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Weighted Generalized Tensor Functions Based on the Tensor-Product
and their Applications

Yuhang Liu?, Haifeng Ma®

#School of Mathematical Science, Harbin Normal University, Harbin 150025, P.R. China.

Abstract. There are three weighted decompositions of tensors proposed in this paper, and the correspond-
ing definitions of the weighted generalized tensor functions are given. The Cauchy integral formula of the
weighted Moore-Penrose inverse is developed for solving the tensor equations. Besides above, we give the
weighted projection tensors to discuss the representations of the weighted generalized power of tensors.
Finally, some special tensors are studied which can preserve the structural invariance under the tensor
functions defined in this paper.

1. Introduction

Tensors are used to represent multi-dimensional arrays. In 2005, the eigenvalues of real tensors which
defined by Qi provide an important theoretical basis for some applications of positive definiteness in
polynomial form [25]. After that, the studies of tensors have entered a new stages, including tensor
singular value, tensor product, tensor norm and tensor calculation and so on [6, 8, 17, 24, 26, 27, 30, 39]. The
product operation of tensors is regarded as a representation of tensor. There are some product operations
of tensors, such as Einstein product [21, 31, 32, 35], ¢-product [29], T-product. In 2011, Kilmer and Martin
gave a tensor representation based on a tensor multiplication which called the T-product [14], at the same
time, the T-SVD is given and applied to the image deblurring. Then Kilmer et al. proposed the concepts
of orthogonal projection and tensor characteristic formula in [13], and discussed the relationship between
tensor characteristic formula and tensor characteristic group. In 2020, Wang studied the tensor neural
network model under the T-SVD in [37]. In recent years, there are some research and applications on
tensors via the T-product, which could be found in [4, 9, 14, 15, 18, 19, 22, 34, 40]. In [22], Miao first defined
the generalized inverse of tensors via the T-product. In this content, the weighted decompositions of tensors
are proposed for giving the expressions of the weighted Moore-Penrose inverse of tensors.

The proposal of matrix function is beneficial to deal with the problems in matrix theory and matrix
calculation [11]. Matrix function is also widely used in various applications. According to different
applications, matrix function can be defined in many ways. As for its definition on the square matrix, it can
be defined by the expansion of matrix power series or Jordan canonical form. For the generalized matrix
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function on a rectangular matrix, we can refer to the results given by Hawkins in [10]. Yang and Li proposed
the weighted spectral decomposition and gave the definition of the weighted generalized matrix functions
[38]. Tensors as high-order generalization of matrices are applied to multidimensional differential equations
[7,12]. Tensor function is regarded as a tool to study multidimensional array. According to the definition of
T-product, Lund gives the concept of function on F-square tensor and introduces its calculation method in
[20]. By taking advantage of the T-SVD, Miao extends the results given by Lund to the generalized tensor
functions of rectangular tensors [23]. In this paper, the weighted generalized tensor function is written as
T-WGTE, we mainly study the definition, properties and applications of T-WGTE.

The arrangement of paper as below. In section 2, the relative concepts about the T-product and the
MN-SVD of matrices are reviewed. In section 3, the T-MN-SVD, the T-MN-CSVD of tensors are proposed,
and the definition of T-WGTF are given. The Cauchy integral formula formula of T-WGTF is proposed
for solving the tensor equation. Furthermore, the weighted generalized power of tensors are given by the
weighted projection tensors. In section 4, the structural properties invariance of some special tensors under
T-WGTF are studied.

2. Preliminaries

2.1. The Tensor T-product

It is generally to called that a is complex-value if 2 € C, and b is real-value as b € R. It is written that
A € Crr2XPs is a complex tensor of order 3, where pq, p» and p3 are arbitrary nonzero natural numbers. If
all entries of a tensor are zeros, we call the tensor as zero tensor and denote it by O. The discrete fourier
transform matrix is abbreviated as the DFT matrix. The T-product is a closed multiplication operation
which preserves the order of tensors. There are some operations which derive the definition of the T-
product [9, 13, 14]. If A € CPPP>P3, and its every frontal slice is written as py X p» matrix A®, k =1,2,--- , ps,
then

AD A L. AQ

A® AD Lo A0
bcirc(A) =| . . . 1

A('Ps) A(P;—l) .. A.(l)

and the inverse operation beirc™! (bcirc(A)) = A. The first block column of bcirc(A) is written by

AD
AP
unfold(A)=| . |,

A(.Pa)

the operation “unfold” transfers a p; X p X p3 tensor to a p1ps X p, matrix. The operation “fold” takes the
matrix unfold(A) back to a tensor, that is

fold(unfold(A)) = A.
The p3 X p3 DFT matrix is defined as follows [5],

1 1 1 1 1
1 w w? w? b

1 Pl 2= B ... Hs—Dps-1)
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where w = ¢72"/P3, i is imaginary unit and I,, and I,, are identity matrices. For any block-circulant matrix
can be transformed to a block diagonal matrix, if A € CP*P>*P3, then

Ay
Ar
(F}} ®1I,,)bcirc(A)(F,, ® I,,) = N ,
Ap,

where “®” is the Kronecker product and A; € CP*2,i=1,2,--- ,pa.
Here are some related concepts about the T-product which can refer to [14, 22, 23].

Definition 2.1. [14] Suppose A € CP*P>*Ps, B € CP*P*Ps | the T-product A = B is a tensor which defined by
A+ B = fold(bcirc(A)unfold(B)) € CPP+Ps,

Example 2.2. If A € CP>P>3 and B € CP>P3, Then

AD  AG AN (BD

AD  AD A(3)] [3(2)]) € CP1Xpax3,

AxB = fold(
AB®  A@  AOJ\BO)

Definition 2.3. [14] Let A € CP>¥#2>P3, the transpose of A is defined as
ADT
AT
AT =fold| . |,
A(.Z)T
and the conjugate transpose of A is defined by
ADF
i
A = fold A
A(.Z)”
Definition 2.4. [14]The identity tensor I p,p,p, is defined as
T ppops = f0ld((I,, O, -+, 0)),
where I, is a py X p identity matrix, and zero matrix O € RP?*P2,
Definition 2.5. [14] Assume A € CPPP2*P3, the unique inverse of Ais B = AL if
A*B =Ty, and B+ A =1p,,,,,.

Definition 2.6. [14] N' € RP>P2> s orthogonal if NT « N = N« NT = T,,,.,.. M € CP»¥>Ps is unitary if
M M= M M =T,,,,..

Definition 2.7. [23] If A € CPP>*Ps, the T-range space of A is defined as
R(A) = Ran((F,} ® I, )bcirc(A)(Fy, ®1,,)),

where “Ran” is column space of matrix. Moreover, the T-null space of A is defined as
NA) = Null((Fg ® I, )bcirc(A)(Fp, ® I,,)),

where “Null” is written as null space of matrix.
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Definition 2.8. [23] Suppose that A € CP>F2*P3 we design the T-norm of A as
lAIl = l[bcire(A)I,
where “|| - ||” is a unitary invariant matrix norm.

The T-SVD as a new representation of tensors is proposed by Kilmer in [14], which is developed for
raising the T-WGTFE.

Lemma 2.9. [14] If A € CP>*P>*Ps then

A=U+S+V, (1)
where U € CP>¥>Ps, Y e CP>*P2XPs gre unitary, the F-diagonal tensor (each frontal slice is diagonal matrix) S is
p1 X p2 X ps.

The representation (1) is called as the T-SVD of A.

Lemma 2.10. [9, 13, 14] Suppose A € CP>¥>Ps, B e Cr>PPs gnd C € CPP>*P3, then the following equations
hold,
(1) (A+B)+C =A=(B=C),
(2) beirc(A * B) = beirc(A)bcirc(B),

(B) (A+B = B« Al
(4) beirc(AT) = beirc(A)T, beire(AM) = beirc(A).

Next, we give the concepts of some special tensors as follows, which including the Hermite tensor,
positive definite tensor, the weighted conjugate transform of tensor and N-unitary tensor.

Definition 2.11. A € CP>*P>*#s is Hermite tensor if AT = A, and B € RPPP2Ps s real symmetric tensor if BT = B,
respectively.

Definition 2.12. A py X p1 X p3 complex tensor M is called the positive definite tensor, if
M

)
M=fold]| . |,
)
where M € CPYP1 is q positive definite matrix and “O” is a p1 X p1 zero matrix.

Definition 2.13. If A € CPP>Ps, Mand N are p1 X p1 X p3 and py X p2 X p3 Hermite positive definite tensors,
denote the weighted conjugate transpose of A as A",

ﬂ#:Nfl*ﬂH*M, (2)

The block diagonal matrices of (I-*]I;[3 ® I, )bcirc(N)(Fp, ®1,,) are Hermite positive definite matrices, which
are invertible matrices, then the Hermite definite tensor N in (2) is also invertible.

Definition 2.14. Let N' € CP>*P>*¥3 be an Hermite positive definite tensor. A tensor Q € CP>*P>¥s is N-unitary if
Q' « N+Q = TI,,,,,. Suppose N and Q are p, X pp X p3 real tensors, N is the real symmetric positive definite tensor,
Qis N-orthogonal if Q" » N * Q = I,,,,,,, respectively.

Analogy with the operation of matrix multiplicative blocks, if there exist multiplicity in tensor blocks,
a result of tensors which similar to that on the matrix may be gained [23].

Lemma 2.15. [23] If A € CVe>¥:, B € C*2Ps, C € C0%s, D € C2Ps, § € CVPs, F e Craxps,
G € CN%Ps gnd H € C2*7>P3, then,
A+E+B«G A+F +B+H

A B\ (& F
C D) \G H|] \CxE+D+G C+F +D+H)|"
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2.2. The Weighted Matrix Function
In this section, it is reviewed the MN-SVD, MN-CSVD of matrices and the concept of the weighted
matrix functions.

Lemma 2.16. [36, 38] If A € C/""", M € CP>"1 and N € CP>*P* are coefficient matrices of A, where r =rank(A).
Then U"MU = 1, and VENT'V = I, hold with U € CP*P* and V € CP>P2, furthermore,

pe) H H
A = V = ZV
U(O O) u ,
where T = diag(o1,--- ,0), and 01 > --- 2 o, > 0 are written as the nonzero weighted singular values of A.

Furthermore, suppose U = (U,, U)and V = (V,, V'), where U, € CP*" and V, € CP>*". The CSVD of A is written
as

A=UZXVH 3)
Lemma 2.17. [28,33]. IfA, X, U, V, U,, V, are tensors in Lemma 2.16. Then, the weighted Moore-Penrose inverse
Al € CPP1 s factorized by Al = N7V, 2 TUEM.

Definition 2.18. [38] Suppose A € C"*"*, and the scalar function f : C — C, the MN-SVD of A has the form as
(3). The weighted matrix function foy : CP>*P2 — CPP2 is defined in terms of f : C — Cas

f(o1)
fun(A) = U AnE)VE, fun(E) = , (4)
f(ar)

where each o; is nonzero weighted singular value of A,i=1,2,--- ,1.

3. T-MN-SVD and T-WGTF

3.1. T-MN-SVD and T-MN-CSVD

According to the MN-SVD of matrices and the weighted generalized matrix functions in Lemma 2.16
and Definition 2.18, the T-"MN-5VD and T-MN-CSVD of tensors are given for defining the T-WGTE.

Theorem 3.1. (T-MN-SVD) If A € CPr>¥2>Ps, M e CPoPvPs gnd N € CP*P2Ps gre two Hermite positive definite
tensors, then A is expressed as

A=U»S+VH (5)
with U € CPP¥¥s js M-unitary, V € CP2>P>Ps is N~V-unitary, S € CP>P>P3 is F-diagonal.
Proof. Transform bcirc(M) and bcirc(N) into the Fourier domain,
M; N1

(F}} ®1I,,)bcirc(M)(Fy, ® I,) = ,(FfL ® I, beire(N)(Fp, ® 1,,) = ,
M,, N,
where M; € CPP*Pt and N; € CP??2 are Hermite definite matrices. Let M; = L,-LIH and N; = KiKIH be the
Cholesky factorizations of M; and N, i =1,2,--- , p3. We define tensors £ and K as
L1 Kl
beirc(L) = (Fp, ® I,) (F}} ®1,), beirc(K) = (Fp, ®1,) (F} ®1I,),
Ly, Ky,
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and C = LH+A+(K1)H € Cr>P>3, according to the T-SVD of C, there exist two unitary tensors U € CPP>P>Ps
and V € CP>¥P2¥s satisfy

UTC+V =3,

where S is an F-diagonal tensor. We define U = (L HH = Uand V =K+ (T/, therefore, U is M-unitary and
YV is N~l-unitary,and A= U+ S+ VH. O

The T-MN-eigenvalues of A are elements of the set spec((lfff3 ® I, )bcire(S = S#)(Fp3 ®ly) = {Ia;lz, 1<i<
p3, 1 < j < p1}), we write aé, as the weighted singular values of A. In the following content, we describe

Hermite positive definite tensors M € CPPP¥%s and N € CP>*P>*%3 as the weighted coefficient tensors of
A€ O,
A specific example is given to illustrate the T-MN-SVD.

Example 3.2. Let A € C¥»3, the frontal slices of A have the following forms,

1 =2 3 -1 5 9
0 2[,A®@=]5 21,49 =3 -0.1i|.

7 5 01 8 5 -6

AD =

The weighted coefficient tensors M € C¥3*® and N € C>** are given by

5 -1 2 000 )
MO =|-1 3 ol M®@=M®=|0 0 0 ,N<1>=(_1 ‘5),N<2>=N<3>=(8 8)
2 0 4 000

Transform bcirc(M) and bcirc(N) into the Fourier domain, since the Cholesky decomposition of matrix, it
is known that

2.2361 0.0000 0.0000 0 00
LM =1-0.4472 1.6733 0.0000|,L® =1®=[0 0 0].
0.8944 0.2390 1.7728 000

and

34142 0.0000 00
® = @ = g® =
K ‘(—0.7071 4.1213)'K =K ‘(o 0)'

By equation C = L + A+ (K1) and the T-SVD of C, we have

90432 0 2.2337 0 2.2337 0
sO=( o0 29151(,8@ =] 0 -1.2492(,s® =| 0 -1.2492].

0 0 0 0 0 0

By equations U = (L) « U and V = K +V, we get that U and V have the following forms,

—-0.3379 — 0.0001i —0.0652 — 0.0058i —0.0430 + 0.0012i
u® =1-0.0538 + 0.0002i 0.3427 + 0.0119i —0.1555 — 0.0004i
0.2083 — 0.0008i —0.0196 + 0.0027i  0.2101 — 0.0005i

0.1249 — 0.0001;  0.0190 — 0.0058; —0.0432 + 0.0012i
U® =1-0.0571 + 0.0002i —0.0267 + 0.0119i  0.1788 — 0.0004i
—0.3381 — 0.0008;  0.2264 + 0.0027;  0.1326 — 0.0005i
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—0.0896 + 0.0002i 0.1042 + 0.0119;  —0.4048 — 0.0004:

—0.0278 — 0.0001; —0.2044 —0.0058; —0.3032 + 0.0012{
u® = ,
—0.1812 — 0.0008; —0.0586 + 0.0027;  0.1039 — 0.0005i

and

v = —-0.2777 - 0.0000i —1.5394 + 0.0000:
~1-0.1450 — 0.0036i —0.6460 — 0.0053i)’

@ _ (~1:2754 - 0.0000i  1.7258 +0.0000i
~1-3.0107 - 0.0036i ~2.2611 - 0.0053i)”

@ _ (~1:2754—0.0000i 17258 +0.0000i
~ | 1.4333 - 0.0036i  -0.9031 - 0.0053i)"

The MN-CSVD is applied in the weighted Moore-Penrose inverse theory, the T-MN-CSVD of tensors
is introduced as below. Let A € CP>¥#*%3 with (M, N) weighted coefficient tensors. The T-MN-SVD of A
as (5) with U € CPv¥>#s, Y e CP>*P>*P3 and F-diagonal tensor S € CP#2*P3, where U and V satisfying
UTs MU =T, and VI« NV =T, Suppose rank(L;) = r;, where ¥; is the block diagonal
matrices obtained by the discrete Fourier diagonalization of bcirc(S), we denote U; = (xi,xé, “e ,xé,l) and
Vi=Wyh -, y;;z), i=1,2,--+,ps. Besides, r is the maximum value of r; which written as the T-tubal-rank
of A and denoted as rank;(A) [14]. The T-MN-CSVD is given by deleting the zero weighted singular values.
In other words,

(Z), = diag(ci, b, ,c}) € R, (Vi) = (v, Yo+, yh) € €2, (U, = (], %), -+, x}) € T,
thus,
(U1)e(Z1)(VE),
beirc(A) = (F, ® I,,) (Fys ®1p,)

(Up ) (Zp ) (Vs
= bcirc(‘L(r)bcirc(Sr)bcirc((VfI),

where U, € CP7Ps, S, € R™™P3, V, € CP>"P, Thus, A has the following expression,
A=Uy+S,+ VI, ©)
The factorization (6) is called the T-MN-CSVD of A.

Remark 3.3. In matrix theory, the MN-CSVD of A has represented as A = U,S,VH, where S, = diag(o1, 02, ,04),
and o; # 0 for i is a positive integer from 1 to r, as for the T-MN-CSVD of A, there are some 7 of A are zeros as the

choose of the T-tubal-rank of A. In the following description, denote the nonzero weighted singular values of tensors
as c’].,j= 1,2,---,randi=1,2,--- ,ps.

3.2. T-W-MP Inverse of Tensor

The weighted Moore-Penrose inverse of tensors is written as T-W-MP inverse and defined by four
equations.

Definition 3.4. [1] Let A € CPP>P3 with (M, N) weighted coefficient tensors. The T-W-MP inverse X € CP>¥1>¥s
of A such that

As X+ A=AX+As X=X, M+ A+X) = M+s A+ X, N+ X+ AT = N+ X+ A 7)

hold.
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Corollary 3.5. Suppose A € CPP>*Ps with (M, N) weighted coefficient tensors, the T-MN-CSVD of A is A =
U, + S, » VL. Then T-W-MP inverse of A is given by

Al =N Ve« SEUl + M,
o)}

(Zo)f
where ST = bcirc_l((l-“,,3 ®I,)

(Fr® Ir)).
(Zps )j:
In view of the concept of T-W-MP inverse of tensors, it is obtained the following inferences.

Corollary 3.6. Suppose A € CPP>*Ps with (M, N) weighted coefficient tensors and the T-MN-CSVD of A is
A=U,+S,*VH, then

(1) beire(U, + U + M) = Pgiay = beirc(A * Jﬂjwv),

(2) beirc(N~1+V, = VH) = Pgian = bcirc(ﬂjw N *A),

(3) The tensor & := U, » VI is the weighted projection tensor which makes bcirc(E » E¥) = Pre) = Preay and
bCirC((S# * 8) = P‘R(S#) = P"R(ﬂ#) hold.

The p1 X p» X p3 weighted partial isometry tensors of A are defined by satisfying
i, ek _ k, ot _
E+& =0,8+E =0 (®)
fori#korj#Il and
E+&'+A=A+E+E,.

By the concept of &,

(Uy), V1), "

beirc(€) = (Fp, ® I,) (Fl®1,),
(up3 )r (Vps)i’
where (U;), € CP*" and (V;), € CP>*", then
bcirc(8§i)) = (Fy, ® I, )diag(O, O, - -- ,uj.v;” o O)F 1),

where uj, and vj, means the j-th column of (U;), and (Vi),,i=1,2,--- ,p3,j=1,2,---,r, then we have
&= Z &l (9)
ij

Furthermore, (83', N (8;.)#.
The weighted spectral decomposition of tensors is proposed by using the weighted singular values of
tensors and the weighted partial isometry tensors as followed.

Theorem 3.7. Suppose A € CPP>*Ps with (M, N) weighted coefficient tensors, then the T-MN-spectral decompo-
sition of A is

L]

where cj. and 8;. are the weighted singular values and the weighted partial isometry tensors of A, j =1,2,--- ,rand
i=12,-,ps.
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Proof. By the weighted spectral decomposition of matrices, it is obtained that the following equation holds,
clE!
beirc(A) = (Fp, ®1,,) (Fil ®1,,) = Z cibeirc(E)),
) CP3 EP3 i,j
15T

then the equation (10) can be obtained by taking “bcirc™

By the fact beirc(A',
1
t — i
Al = Z 2&].
ij i

3.3. T-WGTF
With the T-MN-SVD and the T-MN-CSVD, the T-WGTF could be defined as follows.

Theorem 3.8. If f : C — C, and A € CP>P>P3 with (M, N) weighted coefficient tensors, then the corresponding
T-WGTF f},, : CPOP>Ps — CPPPs s defined by

P (A) = U s fn(S) VY,

" on the above equation. [J

) = (bcire(A)f that Al could be expressed as

where the function ]/‘,:,W(S) is given by
N fun(Z1)
Fvn(S) = beire ' ((Fp, ®1,,) (Fl®1,)],
fmn(Zp;)

Sfun(Z;) are defined in (4) and each X; is the diagonal block obtained by the discrete Fourier diagonalization of beire(S),
i=12,ps.

Proof. According to the T-MN-SVD of A, by taking “bcirc” on (1) we have
beirc(A) = beirc(U * S * V) = beirc(U) - beire(S) - beire(VH),

where beirc(U) € CPP>*P17: and beirc(VH) € CP2P*P2ps are matrices which satisfying beirc(2U!) - beirc(M) -
beire(U) = beire(Zp,p,p,), beire(VH) - beirc(N ) - beire(V) = beire(Zp,p,p,). Besides, beire(S) € CPP2ps js
factorized as

X
beire(S) = (Fp, ®1,) (Fr ®1,,).
Ly,
By the expression of the weighted GMF in equation (4), the induced function on S is defined by
faun(En)
Fan(S) = beire [ (Fp, ® 1) (Fl®I,)|
f MN (Z‘Ps )

we define
bcirc( f/(:/t N A) = bcirc((Ll)bcirC(]?;MN(S))bcirc(WH). (11)
then the above equation turns out

Frn () = U+ Fan(S) = V.

O
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The following corollary could be easily obtained from Theorem 3.8.

Corollary 3.9. Suppose A € CP>¥>¥s with (M, N') weighted coefficient tensors. Let f : C — C be a scalar function,
fXA - CPrPPPs — CPPPe s the corresponding T-WGTE, then

@) [y (AN = £ (AT and [f3 (AT = £ (A,
(2) fX,( NP FALQ) =P+ fX,l n(A) *Q where P € CP>P¥s and Q € CH>P>P> are unitary tensors.
Since the T-MN-CSVD, the T-WGTF of tensor could be derived as followed without proof.

Theorem 3.10. Suppose A € CP>P>>ps with (M N) weighted coefficient tensors and the T-MIN-CSVD of A is
A=U S+ VI If f:C— C, then fy,, : C¥XPs — CP2Ps is defined by

() = Uy x frn(S) *VE,

where ”ja,w” is given in Theorem 3.8.
According to the weighted projection tensor &, the following results could be obtained.

Corollary 3.11. Let f,g,h: C — C, and 3, g5 Wy : CFP — CPPP2P5 are induced T-WGTF. Suppose
A € CPPPs with (M, N) weighted coefficient tensors and the T-MN-CSVD of Ais A = U, * S, » VI,

(W) If f(2) =k, then fj\),w(ﬂ) =

) If f(2) = z, then f,\ (A) =

() If f(2) = g(2) + h(z), then fMN(ﬂ) !ZMN(ﬂ) + 1150 (A),

@) If f(2) = g@)(z), then f3 (A) = g} (A) » E + kS (A).

For the non-zero weighted singular values of tensor, there may be some same c?.’s. The same c?.'s will not
be distinguished in the following theorem, we make different c?. = yf(, that is, yi is differ from one another,
wherel <k<jand1<I<i

Next, we need the function f : C — C to content the conditions as below. Suppose each 1"5( is a Jordan
curve and f is analytic on and inside I}, then
(1) f(c;) =0if c; =0,

(2) Each l"f( only contain one )/5{, and there is no other )/f{', on or inside 1"5{.

Besides, we suppose & as
&= Z &L

These assumptions lead to the following result.

Theorem 3.12. Suppose A € CP*P2*Ps is represented by
A= Z c 8’

Suppose I" f{ is needed to make above conditions hold.
(1) The connection of & and T is

_ 1 t
=5 fr‘i(zéj A) pndz,
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where the complex-value z stands for the integral variable of function f on the contour 1";(.
(2) Suppose the scalar function f : C — C is analytic in a domain which containing the set T = |y, 1"5(, then

o 1
Y AL = 5 [ 8- A 12)
ij
In particular, if cj. # 0, then

1 1
o _ 2 e ot
Ay = Zniﬁz(za A yindz.
Proof. (1) From (9) and (10),
2E-A=)Y (z-c)E, (13)

Then,

i
By (8) and the assumptions on I}, we get

me(za ﬂ)MNdz—ZnZLZZ_CSdZ_ZS -

_)/k

[
k

(2) Similarly,

#

1 f FE)(2E - &Z{)MNdz—ZZ —( L d)81 Z fEE] .

Finally, ﬂ*  could be obtained immediately since the above result and f(z) = ;

Ay = 5 lf (zE - ﬂ)MNdz—Z ~&! (14)
ij 1’

0
If A € CP¥s, the following example is given to describe the process of solving AY, € CP>P<Ps,

Example 3.13. Let A € C>*¥3, M e C¥>¥3 and N € C¥? have the following forms,

2 -3 3 0.03i 3 2
AV =[01i 3|,AP=|5 2 |,A®=[-1 5],
1 -1 01i 4 3 4
2 1 =2 000 T
MY=11 5 3[MP=MP=[0 0 0 ,N<1>=( 1 _),N<2>=N<3>=(0 0),
-2 3 6 000 -3 00

by the T-MN-SVD of A, the weighted T-singular values are c; = 20.0826, ¢} = 5.0818, c2 = 9.9738, c; = 3.5559,
= 9.9738, cg = 3.5559, and the weighted partial isometry tensors 83. of A have the following forms, j = 1,2,

i=1,23,
0.0277 + 0.0004: 0.0469 — 0.00061']

El" = E" = EI¥ = [0.0608 +0.0016i 0.1029 — 0.0000i |,
0.0681 +0.0018i 0.1152 — 0.0001i
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o 0.4153 - 0.0015i  —0.2508 + 0.0045i
E) = EY = E1” = 0.0220 +0.0000i ~ —0.0133 + 0.0002i |,
~0.0066 — 0.0006i  0.0040 + 0.0003i

E2" =|-0.0858 — 0.0676i  0.0155 + 0.1960i
0.0379 — 0.0555; —0.1197 + 0.0177i

0.1014 — 0.0405; -0.1775 —0.0846i |,

0.0114 - 0.0717i  —0.1087 + 0.0726i
£29
rEq
0.0291 + 0.0606:  0.0445 — 0.11251

[0.0564 +0.0457i -0.0086 — 0.1304:

E%(S =[-0.0156 + 0.1081; 0.1620 — 0.1114: 0.0532 - 0.2881i  0.0972 + 0.0185: |,
—-0.0670 — 0.0051:  0.0752 + 0.0948i —0.1451 + 0.3946i —0.1329 — 0.0497i

—0.0678 + 0.0260: 0.1172 + 0.05781'] o (—0.1256 +0.2012i -0.0677 —0.0428:
7 E% -

E% = 0.2229 + 0.1901i —0.0646 + 0.0749: —0.2761 4+ 0.0980i —0.0326 — 0.0934:

—0.1114 - 0.2093; 0.0709 — 0.0372i o 0.2370 + 0.0082i —0.0032 + 0.0800i
,E20 = ,
—-0.2692 — 0.3229;  0.1095 — 0.0903i 0.4142 — 0.0716i 0.0234 + 0.1400i

E3" =[-0.0858 + 0.0676i  0.0155 — 0.1960i 0.1014 + 0.0405; —0.1775 + 0.0846i |,
0.0379 + 0.0555; —0.1197 - 0.0177i 0.0291 — 0.0606i  0.0445 + 0.1125i

0.0114 + 0.0717i —0.1087 — 0.0726i o {0.0564 —0.0457i —0.0086 + 0.1304i
B =

E%” =]-0.0156 - 0.1081i 0.1620 +0.1114i 0.0532 +0.2881i  0.0972 — 0.0185i |,

—-0.0678 — 0.0260i 0.1172 — 0.0578i o —-0.1256 — 0.2012i —0.0677 + 0.0428i
By =
—0.0670 + 0.0051i  0.0752 — 0.0948: —0.1451 - 0.3946i —0.1329 + 0.0497i

—0.2761 — 0.0980i —0.0326 + 0.0934:
0.4142 + 0.0716i  0.0234 — 0.1400:

E3(3) _

E}” =] 02229 -0.1901i  —0.0646 — 0.0749i |, E}

—-0.2692 4+ 0.3229;  0.1095 + 0.0903i

—-0.1114 + 0.2093i  0.0709 + 0.0372i ] [ 0.2370 - 0.0082i  —0.0032 - 0.0800i]

By (14), we get A! . has the following frontal slices,
At 0.0556 — 0.0000i —0.0349 — 0.0001i —0.1237 — 0.0001:
MN 710.0289 - 0.0005; —0.0391 —0.0004i —0.0942 + 0.0004i}"

AT —0.0609 — 0.0000: 0.0454 — 0.0001i 0.1566 — 0.0001:
MN 7 1-0.0548 — 0.0005 0.0693 —0.0004i 0.1553 + 0.0004i|’
At 0.1154 — 0.0000:  0.0887 —0.0001; —0.1021 — 0.0001i
MN 7 1-0.0419 — 0.0005; —0.0120 — 0.0004i 0.0565 + 0.0004i |

6414

The Cauchy integral formula for the T-WGTF in following corollary is developed for solving tensor equation.

Corollary 3.14. Let A, &, T and f have the forms in Theorem 3.12, if fX/( - CPRPEs — CPoP2Ps then

Bl = &+ (5= [ Q8- o) &

Proof. It follows from (9), (10) and (12) that (15) holds. O

Theorem 3.15. The weighted generalized tensor resolvent of A is denoted by R(z, A) and defined as
R(z, A) = (z& - A,

then for any A, u # cj., we have

R(A, A) = R(u, A) = (= VR, A) + &+ R(u, A).

(15)

(16)
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Proof. Since

1
CEERWWEDY
ij

z—c
j

#
1
&

that the left-hand side of (16) comes to

1
]
u-c

ROLA) - R(u, ) = Y (= -
i j

1 l'# 1 k#
= (=NQ, msj«)*a*(; )
L] ] y

id
)&

= (= DR(A, A) » &+ R(y, A).
O
The results in Corollary 3.14 and Theorem 3.15 are used to solve the following tensor equation,
AxX+»B=0D. (17)

Here A € CPP>Ps with (M, N) weighted coefficient tensors, B € Ck*Xs with (P, Q) weighted coefficient
tensors and D € CP>*XPs, The T-MN-Spectral decomposition and the relative weighted partial isometry
tensors of A and B are given by

p3 7 p3 7 p3r? p3
A A A B i oF iB8
A=Y ¢'& " =) &'\ 8=) 58" =) &,
i,j=1 i,j=1 i,j=1 i,j=1

where ' =rank(A) and r? =rank(B).

A

Theorem 3.16. If A, B and D have the above forms, the curve I'1 surrounds c(A) = {c;, ,1=1,2,---,p3,

ji=12,--- ,rMand the curve Ty surrounds c¢(B) = {Cf, i=12,---,p3,j=12,--- ,rB). Then the solution of (17)

1S

Ryn(A, A) + D+ Rpg(u, B
o 12ff Mn (A, A) pa(u )dyd)\.
4 Jr, Jr, Ap

Proof. It follows from (15) that

1 —
A= Sﬂ*(z_m'f AR p v (A, A)dA) + E7F,

I
1 —
— &8, L &8
8= (o fr URpali, Bdu) » E°.
Therefore,

1
27

AKX B =87 (o | Rawh, AN+ D (o [ Roalh i) + &
l"1 1—‘2
= &M+ (EN + D+ (EP) + (EP) = A Al +» D+ By * B,

while A * ff’ljw N D B;Q + B = D is equal to the solution of (17) is existent, which means that a solution of
17)is X = ﬂjvw * D B;Q if (17) holds. O
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Next, we give the following example for solving the equation (17).

Example 3.17. Let A with the weighted coefficient tensors M and N have the following forms,

3 -02i 0.1i 2 1 2
AV=1 2 [LA@=]-1 3|,A9=|-3 2|,
-1 4 5 -2 -1 0
4 2 -1 000 1
MO=[2 5 -1|,MP=M® =10 0 0,N<1>=( ‘),N@):N(S):(O 0).
-1 -1 6 000 -3 00

The frontal slices of B with the weighted coefficient tensors P and Q are as follows,

2 0.1i 3 0 5 -2
BV =|-3 5 |,B®=[-2 1[,B®=|-1 2

2 1 02i 5 3 0

3 2 001 000 — _—
1 — 2 — pB® — (1) — - @ - 0® =
PU=| 2 42 | PP=P9=10 0 0],Q _(_1 5),Q =Q _(0 0).

4

0.01i 2 7 0 00
Considering the existence of the solution of (17), we suppose the frontal slices of D as follows,

0.0776 + 0.0146i  —0.0526 + 0.0040i
DM =1-0.6927 — 0.0068i  0.5402 + 0.0209i |,
0.1308 + 0.0073i  0.2673 + 0.0069i

0.3265 + 0.0146i  0.1078 + 0.0040i
D® =[-0.0431 — 0.0068i 0.2579 + 0.0209i |,
0.0991 + 0.0073i  —0.4260 + 0.0069i

0.3449 + 0.0146i —0.0265 + 0.00401']

D® =10.3204 — 0.0068i 0.1381 + 0.0209i
0.3176 + 0.0073i  0.0833 + 0.0069i

By Theorem 3.16, the solution of (17) is that X = Jﬂjw VD B;Q. Thus, the solution X € C?*3 has the
following frontal slices,

X0 = 0.0168 + 0.0002;  —0.0072 + 0.0000;  0.0243 — 0.0002:
~ 1-0.0107 — 0.0000i —0.0174 + 0.0002i —0.0082 + 0.0002i}’

—0.0134 — 0.0000i —0.0046 + 0.0002i —0.0156 + 0.0003i
X0 = (0.0296 +0.0003; 0.0363 + 0.0000: —0.0010 — 0.00011')

@ = (—0.0342 +0.0003i -0.0374 + 0.0000i —0.0229 + 0.00011')

0.0251 - 0.0001i 0.0281 +0.0002i  0.0320 + 0.0002i

3.4. Weighted Generalized Power of Tensor
The definition of the weighted generalized power of the tensor is given by the projection tensor &.

Definition 3.18. Suppose A € CPP2>*Ps with (M, N) weighted coefficient tensors and the T-MIN-CSVD of A is
A=U,*S8,*VH. The weighted generalized power AY of A can be factorized as,

AV = ACV g Ak > 1,
AP = AR g s A k<1,
where

A0 =g = (L{,*(Vii,\?((‘l) =U,»SH VI
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Here are expressions of the weighted generalized odd power and even power of tensor which obtained
directly from Definition 3.18.

Corollary 3.19. Suppose A € CP>*P2*Ps with (M, N) coefficient tensors, then
AP = (A AN« A,
AP = (A A+ &,
The Taylor expansion of the T-WGTF which induced by f : C — C could be obtained as follows.

Theorem 3.20. Suppose A € C>*P>*P3 with (M, N) coefficient tensors, the complex-valued function f : C — C s
introduced by

(k)
Z f ( o) )

or |z — zg| < R. Then the T-WGTF f°,  : CP>P>Ps — CPI¥P2XPs g
f 0 MN

fk)( o)

Fop(A) = 2 - 28)"

f07’|C§-_ZO| <R/l: 1/2/'“ /p3rj: 1/2/“' /rl
Proof. By Definition 3.18 and the T-MN-CSVD, we get
(A =28 =U, + (S, — 20D« V2 k=0,1,--

Forn=0,1,---, we define

(k)
fX/(Nn(ﬂ) Zf (zo0)

k=0

(A~ 28)

k)
= U ! k(,ZO)(sr—zOI)k)wvf,

k=0

such that

1F () = £, (AN < 14 Vv,

k=n+1

According to Definition 2.8, then

1 pon (A _fXANn(ﬂ)H —0,(n — o).
0
Example 3.21. Let A € CP>P>P> with (M, N) coefficient tensors, f : C — C is given by

Z f® (0)

for |z| < R. The functions fi(z) and f,(z) are defined as

© - £(2K)(( ® - £(2k+1) ()
R (2k(),)<z>k, ZOEDY ﬁ(z)k.
k=0 ’ k=0 ’
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According to Corollary 3.19 and Theorem 3.20, the related T-WGTF f/(\>/t oGP — CPPPs comes to
- # #
oA = ffMN(.?I + A E+ f;MN(?I +* A"+ A

for |c§,| < R. From Maclaurin formulas of complex functions, the Maclaurin formulas of the exponential,
logarithmic and trigonometric T-WGTFs are induced to

(e8]

explp (A) = Y — (A AN 8+Z(2k+1),(ﬂ + AN 1 A,

(Zk)'

ZMN(I+ﬂ) Z(zk+1)|(ﬂ « AN« A - Z 2k)'(ﬂ « AN £

sin<>MN(ﬂ)=z(— (2k1 D (A AN < A

(9]

cos y (A) = Z( 1)kw(ﬂ « AN E

10 — « ANV &
smhMN(?()—kZ:O‘(ZkJrl)!(ﬂ A A,

(o8]

1
coshy,\ (A) = w(ﬂ « AN+ E.

If A € CPP>Ps or A € CP>P2P3 we call it the F-square tensor. The conclusion of applying the T-WGTEF
to an F-square block tensor as follows.

Remark 3.22. Let A € CP>*P2Ps with (M, N) coefficient tensors and
O A
5-(3 %)
Assume that f : C — C is an odd function, the T-WGTF could be expressed as

o ° (A
fmemmen)(B) = (fo (A" fMA(/)( ))-

Actually, since Lemma 2.15, 8 is factorized as

le(fpm 0)*(% —%)*(S, 0)*(%1? —va) (M 0)

2\ 0o N\, v )\o =S \-ur v )T\ o 1)
then
2 fmemmn) (B)
_ I pipips o % Uu, - fMN (SV) o * rL{VH _(VH M o
-\ o N, (Vr o ~prxS)) \-u vit J*(o 1 papaps
_ o 2U, * fun(Sy) =V
TN T Vex fun(Sy) = UE « M 0 /

which equals to

(0] o (A
fomemmany(B) = (fXAN(ﬂ#) fM}\(/)( ))_
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If a complex-value function can be expanded as f(z) = Y1 ax2¥, we denote the odd part fouq and even part fopen
as following forms,

(o) (o]
foda(z) = Z 2127, fooen(z) = Z ayz*.
=0 =0

Therefore, for B in Remark 3.22,

VA < A o
fomemmany(B) = [fMN“’”’( Ax ) Finoad™) J

Frinoad ) I MNeo (N 5 A)
Here is an example showed by the T-WGTF and Lemma 2.15.

Example 3.23. Let B € CWi+PXr+p2Xps he gs Remark 3.22, then the weighted exponential function exp v amn (B)
is denoted by

o 8) = cosh(NVA = A*)  sinh,\ (VA + A)
PN Z) = sinhl,  (VA# = A)  cosh( VA » A)

B cosh( VA = A*) Ax (NAF =« A+ sinh( VAP « A)
~ \sinh(VAF « A) + (VAF+ AL+ A cosh( VA* « A) '

4. Function Invariance

4.1. Weighted GMF Invariance

It is known that the studying of matrix properties which are invariant is more efficient under matrix
functions at accurate algorithms, and the matrix properties preservation under GMF is provided in [3].
The weighted GMF are introduced in [38], but the structural preservation of matrix under the weighted
GMF has not been mentioned. Before studying the invariance of structural properties of tensors under the
T-WGTE, the related concepts and properties of matrices are given first.

Definition 4.1. [16] A € CP**?2 is centrohermitian (skew-centrohermitian) if R, AR, = A (respectively, Ry AR, =
—A), where R, € CP*Pand R, € CP>*P2 are reverse matrices.

Lemma 4.2. [2] Let A € CV"* with coefficient matrices M and N. The scalar function is f : C — C and the induced
weighted GMF is fyny : CP>*P2 — CP>P2, then

D) LA = fam(A*),

(2) If X e CP>P1 and Y € CP>P2 are unitary, then fyn(XAY) = X fun(A)Y,

CVIfA=A10A,® - DAy, then fun(A) = fun(A1) & fun(A2) & - - ® fun(Ax), where “ & 7 means the direct sum
of matrices.

With the above lemma, the structure invariance under the weighted GMF has obtained as follows.

Lemma4.3. Let A € C/”", M and N are coefficient matrices of A. The scalar function is f : C — C and
famn @ CPP2 — CPYP2 s the induced weighted GMEF.

(1) If reverse matrices R, € CP*P1, Ry, € CP*P2 make R, AR, = A (or Ry ARy, = —A) hold, then Ry, fun(A)R,, =
fmn(A) (or Ry, fun(A)Ry, = — fun(A)),

(2) If AA* = A*A, then fun(A) fun(A)* = fun(A)* fun(A),
(3) If A € CP>2 is q circular matrix, then fyn(A) is also a circular matrix.
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Proof. (1) Since A is centrohermitian, there exist unitary matrices R,, and Ry, such that R, AR, = A hold.
By Lemma 4.2, Ry, fun(A)Rp, = fun(Rp, ARy,) = fMN(Z) = fun(A). Similarly, if A is skew-centrohermitian,
then RPlARPz =-A. Thus, RplfMN(A)sz = fMN(RplAsz) = fMN(_A) = _fMN(A) = _fMN(A)-

(2) According to the MN-SVD of A and A*, we get
AA* = UzVINTlvERUi M,
then

fun(AA*) = fiunUZVENTTVERUR M)
= Ufun(E)VINTV fun (EH UM = fun(A) fun (AY).

Since AA* = A*A, fun(A) fun(A)* = fun(A)* fun(A) holds directly.
(3) Note that circulant matrices are diagonalized by the DFT matrix, then A can be expressed as

M
_ H _ ) H
A=E,AFY = F, N T
/\Pz

where A1 > A > --- 2 Ap, > 0 are the eigenvalues of A. Note that F,, is unitary, then

f(A1)
fun(A) = Fp, Fp-
f(/\pz)

Hence, fun(A) is also circulant. [

Definition 4.4. Let A € RPVP1, A is called the permutation matrix if the elements in each row and column contain
the unique 1, and the others are 0.

Lemma4.5. Let A € C/"% with coefficient matrices M and N, f : C — C is a complex-value function, fyn :
CroP> — CPoP2 s weighted GME.

(1) If each element of a column(row) of A is 0, then the corresponding column(row) of fsn(A) is also composed of O,
(2) If PAQ is block-diagonal, then fyn(A) is also block-diagonal, where P € RPP and Q € IRP>P* are permutation
matrices.

Proof. (1) We suppose the last column of A are zeros, for any permutation matrix Q € C'*"2, fun(AQ) =
fmn(A)Q, denote A = (;f O), as A = U,L,VH and A= @iVE, we have

4=(F 0)=0(E o)} Y=usw

where r =rank(A), thus, the elements of the last row of Vﬁ are zeros, the result can be obtained.
(2) It is a straightforward result by Lemma 4.2(3). O

Lemma 4.6. Let A € RPP?2 be nonnegative, M and N are coefficient matrices of A, f : R — R is the odd part
of a differentiable function and the Maclaurin expansion of f is f(z) = Y.peo k2" with coxe1 > 0. Suppose f(z) is
convergent for |z| < R. Then fyn(A) is also nonnegative for |o; — z| < R, where o; is the weighted singular values of
A,i=1,2,..,r r=rank(A).
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Proof. We assume that f is

0o

fx) = Z C2k+1x2k+1 and coeq 2 0.
k=0

According to the MN-CSVD of A,
AA* = ANTTAEM = U, 22Ut > 0,
which means that (AA*)¥A = U, £2*1VH > 0. Then

fin(A) = U fun(EAVE = Uy Y e T2V = Y oo U T2V > 0.
k=0 k=0

O

4.2. Tensor Function Invariance
With the study of structure invariance of the weighted GMF, the structure invariance of the T-WGTF of
tensor could be obtained similarly in this section.

Definition 4.7. [23] R € CP*P>*¥3 s called the reverse tensor if

Ry,
@)
R=fold| . |,
@)
while Ry, € CP' is a reverse matrix.
Definition 4.8. [23] Let A € CP*P>*P3 be centrohermitian (Skew-centrohermitian) if R, * AR, = ﬁ(Rp1 * ARy, =
~A).
Theorem 4.9. Suppose A € CP>¥>Ps with (M, N) coefficient tensors, if f : C — C, and fX/w D CPoPPs —
CP>P2>Ps js corresponding T-WGTF.
D) If Ry, * Ax Ry, = A(or Ry, * Ax Ry, = —A), then Ry, *fX/W(ﬂ)*RpZ = fXAN(.?I) (or Ry, * A*Ry, = —fX,(N(ﬂ)),
where Ry, and R, are reverse tensors,
@) If A+ A= T A, then f (A 5 10 () = (T * £y (AD),
(©)] If each frontal slice of A € CP>P>Ps is a circular matrix, then the frontal slices of fﬁ( N(A) are also circular
matrices,

Proof. (1)Itfollows from there exist reverse tensors R, € C">¥>#3 and R,,, € CP>#>*Ps satisfying R, »A*R,, =
A that

Rﬁ * Ry, = fold(bcirC(Rg yunfold(R,,))

Rg o --- 0 Ry,
0 Rg -+ 0 0

= fold : : . . . =T ppipss
0 o -- Rﬁ 0

which imply that R, is a unitary tensor, by the same method that R, is also unitary. According to Corollary
3.5,

Ry, *f/(:/(N(ﬂ) * Ry, = X/[N(Rpl * AxRy,) = X/IN(“?[) = fX/(N(ﬂ)/
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which means fX/( ~(A) is also centrohermitian. Skew-centrohermitian can be obtained similarly.

(2) Similar to the matrix case, the result could be achieved if the condition fy, (A")+ f3 \ (A) = f (A"
A) holds. Note that

f(Z1)

f(X2)

Fon(S)# fo (ST = bcirc_l((Fp3 ®1,) (F ® Ipz))

f(zps)
fE)H

f(Z)H

. bcirc_l((Fm ®1,) (Fl ® 1,,1))

f(zllz)H
= Fip S+ 8.
Since the T-MN-SVD of A,
fX,[N(ﬂ) *fX,W(ﬂ#) = ‘LI*fXAN(S) + VH 4 N1 *(V*fXAN(SH) U« M
= U frp (S8 +UT« M= f3 (A« A) = [ (A) = fr (A,

Hence, the second result holds.
(3) If A € CP*P2*P3 since A is an F-circulant tensor, then

A(;) A(p;) . A(;) F, Agpg PPZA(:’;)FII{; szAgng
beirc(0) - A® AD o A _ szA sz FzﬂzA sz sz/\ sz
AP A-D Lo A FPZA(ps)Fg szA(prl)FZ FPZA(l)Fg
Aq
= (IPS ®FP2)(PP3 ®IP2) (PZ ®IP2)(IP3 ®F;g{2)/
Ap3

where each A? isa diagonal matrix composed of eigenvalues of AD =12, p3. In this way, the T-WGTF
of A can be factorized as

Yiv(A1)
(A = beirc™( (I, ® Fy, )(Fp, ® I,) (Fl ®1,)(I,, ® F}\)),
fon@ps)
fAD
where f7 (Aj) = and r; = rank(A;) = rank(A?),i=1,2,--- ,ps.

fAL)
The proof is completed. [

In order to get the structural invariance of block diagonal tensor under the T-WGTF, the below lemma
is necessary.

Lemma 4.10. Suppose that A € CPP>*Ps with (M, N) coefficient tensors, if
Ay

A= , (18)
A
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where A; € C¥>Ps gnd

k k
s;i = p1 and Z ti=pa,

i=1 i=1

then
Fan(F)
Frn ) =
v (A
Proof. According to Lemma 2.15 and the T-MN-CSVD of A;, then
A Uu,, S vi
A= = x x ,
Ay Uu,, S, (fo

where U,, € C>¥7P3 | S, € C>">Ps and V; € C'™">Ps. For convenience, the three F-block diagonal tensors of

the above equation are denoted as ’ZI:, 2): and (T/ﬁ\{ It is noticed that bcirc(S;) is composed of the weighted

—

singular values of A by the T-MN-CSVD of A, while bcirc(D;) is composed of the weighted T-singular

values of A;. Then there exists permutation tensor £ € R such that S, = P = E)\r +PT. Hence, A could
be expressed by

A = ﬂr*Sr*(VfI :ﬂr*P*@:*PT*(VfI = i\lr*b\r*(/‘-/rﬁ/
which means that ’i\lr =U, P and 7‘7, =V, » P. Therefore, the T-WGTF could be expressed as followed

JE—

FUn(A) = Uy x £2,(S) + VI = U+ Px £ (D) +PT VE = Uy » 2, (D) + VH

Fan (F)
The proof is completed. O

As a consequence, if a third-order tensor could be expressed by the “direct sum” of the other third-order
tensors, then it is invariant under the T-WGTFE.

Theorem 4.11. Let A € CPP>>*P3> with (M, N) coefficient tensors, f : C — C, and fXA o CPrPEPs — O f
there have two permutation tensors

P Q
o 0
P = fold . le ]RP1><P1><P3 and Q = fold e ]RPZXPsza
o 0
make P+ A+ Q be an F-block diagonal tensor, where P € RP¥ and Q € IRP**P are permutation matrices. Then
P f X,[ n(A) * Qis also F-block diagonal.

Proof. Suppose P * A+ Q = B, then B can be factorized as (18). In this case, since  and Q are unitary
tensors,

P fu ) *Q = f P« A Q) = f(B).
According to the result of Lemma 4.10, P * fX/[ ~(A) * Qis also F-block diagonal. [
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The following theorem states that tensors preserved nonnegativity under the T-WGTE.

Theorem 4.12. If A € RPP>*P3 is g nonnegative tensor with (M, N) coefficient tensors, f : R — R is the odd part
of an analytic function, and its Maclaurin expansion is

f@ =Y o
k=0

with cy1 = 0, suppose that it is convergent for |z| < R. Then the corresponding T-WGTF fXA N O —
CPP2>ps s nonnegative for |c;.| <R

Proof. Assume the complex-value function f is

[ee)
f(z) = Z Czk+122k+l,
k=0

where cy,1 > 0. Since AX*! = (A + A + A, it is known that
(A AV s A= (U S+ VIs NV, ST UL« MU, + S, » VT = U, » ST YT,
According to A is nonnegative, we have
FonA) = Uy (Y c5a ST+ V] 2 0.
k=0
Therefore, fXA n(A) is also nonnegative. [

The following result may transform the calculation of complex tensors into real tensors.

Theorem 4.13. If A € CP>P>Ps with (M, N) coefficient tensors, f : C — C and f(0) = 0, f/ovw s QPP —
8 -C

CrvP>ps s T-WGTF, and ¢ : CPoP>Ps — REPVXCrXPs s g mapping satisfies p(A) = (C 3

CP>#2Ps. Then
éM)(ZN)(QD(ﬂ)) = qb(fX/(N(ﬂ)) (19)

Proof. Suppose U = Uy + iUy and V = (V1 + iVa)H, where Uy, U, € RPP*P>P3 and V4, V, € RPPPs Tt
follows from T-MN-SVD that

A=U+S+V" = (U +ilU) + S+ (V, +iVo)T =B +iC,
then 8 = U, *S*(VlT+(LI2*S*(V§andC='lIZ*S*(V1T—"LI1 *S*(Vg. The T-WGTF is factorized as

)with B, Ce

o) = U f,(S) » V= (Us + i) * f\ (S) * (Vi + iV
= U+ £ (S) VI +Up = £, (S)* V] +i(Un = £, (S) * V] = Uy + £3,,(S) +V]).
Then ¢(f},,,(A)) may be expressed as

S, (A)) = Uy 5 0 (S) + VT + Uy x £, (S)+ VE =y [0, (S)+ VT + Uy » 2, (S) V]
MN Up* £ (S + VI — U= £ (S)+ VI Upx £, (S)+ VI + U= f2, (S)+ VI |

Consider the right side of (19), according to expressions of 8 and C, we have
(B C)_(th ) (S O, (V: A
$A=c 8)7\w w o s/*\v. v
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It follows from UM « M« U =T, and VE« N1« YV =1, that
(LIlT*M*‘Lll +7/[2T*M*([/[2 =Iplplp3,(L(1T*M*7/{2 —(LIZT*M*(LQ =O,

VAN sV + VI NV =T, VI NV = VIs NV, = 0.

Therefore,

U -\ (M O (th ~h)_ .
Uu, U o M) \U, U, |~ @

Vi -V\' (N7 O Vi Vs _
Vy Vi i O N1 ¥ VvV, WY _I(ZPZ)(ZPZ)pW

-1
hence, (M O) and (N 0 ) are Hermite positive definite tensors. As a result,

o M O N1

U U\ (S O Vi =W\
ﬂ3M><ZN)(¢(ﬂ))=(ﬂ; wlz)*(fw(v) ) £ 3))*(4/; 4/12) = O(f3 (A)).

The proof is completed. [
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