subspaces of βX defined by the recursive formula: X0 = X

and

Xα =
⋃
β<α

(Xβ)′′

for any nonzero ordinal α, where for a subset A ⊆ βX its bidual A′′ =
⋃

B∈FB(A) B is the union of βX-closures
of functionally bounded subsets of A.

Recall that a Tychonoff space X is Dieudonné complete if the universal uniformityUX on X is complete.
For numerous characterizations of Dieudonné complete spaces, see Section 8.5.13 of [5]. The Dieudonné
completionDX of X is the completion of the uniform space (X,UX). Since the Dieudonné completion of any
Tychonoff space is a µ-space, we have the following inclusions:

X ⊆ µX ⊆ DX ⊆ υX ⊆ βX.

Let X be a Tychonoff space. A topologyT on C(X) is called locally convex if CT (X) := (C(X),T ) is a locally
convex topological vector space. For a function f : X→ F and subset A ⊆ X, let

∥ f ∥A := sup({| f (x)| : x ∈ A} ∪ {0}) ∈ [0,∞].

For a subfamily F ⊆ FX and ε > 0, we put

[A; ε]F := { f ∈ F : ∥ f ∥A ≤ ε}.

If the family F is clear from the context, then we shall omit the subscript F and write [A; ε] instead of
[A; ε]F .

A family S of subsets of X is directed if for any sets A,B ∈ S the union A ∪ B is contained in some set
C ∈ S. Each directed family S of functionally bounded sets in a Tychonoff space X induces a locally convex
topology TS on C(X) whose neighborhood base at zero consists of the sets [S; ε] where S ∈ S and ε > 0. The
topology TS is called the topology of uniform convergence on sets of the family S. The topology TS is Hausdorff
if and only if the union

⋃
S is dense in X. If S is the family of all finite, compact or functionally bounded

subsets of X, respectively, then the topology TS will be denoted by Tp, Tk or Tb, and the function space
CTS (X) will be denoted by Cp(X), Ck(X) or Cb(X), respectively.

Since Cp(X) is dense in FX, each linear continuous functional on Cp(X) has a unique extension to a linear
continuous functional on the space FX, which allows us to identify the dual space Cp(X)′ of Cp(X) with the
dual space (FX)′ of the locally convex space FX. The following assertion is proved in Proposition 4.10 of
[11].

Proposition 2.1. Let X be a Tychonoff space. A subsetM ⊆ Cp(X)′w∗ is bounded if and only if its support supp(M)
is functionally bounded in X and its norm ∥M∥ is finite.

The definition of L(X) implies that the dual space L(X)′ of L(X) is linearly isomorphic to the space C(X).
Indeed, every function f ∈ C(X) is a continuous function from X to the locally convex space F. Therefore f
can be uniquely extended from X to L(X) as follows

ΨF( f )(χ) := a1 f (x1) + · · · + an f (xn) for χ = a1x1 + · · · + anxn ∈ L(X).

Observe that the inverse operator R : L(X)′ → C(X) to the extension operatorΨF is the restriction operator
R : χ 7→ χ↾X, where χ ∈ L(X)′. Via the pairing (L(X)′,L(X)) = (C(X),L(X)) we note that Cp(X)′w∗ = L(X)w
and Cp(X) = L(X)′w∗ , where Ew := (E, σ(E,E′)) and E′w∗ = (E′, σ(E′,E)) for an lcs E. Usually the space L(X)w is
denoted by Lp(X).
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Let E be a locally convex space. A barrel in E is an absolutely convex closed subset B of E such that
E =
⋃

n∈ω nB. A sequence {Bn}n∈ω in E is called a fundamental bounded sequence if for every bounded subset
B of E there is n ∈ ω such that B ⊆ Bn. Denote by β(E,E′) the topology on E whose neighborhood base at
zero consists of barrels (for more details about this topology, see § 8.4 of [16]) and set Eβ :=

(
E, β(E,E′)

)
.

Following [16, 8.4.3.C], we denote by β∗(E′,E) the topology E′ of uniform convergence on β(E,E′)-bounded
subsets of E and put E′β∗ :=

(
E′, β∗(E′,E)

)
. A subset D of E is bornivorous if it absorbs the bounded sets, i.e.,

for any bounded set B ⊆ E, there is a > 0 such that B ⊆ λD for |λ| ≥ a. Recall that E is

• (quasi)barrelled if every (bornivorous) barrel in E is a neighborhood of zero;
• c0-quasibarrelled if every β(E′,E)-null sequence is equicontinuous;
• a (d f )-space if it has a fundamental bounded sequence and is c0-quasibarrelled;
• a semi-Montel space if every bounded set of E has compact closure;
• a semi-reflexive if E = (E′β)

′(= E′′);
• distinguished if its strong dual E′β is barrelled;
• feral if every bounded subset of E is finite-dimensional.

We say that a locally convex space (lcs for short) E is b-feral if every barrel-bounded subset of E is
finite-dimensional, where a subset A of E is called barrel-bounded if A is a bounded subset of the space E
endowed with the topology β(E,E′) on E defined by barrels. We shall use the next theorem which is proved
on page 4 in [6].

Theorem 2.2. For every Tychonoff space X, the free locally convex space L(X) is b-feral.

3. Main results

We start with the following description of the strong dual L(X)′β of L(X).

Proposition 3.1. For every Tychonoff space X, the restriction map

R : L(X)′β → Cb(X), R : F 7→ F↾X,

is a topological isomorphism.

Proof. As we explained above in the previous section, the map R is a linear isomorphism. Recall that the
family of sets

[A; ε], where ε > 0 and A ∈ FB(X),

form a base at zero of Tb, and, by Proposition 2.1, the family of the polars B◦A,ε, where

BA,ε :=
{
χ ∈ L(X) : A ∈ FB(X), supp(χ) ⊆ A, and ∥χ∥ ≤ 1

ε

}
form a base at zero of β

(
L(X)′,L(X)

)
. Therefore to prove the proposition it remains to show that R

(
B◦A,ε
)
=

[A; ε]. If F ∈ B◦A,ε, then for every x ∈ A we have
∣∣∣ 1
εR(F)(x)

∣∣∣ = |F( 1
εδx)| ≤ 1 and hence |R(F)(x)| ≤ ε. Therefore

R(F) ∈ [A; ε] and hence R
(
B◦A,ε
)
⊆ [A; ε]. Conversely, let f ∈ [A; ε]. Then for every χ ∈ BA,ε, we have

|R−1( f )(χ)| =
∣∣∣ ∑

x∈supp(χ)

χ(x) · f (x)
∣∣∣ ≤ ∑

x∈supp(χ)

∣∣∣χ(x)
∣∣∣ · | f (x)| ≤ ∥χ∥ · ε ≤ 1,

and hence R−1( f ) ∈ B◦A,ε. Thus [A; ε] ⊆ R
(
B◦A,ε
)

and hence R
(
B◦A,ε
)
= [A; ε].
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By Proposition 3.1, the strong dual L(X)′β is topologically isomorphic to the function space Cb(X). This
reduces the problem of recognizing distinguished free locally convex spaces to the problem of recognizing
barrelled spaces among the function spaces Cb(X). This problem has been studied and resolved by Schmets
[25, Theoreme III.3.13] who proved the following characterization.

Theorem 3.2 (Schmets). For a Tychonoff space X, the space Cb(X) = L(X)′β is barrelled if and only if every
functionally bounded subset A ⊆ X′′ is contained in the µX-closure of some functionally bounded subset of X.

It is known (see [12, Proposition 3.4] or [7, Theorem 27]) that if X is a µ-space, then L(X) is distinguished.
Essentially using the Schmets Theorem 3.2 we obtain below a complete characterization of Tychonoff spaces
X for which L(X) is a distinguished space.

Theorem 3.3. For a Tychonoff space X the following conditions are equivalent:

(i) L(X) is distinguished;
(ii) Cb(X) is barelled;

(iii) for every compact subset A ⊆ µX there is a compact set B ⊆ µX such that A ⊆ B and B ∩ X is dense in B;
(iv) the restriction operator R : Ck(µX)→ Cb(X), R : f 7→ f↾X, is a topological isomorphism.

Proof. The equivalence (i)⇔(ii) follows from Proposition 3.1 and the definition of a distinguished space.
(ii)⇒(iii) By Schmets Theorem 3.2, if Cb(X) is barrelled, then for every functionally bounded subset

A ⊆ X′′ there exists a functionally bounded subset B ⊆ X such that A ⊆ B and hence A ⊆ B, which means
that (X′′)′′ = X′′ and hence µX = X′′. Consequently, for every compact subset A ⊆ µX = X′′, there exists
a functionally bounded set B ⊆ X such that A ⊆ B. The set B ⊆ X′′ = µX is compact, contains A and the
intersection B ∩ X ⊇ B is dense in B.

(iii)⇒(iv) To prove that the restriction operator R : Ck(µX) → Cb(X) is a topological isomorphism, it
suffices to prove that for any neighborhood U ⊆ Ck(µX) of zero, its image R[U] is a neighborhood of zero
in Cb(X). By the definition of the topology of Ck(µX), there exist a compact set A ⊆ µX and ε > 0 such
that [A; ε] ⊆ U. By (iii), there exists a compact set B ⊆ µX such that A ⊆ B and B ∩ X is dense in B. The
compactness of B and the bijectivity of the restriction operator R imply that the set B ∩ X is functionally
bounded in X. It remains to prove that [B ∩ X; ε] ⊆ R([A; ε]). Choose any function f ∈ [B ∩ X; ε] ⊆ Cb(X)
and let f̄ = R−1( f ) ∈ Ck(µX) be a unique continuous extension of f to µX. It follows from f ∈ [B ∩ X; ε] and
the density of B ∩ X in B that f̄ ∈ [B; ε] ⊆ [A; ε] ⊆ U.

(iv)⇒(ii) Assume that the spaces Ck(µX) and Cb(X) are topologically isomorphic. By Nachbin–Shirota
Theorem [16, 11.7.5], the function space Ck(µX) is barrelled and so is its isomorphic copy Cb(X).

In the proof of the implication (ii)⇒(iii) in Theorem 3.2 we showed that the barrelledness of the function
space Cb(X) implies the equality µX = X′′. This remark suggests the following problem.

Problem 3.4. Is there a Tychonoff space X such that µX = X′′ but Cb(X) is not barrelled?

Let X be a Tychonoff space. We denote by LT (X) the vector space L(X) endowed with some locally
convex topology T on L(X). If T coincides with the topology of the free locally convex space L(X), then we
shall omit the subscript T and write simply L(X). A locally convex topology T on L(X) is called compatible
if LT (X)′ = L(X)′. Although the equivalence (i)⇔(ii) in the next theorem is proved in [6], we provide its
simple proof for the reader convenience and because it helps to simplify the proof of other equivalences.

Theorem 3.5. Let X be a Tychonoff space, and let T be a compatible locally convex topology on L(X). Then the
following assertions are equivalent:

(i) every functionally bounded subset of X is finite;
(ii) LT (X) is feral;

(iii) β∗
(
LT (X)′,LT (X)

)
= β
(
LT (X)′,LT (X)

)
;
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(iv) LT (X) is semi-reflexive;
(v) LT (X) has the Grothendieck property;

(vi) LT (X) is semi-Montel.

Proof. (i)⇒(ii) Let M be a bounded subset of E. Then, by Proposition 2.1, the support supp(M) of M is
functionally bounded in X. By (i), supp(M) is finite and hence M is finite-dimensional, witnessing that
LT (X) is a feral space.

(ii)⇒(iii) Let E := LT (X) and let B be a bounded subset of E. By (ii), B is finite-dimensional and hence B
is also barrel-bounded. Since every barrel-bounded subset is bounded it follows that β∗(E′,E) = β(E′,E).

(iii)⇒(i) Let E := LT (X) and assume that β∗(E′,E) = β(E′,E). Let D be a functionally bounded subset of
X. Then, by Proposition 2.1, the set

M := {µ ∈ E : supp(µ) ⊆ D and ∥µ∥ ≤ 1}

is a bounded subset of E. Since β∗(E′,E) = β(E′,E), there are a closed barrel-bounded set B in E and ε > 0
such that [B; ε] ⊆ [M; 1]. Observe that, by Theorem 2.2, the set B is finite-dimensional and hence supp(B)
is a finite (in particular, closed) subset of X. Therefore to show that D is finite it suffices to prove that
D ⊆ supp(B). Suppose for a contradiction and D ⊈ supp(B). Then we can find a point z ∈ D\supp(B) and
an open neighborhood Oz of z such that Oz ∩ supp(B) = ∅. Take f ∈ C(X) = E′ such that f (X\Oz) ⊆ {0}
and f (z) > 1. It is clear that f ∈ [B; ε]. Since δz ∈ M and δx( f ) = f (z) > 1, we obtain that f < [M; 1], a
contradiction. Thus D ⊆ supp(B) is finite, as desired.

(i)⇒(iv) By Proposition 3.1, LT (X)′β = Cb(X). Since every functionally bounded subset of X is finite, we
have LT (X)′β = Cp(X) and hence LT (X)′′ = L(X). Therefore LT (X) is semi-reflexive.

(iv)⇒(v) Since E is semi-reflexive (so E = (E′β)
′), every weak∗ convergent sequence in E′β is trivially

weakly convergent. Thus E has the Grothendieck property.
(v)⇒(i) Assume that L(X) has the Grothendieck property and suppose for a contradiction that X has

an infinite functionally bounded subset A. By Lemma 11.7.1 of [16], there exist a one-to-one sequence
{xn}n∈ω ⊆ A and a sequence {Un}n∈ω of pairwise disjoint open sets such that xn ∈ Un for every n ∈ ω. For
every n ∈ ω, choose fn ∈ C(X) such that fn(X\Un) = {0} and fn(xn) = 2n. Since the sets Un are disjoint, we
have fn → 0 in the pointwise topology and hence in the weak∗ topology of the dual pair (C(X),L(X)). On
the other hand, consider the linear functional µ =

∑
n∈ω 2−nδxn on C(X). Since {xn}n∈ω ⊆ A, we have

|µ(h)| ≤ 1 for every h ∈ [A; 1] ⊆ C(X).

and hence µ ∈ [A; 1]◦. Since the set [A; 1] is a neighborhood of zero in LT (X)′β = Cb(X) (Proposition 3.1), we
obtain µ ∈ LT (X)′′. But since µ( fn) = 2−n

· fn(xn) = 1 ̸→ 0 it follows that fn ̸→ 0 in the weak topology of
LT (X)′β. Thus LT (X) does not have the Grothendieck property, a contradiction.

(ii)⇒(vi) is trivial.
(vi)⇒(iv) is clear, see Proposition 11.5.1 of [16].

A Tychonoff space X is called (sequentially) Ascoli if every compact subset (resp. convergent sequence)
in Ck(X) is equicontinuous. In other words, X is Ascoli if and only if the compact-open topology of Ck(X)
is Ascoli in the sense of [18, p.45]. Ascoli and sequentially Ascoli spaces were thoroughly studied in
[1, 2, 12, 13].

To characterize Tychonoff spaces X for which L(X) is c0-quasibarrelled or a (d f )-space we introduce
below new classes of Tychonoff spaces.

Definition 3.6. A Tychonoff space X is called (sequentially) b-Ascoli if every compact subset (resp. convergent
sequence) in Cb(X) is equicontinuous.

Proposition 3.7. Let X be a Tychonoff space.
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(i) If X is a (sequentially) Ascoli space, then it is a (sequentially) b-Ascoli space. The converse is true if X is a
µ-space.

(ii) Every pseudocompact space is a sequentially b-Ascoli space.

Proof. (i) Since the identity map Cb(X) → Ck(X) is continuous, every compact subset (resp. convergent
sequence) in Cb(X) is equicontinuous because it is a compact subset (resp. convergent sequence) in Ck(X)
and X is assumed to be a (sequentially) Ascoli space. If in addition X is a µ-space, we have Ck(X) = Cb(X)
(see Proposition 3 in [4]) and it is clear that if X is a (sequentially) b-Ascoli space then it is a (sequentially)
Ascoli space.

(ii) If X is pseudocompact, then Cb(X) is a Banach space. Therefore any null sequence in Cb(X) is trivially
equicontinuous.

Note that there are pseudocompact spaces which are not sequentially Ascoli, see [14].

Theorem 3.8. For a Tychonoff space X, the space L(X) is c0-quasibarrelled if and only if X is a sequentially b-Ascoli
space.

Proof. Assume that L(X) is c0-quasibarrelled. Take an arbitrary null-sequence { fn}n∈ω in Cb(X). Since, by
Proposition 3.1, L(X)′β = Cb(X), we obtain that { fn}n∈ω is equicontinuous as a sequence in L(X)′β. Now
Proposition 2.3 of [12] guarantees that { fn}n∈ω is an equicontinuous sequence of functions. Thus X is a
sequentially b-Ascoli space.

Conversely, assume that X is a sequentially b-Ascoli space. Fix a null sequence S = { fn}n∈ω in L(X)′β.
By Proposition 3.1 we have L(X)′β = Cb(X) and hence S is a null sequence in Cb(X). Since X is sequentially
b-Ascoli, S is equicontinuous. Clearly S is also pointwise bounded. Therefore, by Theorem 1.1, the polar S◦

of S is a neighborhood of zero in L(X). The inclusion S ⊆ S◦◦ implies that S is equicontinuous as a subset of
the locally convex space L(X). Thus L(X) is c0-quasibarrelled.

A Tychonoff space X is defined to have a fundamental functionally bounded sequence if there exists a
sequence {Bn}n∈ω of functionally bounded subsets in X such that every functionally bounded subset B ⊆ X
is contained in some set Bn.

Theorem 3.9. Let X be a Tychonoff space. Then L(X) is a (d f )-space if and only if X has a fundamental functionally
bounded sequence and is a sequentially b-Ascoli space. In particular, L(X) is a (d f )-space for every pseudocompact
space X.

Proof. By Proposition 2.12 of [12], the space L(X) has a fundamental bounded sequence if and only if X has
a fundamental functionally bounded sequence. Now the theorem follows from this result and Theorem
3.8. The last assertion follows from (ii) of Proposition 3.7.

Recall that a locally convex space E is said to have

• the Schur property if E and
(
E, σ(E,E′)

)
have the same convergent sequences;

• the Glicksberg property if E and
(
E, σ(E,E′)

)
have the same compact sets.

It is clear that the Glicksberg property implies the Schur property, but the converse is not true in general
(see, for example, Proposition 3.5 of [10]). It is evident that every lcs having its weak topology has the
Glicksberg property trivially. If an lcs E has the Glicksberg property, then for every locally convex topology
τ on E which is stronger than σ(E,E′) but weaker than the topology T of E, the space (E, τ) also has the
Glicksberg property. These remarks suggest the following problem. Does there exist an lcs (E,T ) without
the Glicksberg property, but such that there is a locally convex topology τ on E such that σ(E,E′) ⊊ τ ⊊ T
and the space (E, τ) has the Glicksberg property? We answer this question in the affirmative in Example
3.12 below. We need the following two assertions.
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Lemma 3.10. For every cardinal κ and each continuous linear map T : Fκ → ℓ∞, the image of T is finite-dimensional.

Proof. We assume that κ is infinite. Since T is continuous, there is a finite subsetλ of κ such that T
(
{0}λ×Fκ\λ

)
is contained in the unit ball B of ℓ∞. Since B contains no linear subspaces we obtain that {0}λ×Fκ\λ is contained
in the kernel of T. Thus T[Fκ] = T[Fλ] is finite-dimensional.

Proposition 3.11. For every infinite Tychonoff space X, the space L(X) does not carry its weak topology.

Proof. Suppose for a contradiction that L(X) has its weak topology, so L(X) is a dense linear subspace of
Fκ for some infinite cardinal κ. Since X is infinite, there is a sequences {Un}n∈ω of pairwise disjoint open
sets in X. For every n ∈ ω, fix a point xn ∈ Un and choose a continuous function fn : X → [0, 1

n ] such that
fn(xn) = 1

n and fn(X\Un) = {0}. Consider the map F : X → ℓ∞, F : x 7→ ( fn(x))n∈ω. By the choice of {Un}n∈ω

and { fn}n∈ω, the map F is continuous and the image F[X] is infinite-dimensional because F(xn) = 1
n en for all

n ∈ ω, where {en}n∈ω is the standard unit basis of c0 ⊆ ℓ∞. By the definition of L(X), there is a continuous
linear map G : L(X)→ ℓ∞ such that G↾X = F. Therefore G can be extended to a continuous linear map from
Fκ to ℓ∞ which has an infinite-dimensional image. But this is impossible by Lemma 3.10.

The space L(X) endowed with the Mackey topology µ(L(X),C(X)) is denoted by Lµ(X). Below we answer
affirmatively the question posed above by showing that there exists an lcs (E,T ) without the Glicksberg
property, but for which there is a locally convex topology τ on E such that σ(E,E′) ⊊ τ ⊊ T and the space
(E, τ) is Glicksberg; where (E,T ) = Lµ(X) and (E, τ) = L(X).

Example 3.12. Let X = [0, ω] be a convergent sequence. Then the space L(X) has the Glicksberg property,
but Lµ(X) fails to have the Schur property.

Proof. By Theorem 1.2 of [11], the space L(X) has the Glicksberg property. By Proposition 3.11, the topology
of L(X) is strictly stronger than the weak topology of L(X). It remains to show that the space Lµ(X) is not
Schur.

For every x ∈ [0, ω], let δx ∈ L(X) be the Dirac measure at x. Since L(X)′ = C(X), the sequence (δn − δω)n∈ω
is weakly null in L(X).

For every n ∈ ω, let fn : X→ {0, 1} be the unique function such that f−1
n (1) = {n}. The sequence S = { fn}n∈ω

tends to zero in the weak∗ topology on Cp(X) = L(X)′w∗ . It is easy to see that the closed absolutely convex
hull acx(S) of the set S in FX consists of all functions f : X → F such that f (ω) = 0 and

∑
n∈ω | f (n)| ≤ 1.

Since any such function f is continuous, the set acx(S) ⊆ Cp(X) is a compact disc in L(X)′w∗ = Cp(X). Then
the polar acx(S)◦ = S◦ is a neighborhood of zero in the Mackey topology on L(X). Observe that for every
n ∈ ω we have δn( fn) − δω( fn) = 1 and hence δn − δω < 1

2 S◦ for all n ∈ ω. Therefore, the weak null sequence
{δn − δω}n∈ω is not null in Lµ(X), and hence the locally convex space Lµ(X) does not have the Schur property.
Since the space L(X) has the Glicksberg property, the topology of L(X) is strictly weaker than the Mackey
topology of the space Lµ(X).
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