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Abstract. In this paper, we introduce a new generalized inverse, called MPWG inverse of a complex
square matrix. We investigate characterizations, representations, and properties for this new inverse.
Then, by using the core-EP decomposition, we discuss the relationships between MPWG inverse and other
generalized inverses. A variant of the successive matrix squaring computational iterative scheme is given
for calculating the MPWG inverse. The Cramer rule for the solution of a singular equation Ax = b is also
presented. Moreover, the MPWG inverse being used in solving appropriate systems of linear equations is
established. Finally, we analyze the MPWG binary relation.

1. Introduction

Throughout this paper, we denote the set of all m×n complex matrices by Cm×n. For A ∈ Cm×n, the
symbols A∗, rank(A), N(A), and R(A) stand for the conjugate transpose, the rank, the null space and the
range space of A, respectively. Moreover, In will refer to the n×n identity matrix. Let A∈Cn×n, the smallest
positive integer k for which rank(Ak) = rank(Ak+1) is called the index of A and is denoted by Ind(A). Then
Cm×n

k represents all m×n complex matrices sets with index k. PE,F represents the projector on the subspace
E along the subspace F. For A ∈ Cn×n, PA stands for the orthogonal projection onto R(A). The symbol
COP

n represents the subset of Cn×n including orthogonal projectors (Hermitian idempotent matrices), i.e.,
COP

n = {A|A∈Cn×n,A2 = A = A∗}. CCM
n represents the subset of all n×n complex matrices sets with index 1.

Next, let’s review the definitions of some common generalized inverses.
For A∈Cm×n, the Moore-Penrose inverse A† of A is the unique matrix X∈Cn×m satisfying the following

four Penrose equations [1]:

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

The Moore-Penrose inverse can be used to represent orthogonal projectors PA := AA† onto R(A) and
QA := A†A onto R(A∗), respectively. A matrix X∈Cn×m that satisfies the equality AXA = A is called an inner
inverse or {1}-inverse of A, and a matrix X∈Cn×m that satisfies the equality XAX = X is called an outer
inverse or {2}-inverse of A.
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For A∈Cm×n with rank(A) = r, and suppose T be a subspace of Cn of dimension s≤r, S be a subspace
of Cm of dimension m − s.. According to the common terminology, X is a {2}-inverse of A with prescribed
range T and null space S if

XAX = X, R(X) = T, N(X) = S.

If such X exists, X is unique and denoted by A(2)
T,S.

The Drazin inverse is a kind of outer inverse defined for square matrices. For A∈Cn×n and Ind(A) = k,
the Drazin inverse AD of A is the unique matrix X∈Cn×n satisfying the following three equations [1]:

Ak+1X = Ak, XAX = X, AX = XA.

In particular, if Ind(A) = 1, AD = A# is the group inverse of A.
For A∈Cn×n, the core inverse A #O of A is the unique matrix X∈Cn×n satisfying the conditions [2]:

AA #O = PA, R(A #O)⊆R(A).

A #O exists if and only if Ind(A) = 1.
For A∈Cn×n and Ind(A) = k, the core-EP inverse A †O of A is the unique matrix X∈Cn×n satisfying the

following conditions [3]:
X = XAX, R(Ak) = R(X) = R(X∗).

Obviously, the core-EP inverse is an outer inverse of A. Recall that, by [4], the core-EP inverse can be
expressed as A †O = ADAk(Ak)†.

The weak group inverse is proposed by Wang and Chen [5] for square matrices of an arbitrary index as
an extension of the group inverse. For A∈Cn×n, the weak group inverse AWO of A is the uniquely determined
matrix that satisfying:

AX2 = X, AX = A †OA.

Notice that, by [5], we have AWO = (A †O)2A.
The BT-inverse of A∈Cn×n, denoted by A⋄, which was defined in [6] can be written by (APA)† [6, 7].

The DMP-inverse of A∈Cn×n
k , written by AD,†, was defined in [8] as the unique matrix X∈Cn×n satisfying

XAX = X,XA = ADA and AkX = AkA†. Moreover, it was proved that AD,† = ADAA†. Also, the dual DMP-
inverse of A was introduced in [8], namely A†,D = A†AAD [8, 9]. The CMP-inverse of A∈Cn×n

k , written by AC,†

was defined in [10] as the unique matrix X∈Cn×n
k satisfying XAX = X,AX = AADAA† and XA = A†AADA.

Moreover, it was proved that AC,† = A†AADAA† [10, 11]. The (B,C)-inverse of A∈Cm×n, denoted by A(B,C)

[12], is the unique matrix X∈Cn×m satisfying XAB = B,CAX = C,N(X) = N(C) and R(X) = R(B), where
B,C∈Cn×m [9, 12].

Recently, two new generalized inverses have emerged by combining Moore-Penrose inverse and the
weak group inverse, which are the weak core inverse (WCI) AWO,† and the dual weak core inverse (d-WCI)
A†,WO , respectively [13]. Precisely, the weak core inverse of A∈Cn×n presents a unique solution to the matrix
system

X = XAX, AX = CA†, XA = ADC,

where C is the weak core part of A with C = AAWOA. Notice that AWO,† = AWOAA†, A†,WO = A†AAWO .
The main structure of this paper is as follows.
(1) In Section 2, some preliminaries are given.
(2) In Section 3, we introduce the MP weak group inverse(MPWG inverse) and give some representations

and characterizations.
(3) In Section 4, we discuss the relationships between the MPWG inverse and other generalized inverses

by the core-EP decomposition.
(4) In Section 5, we develop the SMS method for finding the MPWG inverse.
(5) In Section 6, the Cramer rule for the solution of a singular equation Ax = b is generalized.
(6) In Section 7, we give the application of the MPWG inverse in solving linear equations.
(7) Finally, in Section 8, we analyse the MPWG binary relation.
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2. Preliminaries

In this article, we will use the core-EP decomposition. First, let’s review it.
Wang gave the core-EP decomposition in the document [14]. Let A∈Cn×n with Ind(A) = k, rank(Ak) = p.

Then, one has A = A1 + A2, where A1∈CCM
n , Ak

2 = 0, A∗1A2 = A2A1 = 0.
Further, there exists an unitary matrix U∈Cn×n such that

A = U
(
T S
0 N

)
U∗, A1 = U

(
T S
0 0

)
U∗, A2 = U

(
0 0
0 N

)
U∗, (2.1)

where T∈Cp×p is nonsingular; S∈Cp×(n−p); N∈C(n−p)×(n−p) is nilpotent of index k, i.e., Nk = 0.

Lemma 2.1. [5, 16–18] Let A∈Cn×n
k be as in (2.1). Then

(1) A† = U
(

T∗△ −T∗△SN†

(In−p −N†N)S∗△ N† − (In−p −N†N)S∗△SN†

)
U∗,

(2) AD = U
(
T−1 (Tk+1)−1T̃

0 0

)
U∗,

(3) A †O = U
(
T−1 0

0 0

)
U∗,

(4) A⋄ = U
(

T∗△1 −T∗△1SN⋄

(PN − PN⋄ )S∗△1 N − (PN − PN⋄ )S∗△1SN⋄

)
U∗,

(5) AD,† = U
(
T−1 (Tk+1)−1T̃NN†

0 0

)
U∗,

(6) A†,D = U
(

T∗△ T∗△T−kT̃
(In−p −N†N)S∗△ (In−p −N†N)S∗△T−kT̃

)
U∗,

(7) AC,† = U
(

T∗△ T∗△T−kT̃NN†

(In−p −N†N)S∗△ (In−p −N†N)S∗△T−kT̃NN†

)
U∗,

where T̃ =
k−1∑
j=0

T jSNk−1− j, △ = [TT∗ + S(In−p −N†N)S∗]−1, △1 = [TT∗ + S(PN − PN⋄ )S∗]−1.

Lemma 2.2. [19] Let A∈Cn×n
k be as in (2.1). Then

rank(A) = rank(A2)⇔N = 0.

In which case, we have

A# = U
(
T−1 T−2S

0 0

)
U∗, A #O = U

(
T−1 0

0 0

)
U∗.

Lemma 2.3. [5, 13, 14, 17] Let A∈Cn×n
k be as in (2.1). Then

(1) AA† = U
(
Ip 0
0 NN†

)
U∗,

(2) A†A = U
(

T∗△T T∗△S(I −N†N)
(In−p −N†N)S∗△T (In−p −N†N)S∗△S(I −N†N) +N†N

)
U∗,

(3) AWO = (A †O)2A = U
(
T−1 T−2S

0 0

)
U∗,
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(4) AWO,† = AWOAA† = U
(
T−1 T−2SNN†

0 0

)
U∗,

(5) A†,WO = A†AAWO = U
(

T∗△ T∗△T−1S
(In−p −N†N)S∗△ (In−p −N†N)S∗△T−1S

)
U∗,

where △ = [TT∗ + S(In−p −N†N)S∗]−1.

Lemma 2.4. [5, 13] The following statements concerning AWO are true.
(1) AWO is an outer inverse of A,
(2) R(AWO) = R(Ak),
(3) AWOAk+1 = Ak,
(5) AAWO = AkB for some matrix B,
(6) AWO = AkZ for some matrix Z.

Lemma 2.5. [20] Let A∈Cn×n with rank(A) = r>0. Then there exists a unitary matrix U∈Cn×n such that

A = U
(
ΣK ΣL
0 0

)
U∗, (2.2)

whereΣ = dia1(σ1Ir1 , σ2Ir2 , . . ., σtIrt ) is the diagonal matrix of singular values of A, σ1>σ2>. . .>σt>0, r1+r2+. . .+rt =
r, and K∈Cr×r, L∈Cr×(n−r) satisfy KK∗ + LL∗ = Ir.

Lemma 2.6. [21, 22] Let A∈Cn×n be a matrix written as in (2.2). Then,
(1) the Moore–Penrose inverse of A is

A† = U
(
K∗Σ−1 0
L∗Σ−1 0

)
U∗,

(2) the core-EP inverse of A is

A †O = U
(
(ΣK) †O 0

0 0

)
U∗.

3. Definition, characterizations and representations of the MPWG inverse

According to the Moore–Penrose inverse and the weak group inverse of A, we establish a new inverse
which is called the MP weak group inverse. Here we give the definition as follows.

Let A∈Cn×n. C is the weak core part of A. We consider the following system of equations:

XAX = X, AX = ADC, XA = A†AWOA2. (3.1)

Theorem 3.1. Let A∈Cn×n with Ind(A) = k. C is the weak core part of A. The system (3.1) is consistent and its
unique solution is the matrix X = A†ADC.

Proof. We will check that the matrix X = A†ADC satisfies the three equations in system (3.1).
By AAD = ADA and CADC = C, we can get

XAX = (A†ADC)A(A†ADC) = A†ADCAA†AD(AAWOA)
= A†ADCADC = A†ADC = X.

On the other hand,

AX = AA†ADC = AA†ADAAWOA
= AA†AADAWOA = AADAWOA = ADAAWOA = ADC.

From (6) in Lemma 2.4, AWO = AkZ for some matrix Z, and because ADAk+1 = Ak, then XA = A†ADCA =
A†ADAAWOA2 = A†ADAAkZA2 = A†AkZA2 = A†AWOA2.

For the uniqueness, we assume that X1 and X2 are two solutions of the system (3.1). From AX1 = ADC =
AX2, X1A = A†AWOA2 = X2A, we have X1 = (X1A)X1 = (X2A)X1 = X2(AX1) = X2AX2 = X2. The uniqueness
is proved.
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Definition 3.2. Let A∈Cn×n with Ind(A) = k. C is the weak core part of A. The MP weak group inverse (or, in short,
MPWG inverse) of A, denoted as A†,WG, is defined to be the solution of the system (3.1).

Theorem 3.3. Let A∈Cn×n with Ind(A) = k. Then

A†,WG = A†AWOA. (3.2)

Proof. From (6) in Lemma 2.4, we have
A†,WG = A†ADC = A†ADAAWOA = A†ADAAkZA = A†AkZA = A†AWOA.

Example 3.4. Let

A =


1 0 1 0
0 1 0 1
0 0 0 1
0 0 0 0

 .
It is easy to check that Ind(A)=2. It can be obtained by calculation that the Moore-Penrose inverse, the Drazin inverse
and the WG inverse are

A† =


1
2 0 0 0
0 1 −1 0
1
2 0 0 0
0 0 1 0

 , AD =


1 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0

 , AWO =


1 0 1 0
0 1 0 1
0 0 0 0
0 0 0 0

 ,
the BT inverse, the core EP inverse, the DMP inverse and the CMP inverse are

A⋄ =


1
2 0 0 0
0 1 0 0
1
2 0 0 0
0 0 0 0

 , A †O =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ,

AD,† =


1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0

 , AC,† =


1
2 0 1

2 0
0 1 0 0
1
2 0 1

2 0
0 0 0 0

 .
Then we can get

AWO,† =


1 0 1 0
0 1 0 0
0 0 0 0
0 0 0 0

 , A†,WO =


1
2 0 1

2 0
0 1 0 1
1
2 0 1

2 0
0 0 0 0

 ,

A†,WG =


1
2 0 1

2
1
2

0 1 0 1
1
2 0 1

2
1
2

0 0 0 0

 .
Through this example, we can see that A†,WG is different from other common generalized inverses.

Theorem 3.5. Let A∈Cn×n with Ind(A) = k. C is the weak core part of A. Then the following statements are
equivalent:
(1)X = A†,WG = A†AWOA,
(2)X = XADC,XAk = A†Ak,
(3)A†AX = X,AX = AWOA,
(4)XAk = A†Ak,XAWOA = X,
(5)X = XADC,R(X) = R(A†Ak) and AX is idempotent,
(6)AX = ADC,R(X)⊆R(A∗).
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Proof. That (1) implies all other items (2) − (6) can be checked directly.
(2)⇒(1). Since AWO = AkZ, it follows that

X = XADC = XADAAWOA = XADAAWOA
= XAkZA = A†AkZA = A†AWOA.

(3)⇒(1). It is obvious that X = A†AX = A†AWOA.
(4)⇒(1). From (6) in Lemma 2.4, and XAk = A†Ak we have

X = XAWOA = XAkZA = A†AkZA = A†AWOA.

(5)⇒(2). Since AX is idempotent, it follows that AX−(AX)2 = (A−AXA)X = 0, so R(A†Ak) = R(X)⊆N(A−
AXA). We can get that (A − AXA)A†Ak = 0, i.e., Ak = AXAk. Multiplying the last equality by A† from the
left side, we get A†Ak = A†AXAk.

Furthermore, from (I − A†A)A†Ak = 0, we have R(X) = R(A†Ak)⊆N(I − A†A). Then, (I − A†A)X = 0, i.e.,
X = A†AX. Hence XAk = A†AXAk = A†Ak.

Finally, since R(I − A†A)⊆N((Ak)∗A2)) = N(X), we have that X = A†AX. Hence XAk = A†Ak.
(6)⇒(1). Let X = A†,WG, clearly, from (3.1) we obtain AX = ADC. On the other hand, from A†AA†,WG =

A†AA†AWOA = A†,WG, we can get R(X)⊆R(A†A) = R(A∗).
In order to show that system (6) has a unique solution, assume that both X1 and X2 satisfy (6), that is

AX1 = ADC = AX2, R(X1)⊆R(A∗) and R(X2)⊆R(A∗), so we can get R(X1 − X2)⊆R(A∗). Since A(X1 − X2) = 0,
we obtain R(X1 − X2)⊆N(A) = R(A∗)⊥. Therefore, R(X1 − X2)⊆(R(A∗)⊥)∩R(A∗) = 0. Thus, X1 = X2.

According to the decompositions of A† and AWO , we can easily get the following two inferences.

Corollary 3.6. Let A∈Cn×n be a matrix written as in (2.1). Then

A†,WG = A†AWOA = U
(

T∗△ T∗△(T−1S + T−2SN)
(In−p −QN)S∗△ (In−p −QN)S∗△(T−1S + T−2SN)

)
U∗, (3.3)

where △ = [TT∗ + S(In−p −N†N)S∗]−1.

Remark 3.7. Using the core-EP decomposition , we can get that

AAWOA† = U
(
T−1 0

0 0

)
U∗ = A †O.

The expression AAWOA† can not be considered as a new generalized inverse of A.

Corollary 3.8. Let A∈Cn×n be a matrix written as in (2.2). Then

A†,WG = A†AWOA = A†(A †O)2A2 = U
(
K∗Σ−1(ΣK)WOΣK K∗Σ−1(ΣK)WOΣL
L∗Σ−1(ΣK)WOΣK L∗Σ−1(ΣK)WOΣL

)
U∗.

Theorem 3.9. Let A∈Cn×n with Ind(A) = k. Then
(1) A†,WG = A†(AA †OA)#A,
(2) A†,WG = A†(A †O)2A2 = A†(A2) †OA2,
(3) A†,WG = A†Ak(Ak+2) #OA2,
(4) A†,WG = A†(A2PAk )†A2.

Proof. From Theorem 3.8 and Theorem 3.9 in reference [5], we have AWO = (AA †OA)# = (A †O)2A = (A2) †OA =
Ak(Ak+2) #OA = (A2PAk )†A, so (1) − (4) are established.

In the following result, we give a new representation of the MPWG inverse as an outer inverse with
prescribed range and null space.
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Theorem 3.10. Let A∈Cn×n with Ind(A) = k. Then

A†,WG = A(2)
R(A†Ak),N((Ak)∗A2)

.

Proof. By the definition, since A†,WG satisfies the equation XAX = X, A†,WG is an outer inverse of A. From
A†,WG = A†AWOA and AA†,WG = AWOA, we have

N(AWOA)⊆N(A†AWOA) = N(A†,WG)⊆N(AA†,WG) = N(AWOA).

On the other hand,
N(AWOA)⊆N(AAWOA) = N(A †OA2)⊆N((A †O)2A2) = N(AWOA).

Therefore,
N(A†,WG) = N(AWOA) = N(A †OA2).

Then, x∈N(A†,WG) if and only if A2x∈N(A †O) = N((Ak)∗). Therefore, x∈N(A†,WG) if and only if x∈N((Ak)∗A2).
And we can get

R(A†Ak) = R(A†,WGAk)⊆R(A†,WG) = R(A†AWOA) = R(A†AkZA)⊆R(A†Ak).

Therefore, A†,WG = A(2)
R(A†Ak),N((Ak)∗A2)

.

Theorem 3.11. Let A∈Cn×n with Ind(A) = k. Then
(1) AA†,WG is a projector onto the column space of Ak along the null space of (Ak)∗A2.
(2) A†,WGA is a projector onto the column space of A†Ak along the null space of (Ak)∗A3.

Proof. Since, by definition, A†,WG is an outer inverse of A, we obtain that AA†,WG and A†,WGA are idempotents
and N(AA†,WG) = N(A†,WG) and R(A†,WGA) = R(A†,WG).

(1) It is obviously that R(AWO) = R(AWOAAWO)⊆R(AWOA)⊆R(AWO). Therefore, R(AA†,WG) = R(AWOA) = R(AWO) =
R(Ak). On the other hand, N(AA†,WG) = N(A†,WG) = N((Ak)∗A2).

(2) First, we are going to prove that N(A†,WGA) = N((Ak)∗A3) holds. In fact, x∈N(A†,WGA) if and only
if A3x∈N(A †O) = N((Ak)∗). Therefore, x∈N(A†,WGA) if and only if x∈N((Ak)∗A3). Besides, R(A†,WGA) =
R(A†,WG) = R(A†Ak).

Theorem 3.12. Let A∈Cn×n with Ind(A) = k. Then A†,WG is a (A†Ak,AWOA)-inverse of A.

Proof. From Lemma 2.4 and Theorem 3.5 we can get

A†,WGAA†Ak = A†AWOA2A†Ak = A†AWOAk+1 = A†Ak,

and
AWOAAA†,WG = AWOA2A†AWOA = AWOAAWOA = AWOA.

On the other hand, from Theorem 3.10 we have

R(A†,WG) = R(A†Ak),N(A†,WG) = N(AWOA).

Corollary 3.13. Let A∈Cn×n with Ind(A) = k. For l≥k,

A†,WG = A†Al(Al+2)†A2. (3.4)

Proof. According to [15, Theorem 2.1], it follows AWO = Al(Al+2)†A. By the corresponding Theorem 3.3, we
get the equality (3.4).
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Corollary 3.14. Let A∈Cn×n with Ind(A) = k. Then

A†,WG = A†Ak((Ak)∗Ak+2)†(Ak)∗A2.

Proof. Using A†,WG = A(2)
R(A†Ak),N((Ak)∗A2)

, we obtain on the basis of the Urquhart formula [23, 24],

A†,WG = A†Ak((Ak)∗A2AA†Ak)†(Ak)∗A2 = A†Ak((Ak)∗Ak+2)†(Ak)∗A2.

Theorem 3.15. Let A∈Cn×n be arbitrary square matrix. For P = I − AA†,WG and Q = I − A†,WGA, the matrix
expressions A + P and A − P are nonsingular. Furthermore,

A†,WG = (I −Q)(A±P)−1(I − P).

Proof. Let A be represented as in (2.1), Then

In − P = AA†,WG = U
(
Ip T−1S + T−2SN
0 0

)
U∗,

In −Q = A†,WGA = U
(

T∗△T T∗△(S + T−1SN + T−2SN2)
(In−p −N†N)S∗△T (In−p −N†N)S∗△(S + T−1SN + T−2SN2)

)
U∗.

Since

P = U
(
0 −(T−1S + T−2SN)
0 In−p

)
U∗,

we have

A±P = U
(
T S∓(T−1S + T−2SN)
0 N±In−p

)
U∗.

Notice that T and N±I are invertible, we deduce that A + P and A − P are invertible and

(A±P)−1 = U
(
T−1

−T−1(S∓(T−1S + T−2SN))(N±In−p)−1

0 (N±In−p)−1In−p

)
U∗.

Therefore,

(I −Q)(A±P)−1(I − P)

= U
(

T∗△ T∗△(T−1S + T−2SN)
(In−p −QN)S∗△ (In−p −QN)S∗△(T−1S + T−2SN)

)
U∗

= A†,WG.

Example 3.16. Consider matrix A =


1 0 1 0
0 1 0 1
0 0 0 1
0 0 0 0

 in Example 3.4. Since Ind(A)=2, one can verify

A†,WG = A†AWOA = A†A2(A4)†A2 = A†A2((A2)∗A4)†(A2)∗A2 =


1
2 0 1

2
1
2

0 1 0 1
1
2 0 1

2
1
2

0 0 0 0

 .
Further calculation gives
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P = I − AA†,WG = I −


1 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0

 =

0 0 −1 −1
0 0 0 −1
0 0 1 0
0 0 0 1

 ,

Q = I − A†,WGA = I −


1
2 0 1

2
1
2

0 1 0 1
1
2 0 1

2
1
2

0 0 0 0

 =


1
2 0 −

1
2 −

1
2

0 0 0 −1
−

1
2 0 1

2 −
1
2

0 0 0 1

 .
Since

A + P =


1 0 0 −1
0 1 0 0
0 0 1 1
0 0 0 1

 ,
it follows that

(A + P)−1 =


1 0 0 1
0 1 0 0
0 0 1 −1
0 0 0 1

 .
Therefore,

(I −Q)(A + P)−1(I − P) =


1
2 0 1

2
1
2

0 1 0 1
1
2 0 1

2
1
2

0 0 0 0



1 0 0 1
0 1 0 0
0 0 1 −1
0 0 0 1



1 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0


=


1
2 0 1

2
1
2

0 1 0 1
1
2 0 1

2
1
2

0 0 0 0

 = A†,WG.

Similarly, A†,WG = (I −Q)(A − P)−1(I − P) can also be checked.

4. Relationship with other generalized inverses

In this chapter, we discuss the equivalence between the MPWG inverse and other known generalized
inverses by using the core-EP decomposition. And in this section, we remember

A†,WG = U
(
G1 G2
G3 G4

)
U∗,

where G1 = T∗△, G2 = T∗△(T−1S + T−2SN), G3 = (In−p − N†N)S∗△, G4 = (In−p − N†N)S∗△(T−1S + T−2SN),
△ = [TT∗ + S(In−p −N†N)S∗]−1.

Theorem 4.1. Let A∈Cn×n be a matrix with Ind(A) = k written as in (2.1). Then
(1) A†,WG = A⇔ T2 = Ip, S = 0 and N = 0.
(2) A†,WG = A∗⇔ TT∗ = Ip, S = 0 and N = 0.
(3) A†,WG = PA ⇔ A∈COP

n .
(4) A†,WG = QA ⇔ T = Ip and N = 0.
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Proof. (1)

A†,WG = A⇔
(
G1 G2
G3 G4

)
=

(
T S
0 N

)
⇔T∗△ = T, S = SN†N, T(T−1S + T−2SN) = S and 0 = N

⇔T2 = Ip, S = 0 and N = 0.

(2)

A†,WG = A∗⇔
(
G1 G2
G3 G4

)
=

(
T∗ 0
S∗ N∗

)
⇔T∗△ = T∗, T∗(T−1S + T−2SN) = 0,

(In−p −N†N)S∗△ = S∗ and S∗(T−1S + T−2SN) = N∗

⇔△ = I, T−1S + T−2SN = 0, SN†N = 0, N∗ = 0
⇔TT∗ = Ip, S = 0 and N = 0.

(3)

A†,WG = PA⇔A†,WG = AA†

⇔

(
G1 G2
G3 G4

)
=

(
Ip 0
0 NN†

)
⇔T∗△ = Ip, T−1S + T−2SN = 0, (In−p −N†N)S∗△ = 0 and 0 = NN†

⇔T = Ip, S = 0 and N = 0.

Then from [19], we know that it is equivalent to A∈COP
n .

(4)

A†,WG = QA⇔A†,WG = A†A

⇔

(
G1 G2
G3 G4

)
=(

T∗△T T∗△S − T∗△SN†N
(In−p −N†N)S∗△T N†N + (In−p −N†N)S∗△S(In−p −N†N)

)
⇔T = Ip and N = 0.

Theorem 4.2. Let A∈Cn×n be a matrix with Ind(A) = k written as in (2.1). Then
(1) A†,WG = AD,†

⇔ S = SN†N, (TS + SN)(I −NN†) = 0 and SN3 = 0.
(2) A†,WG = A†,D ⇔ SN2 = 0.
(3) A†,WG = AC,†

⇔ SN3 = 0 and (TS + SN)(I −NN†) = 0.
(4) A†,WG = AWO,†

⇔ S = SN†N and S + T−1SN − SNN† = 0.
(5) A†,WG = A†,WO ⇔ SN = 0.
(6) A†,WGA = A†A⇔ N = 0.

Proof. (1)

A†,WG = AD,†
⇔

(
G1 G2
G3 G4

)
=

(
T−1 (Tk+1)−1T̃NN†

0 0

)
⇔T∗△ = T−1, S = SN†N and T−2S + T−3SN = (Tk+1)−1T̃NN†

⇔S = SN†N, (TS + SN)(I −NN†) = 0 and SN3 = 0.
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(2)

A†,WG = A†,D⇔
(
G1 G2
G3 G4

)
=

(
T∗△ T∗△T−kT̃

(In−p −N†N)S∗△ (In−p −N†N)S∗△T−kT̃

)
⇔T−1S + T−2SN = T−kT̃

⇔SN2 = 0.

(3)

A†,WG = AC,†
⇔

(
G1 G2
G3 G4

)
=

(
T∗△ T∗△T−kT̃NN†

(In−p −N†N)S∗△ (In−p −N†N)S∗△T−kT̃NN†

)
⇔T−1S + T−2SN = T−kT̃NN†

⇔SN3 = 0 and (TS + SN)(I −NN†) = 0.

(4)

A†,WG = AWO,†
⇔

(
G1 G2
G3 G4

)
=

(
T−1 T−2SNN†

0 0

)
⇔S = SN†N and T−2S + T−3SN = T−2SNN†

⇔S = SN†N and S + T−1SN − SNN† = 0.

(5)

A†,WG = A†,WO⇔
(
G1 G2
G3 G4

)
=

(
T∗△ T∗△T−1S

(In−p −N†N)S∗△ (In−p −N†N)S∗△T−1S

)
⇔T−1S + T−2SN = T−1S
⇔SN = 0.

(6)

A†,WGA = A†A⇔
(

T∗△T T∗△(S + T−1SN + T−2SN2)
(In−p −N†N)S∗△T (In−p −N†N)S∗△(S + T−1SN + T−2SN2)

)
=(

T∗△T T∗△S(I −N†N)
(In−p −N†N)S∗△T (In−p −N†N)S∗△S(I −N†N) +N†N

)
⇔S + T−1SN + T−2SN2 = S(I −N†N) and

(In−p −N†N)S∗△(S + T−1SN + T−2SN2) = (In−p −N†N)S∗△(I −N†N) +N†N

⇔T−1SN + T−2SN2 = −SN†N,N†N = 0
⇔N = 0.

Remark 4.3. When A is an EP matrix, we have

A†,WG = A† = A# = A #O = AWO = A †O = A⋄.

Theorem 4.4. Let A∈Cn×n with Ind(A) = k. Then the following statements are equivalent:
(1) A†,WG = AD.
(2) AA†,WG = A†,WGA.
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Proof. Simple computations show that

A†,WG = AD
⇔

(
G1 G2
G3 G4

)
=

(
T−1 (Tk+1)−1T̃

0 0

)
⇔T∗△ = T−1, T∗△(T−1S + T−2SN) = (Tk+1)−1T̃ and S = SN†N

⇔SN2 = 0 and S = SN†N,

and

AA†,WG = A†,WGA⇔
(
Ip T−1S + T−2SN
0 0

)
=(

T∗△T T∗△(S + T−1SN + T−2SN2)
(In−p −N†N)S∗△T (In−p −N†N)S∗△(S + T−1SN + T−2SN2)

)
⇔S = SN†N and T−1S + T−2SN = T−1(S + T−1SN + T−2SN2)

⇔SN2 = 0, and S = SN†N.

Therefore, (1) and (2) are equivalent.

Theorem 4.5. Let A∈Cn×n with Ind(A) = k. Then the following statements are equivalent:
(1) A∈CEP

n .
(2) AA†,WG = AA†.
(3) AA†,WG = A†A.
(4) A†,WGA = AA†.

Proof. We already know that A∈CEP
n is equivalent to S = 0 and N = 0.

(2)

AA†,WG = AA†⇔
(
Ip T−1S + T−2SN
0 0

)
=

(
Ip 0
0 NN†

)
⇔T−1S + T−2SN = 0,NN† = 0
⇔S = 0 and N = 0.

(3)

AA†,WG = A†A⇔
(
Ip T−1S + T−2SN
0 0

)
=(

T∗△T T∗△S(In−p −N†N)
(In−p −N†N)S∗△T (In−p −N†N)S∗△S(In−p −N†N) +N†N

)
⇔S = SN†N, N†N = 0 and T−1S + T−2SN = T−1S(I −N†N)
⇔S = 0 and N = 0.

(4)

A†,WGA = AA†⇔
(

T∗△T T∗△(S + T−1SN + T−2SN2)
(In−p −N†N)S∗△T (In−p −N†N)S∗△(S + T−1SN + T−2SN2)

)
=(

Ip 0
0 NN†

)
⇔S = SN†N, NN† = 0 and T−1(S + T−1SN + T−2SN2) = 0
⇔S = 0 and N = 0.

Therefore, the above conditions are equivalent.
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5. Successive matrix squaring algorithm for the MPWG inverse

In this section, we give successive matrix squaring algorithms for computing the MPWG inverse. The
development of the SMS iterations start from the transformations.

Since

(Ak+2)†A2(AA†,WG) = (Ak+2)†A3A†Ak(Ak+2)†A2 = (Ak+2)†Ak+2(Ak+2)†A2 = (Ak+2)†A2,

we have

A†,WG = A†,WG
− β((Ak+2)†A2AA†,WG

− (Ak+2)†A2) = (I − β(Ak+2)†A3)A†,WG + β(Ak+2)†A2.

Observe the following matrices

P = I − β(Ak+2)†A3, Q = β(Ak+2)†A2, β > 0.

It is obvious that A†,WG is the unique solution of X = PX + Q. Then an iterative procedure for computing
the MPWG inverse A†,WG can be defined as follows

X1 = Q, Xm+1 = PXm +Q. (5.1)

This algorithm can be implemented in parallel by considering the block matrix

T =
(
P Q
0 I

)
and Tm =

(
Pm ∑m−1

i=0 PiQ
0 I

)
.

The top right block of Tm is Xm, the mth approximation to A†,WG. The matrix power Tm can be computed by
the successive squaring, i.e.

T0 = T, Ti+1 = Ti
2, i = 0, 1, ..., ȷ,

where the integer ȷ is such that 2 ȷ≥m.
The following theorem gives the sufficient condition for the convergence of the iterative process (5.1).

Theorem 5.1. Let A∈Cn×n with Ind(A) = k and rank(Ak) = r.Then the approximation

X2m =

2m
−1∑

i=0

(I − β(Ak+2)†A3)iβ(Ak+2)†A2, (5.2)

defined by the iterative process (5.1) converges to the MPWG inverse A†,WG if the spectral radius ρ(I − X1A)≤1.
Moreover, the following error estimation holds:

∥A†,WG
− X2m∥≤∥(I − X1A)2m

∥.

As a result,
lim

m→∞
sup 2m

√
∥A†,WG − X2m∥≤ρ(I − X1A).

Proof. We know that
A†,WGAA†,WG = A†,WG,X2m AA†,WG = X2m .

By the mathematical induction, we can get

I − X2m A = (I − X1A)2m
.

Therefore,

∥A†,WG
− X2m∥ = ∥A†,WG

− X2m AA†,WG
∥

= ∥(I − X2m A)A†,WG
∥

≤∥A†,WG
∥∥I − X2m A∥

= ∥A†,WG
∥∥(I − X1A)2m

∥,
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and

lim
m→∞

sup 2m
√
∥A†,WG − X2m∥ ≤ lim

m→∞
sup 2m √

∥A†,WG∥∥(I − X1A)2m
∥

= ρ(I − X1A).

In the last equality, we use the fact that lim
m→∞

∥Bn
∥

1
n = ρ(B) for any square matrix B.

If β is a real parameter such that , where max
1≤i≤s

∣∣∣1 − βλi

∣∣∣ < 1, λi(i = 1, 2, ..., s) are the nonzero eigenvalues of

(Ak+2)†A2. Then
ρ(I − X1A) = ρ(I − β(Ak+2)†A3)≤1.

It completes the proof.

Example 5.2. Consider the following matrix [10]:

A =

2 0 0
0 0 0
0 1 0

 , Ind(A) = 2.

Let
P = I − β(A4)†A3, Q = β(A4)†A2, β = 0.8.

The eigenvalues λi of QA are included in the set {0, 0, 0.4}. The nonzero eigenvalues λi satisfy

max
i

∣∣∣1 − λi
∣∣∣ = 1 − 0.4 = 0.6 < 1.

Then we obtain the satisfactory approximation for A†,WG after the 6th iteration of the successive matrix squaring
algorithm.

(T2)6≈



0.0000 0 0 0.5000 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000


.

The upper right corner of (T2)6 is an approximation of the MPWG inverse

A†,WG =

 0.5000 0 0
0 0 0
0 0 0

 .
6. The Cramer rule for the solution of a singular equation Ax = b

We study the relationship between the MPWG inverse A†,WG and an invertible bordered matrix.

Theorem 6.1. Let A∈Cn×n with Ind(A) = k. Let U∈Cn×r and V∗∈Cn×r having full column rank such that

R(A†Ak) = N(V), N((Ak)∗A2) = R(U).

Then the bordered matrix

X =
(
A U
V 0

)
is nonsingular and

X−1 =

(
A†,WG (I − A†,WGA)V†

U†(I − AA†,WG) −U†(A − AA†,WGA)V†

)
. (6.1)
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Proof. Since R(A†,WG) = R(A†Ak) = N(V), we obtain VA†,WG = 0. By

R(I − AA†,WG) = N(AA†,WG) = N(A†,WG) = N((Ak)∗A2) = R(U) = R(UU†),

we can obtain
UU†(I − AA†,WG) = (I − AA†,WG).

Let

Y =
(

A†,WG (I − A†,WGA)V†

U†(I − AA†,WG) −U†(A − AA†,WGA)V†

)
,

we have

XY =

(
AA†,WG +UU†(I − AA†,WG) A(I − A†,WGA)V† −UU†(A − AA†,WGA)V†

VA†,WG V(I − A†,WGA)V†

)
=

(
AA†,WG + (I − AA†,WG) A(I − A†,WGA)V† −UU†(I − AA†,WG)AV†

VA†,WG VV† − VA†,WGAV†

)
=

(
In A(I − A†,WGA)V† − (I − AA†,WG)AV†

0 VV† − 0

)
=

(
In 0
0 Ir

)
= In+r.

In an analogous way, it is possible to verify that YX = I. Thus, X is nonsingular and X−1 = Y.

Using the relationship between the MPWG inverse and a nonsingular bordered matrix, we give the
Cramer rule for solving a singular linear equation Ax = B. A(i j→b j) denotes the matrix obtained by
replacing ith column of A with b j, where b j is the jth column of B.

Theorem 6.2. Let A,B∈Cn×n and Ind(A) = k. If R(B)⊆R(Ak), then the restricted matrix equation

AX = B,R(X)⊆R(A†Ak) (6.2)

has unique solution X = A†,WGB.

Proof. If R(B)⊆R(Ak), then AA†,WGB = PR(Ak)B = B. Clearly, X = A†,WGB is a solution of (6.2). X = A†,WGB
also satisfies the restricted condition because R(X)⊆R(A†,WG) = R(A†Ak). Finally, we show the uniqueness
of X. If X1 also satisfies (6.2), we can get R(X1)⊆R(A†Ak), then

X = A†,WGB = A†,WGAX1 = PR(A†Ak)X1 = X1.

Theorem 6.3. Let A,B∈Cn×n and Ind(A) = k. Let U∈Cn×r and V∗∈Cn×r having full column rank such that
R(A†Ak) = N(V),N((Ak)∗A2) = R(U). If R(B)⊆R(Ak), then the unique solution X = A†,WGB of the singular linear
equation (6.2) is given by

xi j =

det
(
A(i→ b j) U
V(i→ 0) 0

)
det

(
A U
V 0

) , i = 1, 2, ...n, j = 1, 2, ...n. (6.3)
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Proof. Since X = A†,WGB∈R(A†Ak) = N(V) and B∈R(Ak) = AR(A†Ak), we have

VX = 0, (I − AA†,WG)B = 0. (6.4)

It follows from (6.4) that the solution of AX = B satisfies(
A U
V 0

) (
X
0

)
=

(
B
0

)
. (6.5)

By Theorem 6.1, the coefficient matrix of (6.5) is nonsingular. Using (6.1) and (6.4), we obtain(
X
0

)
=

(
A†,WG (I − A†,WGA)V†

U†(I − AA†,WG) −U†(A − AA†,WGA)V†

)(
B
0

)
=

(
A†,WGB

0

)
.

Thus X = A†,WGB and (6.3) follows from the classical Cramer rule [1, Chapter 3].

7. Applications

We need to apply the MPWG inverse to solve the appropriate linear equations.

Theorem 7.1. Let A∈Cn×n and Ind(A) = k, the equation

(Ak+2)∗A3x = (Ak+2)∗A2b, b∈Cn, (7.1)

is consistent and its general solution is

x = A†,WGb + (I − A†,WGA)y, (7.2)

for arbitrary y∈Cn.

Proof. Suppose that x has the form (7.2). Applying A†,WG = A†Ak(Ak+2)†A2, we have

(Ak+2)∗A3A†,WG = (Ak+2)∗A3A†Ak(Ak+2)†A2 = (Ak+2)∗Ak+2(Ak+2)†A2

= (Ak+2)∗A2.

Therefore (Ak+2)∗A3A†,WGb = (Ak+2)∗A2b, which implies that (7.1) holds for x.
For a solution x to (7.1), we obtain

A†,WGb = A†Ak(Ak+2)†A2b = A†Ak(Ak+2)†((Ak+2)†)∗(Ak+2)∗A2b = A†,WGAx.

Now, we get
x = A†,WGb + x − A†,WGAx = A†,WGb + (I − A†,WGA)x.

i.e., x possesses the form (7.2).

8. The MPWG binary relation

In this section, we first give the definition of the MPWG relation: A
†,WG
≤ B if and only if A†,WGA = A†,WGB

and AA†,WG = BA†,WG, where A and B are square matrices of the same size.
Naturally, we will consider whether this binary relationship can become a partial order. The answer to

this question is No. A binary relation is called a partial order if it is reflexive, transitive, and anti-symmetric
on a non-empty set. Next, we give a concrete example to prove that this relationship is not satisfied
antisymmetry.
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Example 8.1. Consider the matrices

A =


1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , B =


1 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 .
Since

A†,WG = B†,WG =


0.5 0 0 0.5
0 0 0 0
0 0 0 0

0.5 0 0 0.5

 ,
A†,WGA = A†,WGB,AA†,WG = BA†,WG and B†,WGB = B†,WGA,BB†,WG = AB†,WG. Clearly, A

†,WG
≤ B and B

†,WG
≤ A hold,

but A,B. The MPWG relation can not become a partial order.

9. Conclusion

In this paper, the definition, representations and characterizations of the MPWG inverse are given. The
equivalence conditions between various famous generalized inverses and the MPWG inverse are proved.
For Cramer rule and SMS iterative algorithm, we also give relevant theorems. Moreover, the MPWG inverse
can be applied to solving equations. We believe that the research on MPWG inverse will be popularized in
the near future.

Some perspectives for further researches can be described as follows:
1. Our further goal is to study more properties and characteristics of MPWG inverse.
2. In addition, we can further extend MPWG inverse to tensors.
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