<) Published by Faculty of Sciences and Mathematics,
A University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Filomat 36:18 (2022), 61036122
https://doi.org/10.2298/FIL2218103]

5
TIprpor®

On Triangular n—Matrix Rings Having Multiplicative Lie Type
Derivations

Aisha Jabeen?, Mohd Arif Raza®, Musheer Ahmad?

?Department of Applied Sciences & Humanities Jamia Millia Islamia, New Delhi-110025, India
b College of Sciences & Arts-Rabigh Department of Mathematics King Abdulaziz University Jeddah, Saudi Arabia

Abstract. Let1 < n € Z" and 7 be a triangular n—matrix ring. This manuscript reveals that under a
few moderate presumptions, a map .2 : 7 — .7 could be a multiplicative Lie N—derivation iff £ (2") =
(X)) + () holds on every 2 € 7, where Z : J — 7 is an additive derivation and (: J — Z(.7) is
a central valued map that disappears on all Lie N—products.

1. Introduction

Unless otherwise indicated throughout the manuscript # could be a commutative ring having identity,
o/ is an #—algebra and Z°(%7) denotes the center of &/. A map £ : &/ — </ (not necessary linear) is
referred to as a multiplicative derivation on & if (% V) = L(%)V + % £ (V) holds for all %,V € .
Further, . is said to be a derivation on .«7, if . is linear on &. Amap .£ : &/ — &/ (not essentially linear) is
recognized as a multiplicative Lie derivation (resp. multiplicative Lie triple derivation) on <7 if Z([%, V1) =
(%), v+ u, L (V) (vesp. L%, V), W) =1L (%), V), W]+w, L)), V]+1%, 7], L (#)])holds
forall%, vV, W € «.

Here we are characterizing a more specific family of maps through the arrangement of polynomials:

P () = 2,
P (2, X2) = [91(27), 2] = (21, 22,
93(,%, %/ %) = [L@Z(f%/ %)/ %] = [[%/ %]/ f%]/

c@N('Qf/i/fQ//'Zr"' /%\I) = [QN—l(%/%'Zr"' /%{—1)/ %ﬂ]
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For N > 2, the polynomial %y(Z1, 22, -, Zx) is known as (N — 1)—th commutator. A map .¥ : &/ — &
(not essentially linear) is considered a multiplicative Lie N—derivation on .27 if

i=N
j(‘@N(%/%//%)):Z@N(%/%/ /%71/5(%)/%_+1/"'/%)

i=1

for all 21, Z5,---, 2y € /. Along these lines, Abdullaev [1] initiated and conceived the idea of Lie
N—derivation on von Neumann algebras. Notice that any multiplicative Lie 2—derivation is known as
multiplicative Lie derivation and multiplicative Lie 3—derivation is said to be multiplicative Lie triple
derivation. Therefore, multiplicative Lie/Lie triple/Lie N—derivation are comprehensively recognized as
multiplicative Lie type derivations on 7.

Several researchers have investigated the nature of Lie type derivations on various types of rings or
algebras [2—4, 11]. In some of these cases, authors have shown that every Lie type derivation has the standard
from on that precise ring/algebra contemporary. In 1964, Martindale [11] obtained the first characterization
of Lie derivations and he established that “Every Lie derivation on a primitive ring can be written as a sum
of derivation and an additive mapping of a ring to its center that maps commutators into zero, i.e, Lie derivation
has the standard form”. In addition, several researchers have addressed the multiplicative mappings on
rings and algebras over the last few decades. Martindale [12] has developed a condition on a ring such
that multiplicative bijective mappings are all additives on this ring. Notably he demonstrated that “Every
multiplicative bijective mapping from a prime ring containing a nontrivial idempotent onto an arbitrary ring is
additive”. Daif [5] examined the additivity of derivable map on a 2—torsion free prime ring containing a
nontrivial idempotent. Besides associative algebras or rings, numerous authors studied multiplicative Lie
derivations and multiplicative Lie type derivations on nonassociative rings for example alternative rings
see in [7, 9] and references therein.

Amongst these, a ring structure named triangular n—matrix ring in [6] was described by Ferreira. In
[6], the author studied the additivity of m—multiplicative maps and m—multiplicative derivations on trian-
gular n—matrix rings. Additionally, Ferreira and Guzzo [8] proved the additivity of Lie N—multiplicative
mappings on triangular n—matrix rings is almost additive. Using the triangular n—matrix ring concept
for n = 3, Chen and Qi [4] gave, within certain premises, a characterization of multiplicative Lie deriva-
tions on triangular n—matrix rings for any n > 2. Subsequently, Jabeen and Ahmad [10] explained the
characterization of multiplicative Lie triple derivations on triangular 3—matrix rings.

Motivated by the above literature, our primary aim is characterization of multiplicative Lie type deriva-
tion on triangular n—matrix rings and to explain that each multiplicative Lie N—derivation on triangular
n—matrix rings could be the sum of an additive derivation and a central mapping annihilating (N —1)—th
commutator with some mild condition.

2. Preliminaries

Some conceptual notions are necessarily demonstrated to develop the proof of the key theorems.
Roughly, these ideas are well known and written compactly. Let %, %, - ,%n be unital rings and
<%ij be (%i,%j)—bimodules with .///ﬁ = %i for all 1 < i < ] <n. Let Uijk . ,//ij ®=%i cﬂjk — f/{ik be
(%i, %k)—bimodules homomorphisms with Uﬁj 74 Kz //ij — ///ij and Uijj : «//ij ®<@i %j — j/ij the
canonical multiplication maps forall1 < i <j < k < n. Write ab = Oyj¢(a®b) forall a € .#i; and b € .#jy.
Assume that .#; is faithful as a left %;—module and faithful as a right Z;—module forall 1 <i <j < n.
Let = . (%#;; ;) be the set

Tl M2 - My (n—1) Min
0 T2 - My (n—1) Mon

7 = o : : T € Hy,myy € My, 1<i<j<n
0 0 Tn—1)(n—1) M{n—1)n
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Alternatively, suppose that u(vw) = (uw)w with all w € #, v € A including w € #; with all
1 < i<k <1< j < n. Therefore, with the regular matrix operations, .7 is termed a n—matrix ring.
Undoubtedly, upper triangular matrix rings 7, (#) with n > 3 are triangular n—matrix rings over a unital
associative ring %. Notice the usual triangular 2—matrix rings are triangular rings, too. Nonetheless, for
n = 3, would not be a triangular n—matrix ring. Contrarily, a n—matrix triangular ring may not be a
triangular ring. We get the following observations for the center of the triangular n—matrix rings. For
the sake of self contentment of the article, we write the following Proposition from Ferreira’s [6] paper as
follows:

Proposition 2.1. [6, Proposition 1.1] “Let T = F,(%; ;) be a triangular n—matrix ring. The centre of 7 is

n

Z(7) = {@Tﬁ

i=1

Tiimy; = mijTjijT’ all mi; € %ij,i < ]} .

Furthermore, (T )ii 2V, (Z (7)) C Z (%), and there exists a unique ring isomorphism Tjifrom Vo (Z(T))
to 11)%), (f‘ép(y)) i= ] such that Tiimy; = mi]-’t{ (T’ﬁ)fOT all mi; € lﬂij J

T11 0 . 0
n Ty - 0
Here, @ rii symbolizes the element . . and Vg, : 7 — Z; (1 <1< n)isthe natural
i=1 - :
‘rT'I.Tl

projection described by [my;] — rii. Now, assume that .7 = 7, (%;; .#};) is a triangular n—matrix ring. Set
Ti5 = {[mkd Mt = { g,ll)' ii EE:% 2 ((111’]])) ,1<ig<j< n} C 7. Then we can write I = 1<ie<9j<n T
Henceforth ai; € 735 and by the direct computation aijai; =0 for j # k.

Fix any i € {1,2,---,n}. Let & serve as the non-trivial idempotent of .77 whose members were (i,1i)—th
place 1 and indeed the remaining 0. Compose Py = & + & + --- + & and 2; = I — P;. Denote by
A; =P;.9P;, By = 2,.72; and .#; = P;.7 2;. One could also describe 7 as .7 = A; + .#; + B; for each
i. In this article, unless there is no uncertainty, for just any A; € A;, J& € .#; and B; € B;, we frequently
classify

Tin M2 - Mg miit+1 Myi42 -+ Min
0 1 -+ my Moiy1 Mpit2 -+ Mop
AiE ,%E .
0 0 - Ty Mii+1 Miit2 - Min
and
Tit1,i+1 Mitit2 0 Mipin
0 Tit2,i+2 - Miq2n
B; =
0 0 Thn

For this depiction, it’s really easy to confirm that A; is a triangular i—matrix ring and B; is a triangular
(n — i)—matrix ring. Therefore, by Proposition 2.1, we get

i

Z(A) = {@Tkk

k=1

Tk € Zy and rTigemy = myqry for all myg € A, 1 <k <1< 1}

and

f(Bi)Z{ @ Tk

Tk € % and My = myqry for all myg € A, i+1<k<1< n} .
k=i+1
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Thence, by some premise that .#;; is faithful as a left #; —module and faithful as a right %;—module for all

1 n
1 <1i<j < n,adirect computation gives, for A; = @ 1k € Ajand Bi = @ ki € By, we see that
k=1 k=i+1

Aiﬂi = {0} — A; =0 and %iBi = {O} — B; =0. (1)
Let’s develop natural projections Pa, : 7 — A; and Yp, : .J — By by 2" = A + 74 + By — A; and

2 = A + 4 + By — By respectively. Undoubtedly, ¥a, (2(.7)) C Z(Ai) and Yp, (Z(.7)) C Z(Bs).
In addition, we pick out the following lemma from Chen and Qi’s [4] study as follows:

Lemma 2.2. [4, Lemma 2.2] “Let T = T (%;; Mi;) be a triangular n—matrix ring. Then there exists a unique ring
isomorphism\p : Ya, (Z(T)) = Y, (Z(.T)) such that A 75 = FEP(A) forall HE € My and Ay € Va, (Z(.T));
and moreover, Ay ®P(4;) € Z(T).”

3. Main Results
In this subdivision, we exhibit the primary result of the manuscript.

Theorem 3.1. Let 1 <n € Z* and T be a (N— 1)—torsion free triangular n—matrix ring. Expect that

(8) P21 Z(T)Pny2) = Z (Piny2) T Pinyz) and 2 )2 Z (7 ) 2my2 = Z (2217 Ziny2);
(1) Az and By, /2 contains no nonzero central ideal.

Therefore, Z has a standard form iff & : F — Z would be a multiplicative Lie N—derivation (N > 3) i.e.,
L(X)=2(Z)+ U Z) holds forall ' € T, where 7 : T — T is an additive derivation and ¢ : T — Z(T)
is a map that vanishes on all Lie N—products. Here [n] is the integer part of n.

By carrying out a series of lemmas, we are offering the proof of our key theorem.

Lemma 3.2. On assumption that £ : 7 — 7 is a multiplicative Lie N—derivation and 7 is a triangular n—matrix
ring. This provides an additive derivation %; : F — 7 and a multiplicative Lie N—derivation £, : 7 —  such
that P2 (2:) 2 =0and L (X)) = LX)+ (X ) forall Z € T (ie{l,--- ,n—1}).

Proof. Firstly, we recognize the mappings %;,.%, : 7 — 7, wherei € {1,--- ,n— 1} such that
2(Z)=[ZL(2;),Z)and G4 (X ) =L (Z)—2,(XZ) for all X € 7.

It becomes easier to analyse Z; to be an additive derivation and %}, a multiplicative Lie N—derivation.
Further, since

(2 =2L(2) — 2i(2:) = L(2) — [ZL(24), 2] = L(2;) —Pi.ZL(21) 2:.
Multiplying by P; and 2; from the left and the right, respectively, we get P;. % (2:)2; =0. O

Lemma 3.3. For each one 76 € .#;, By € B and A; € A; the following statements have always been:

1. Pi.%(A)2: =0,

2. P.%(By)2; =0,

3. L) P = 2. 44(4)2: = 0.
Proof. 1t is noticeable that .Z;(0) = 0. For each one 2" € .7, note that (2, 2i,--- , 2i) = PiZ 2;. We
have

L X 2) = LH(ANL, 2, ,2))

QN(ﬁ(%)/Qu /Qi) +---+ <@N(t%-/gi/“' /%(Ql))
PiA(2) 2+ (N—1)[Pi 2 2y, Z(2:)]. (2)



A. Jabeen et al. / Filomat 36:18 (2022), 6103-6122 6107

Especially, if 2" = A; € A; multiplying by P; and 2; from the left and the right in (2) respectively, we get
P; % (A1) 2; = 0.If 27 =By € By, we reveal that P;.%;(B;)Z; = 0. Hence, truly justifying the statements (1)
and (2).

Forthwith, if 2" = J4& € .#;, we have

L) = LA, 2, 21)
= yN(Z(%)/Qll/‘Ql)—"_—*—yl‘l(%/gl//%(gl))
= PiA(H) 2+ (N-1)[A, L(24)]. (©)

Multiplying by P; the left and the 2; from right in (3), we have (N — 1)[74, % (2;)] = 0 and hence
(74, Z1(£21)] = 0. Then (3) imply % (%) = Pi.Zi(54) 2;. Hence holding, the statement (3). O

Lemma 3.4. Pi.,%(Bi)Pi - ff(Al) and e@lﬁ(Al)o@l - g(Bl)
Proof. Consider, for every A; € A; and B; € B;. Although [A;, B;] = 0, by Lemma 3.3 (1)-(2), we've got

0 = ﬂ(t@N(AirBi/%rQi/"'/gi))
= Pall4A),Bil, 2,9, 21) + Paa(A, LB, X, 2, , Zs)
= Pil[Z (A1), Bil + [Ai, Zi(Bi)], 271 2.

Thus,[ 1(Al) +[A;, Z(B )] ;] = 0.From Lemma 3, we see that [A;, % (B;)] = 1 P;.%;(Bi)Pi] € Ajand
% (A),Bi) = [2:.% (A1) 24,Bi] € Bi. Now, assumption (§) implies that [[ 1(Al) J+ [, Z(Bi), A =0
and % (A)),B [Al,.i” (By)], Bi] = 0. It follows that

[Ai, Pi.Z; (Bi)Pil + [21%1 (A1) 24,Bi] € 2(T) for all Ay € Ay, By € By
and hence P;.%;(B;)P; € Z£(Ai) and 2,.%;(A) 2, € Z(B;) forall A; € A{,B; € B;. O
Lemma 3.5. %,(P;), 4.(2;) € Z(T).
Proof. Mark that, for each one 2" € .7, we get

L(PiZ2) = L(AP, 2,2, ,21))
= (&), 20,2, , 2h)
+ Py P, (2, 2y, -, 20) + -+ PPy, 27, 24, -+, Z4(21)
= Pi[Z(P), Z12i + PiA(Z) 2 + (N—-2)[Pi 2" 2y, Z(2:)]. 4)
From Lemma 3, we can see P;.%;(P;)2; = 0. Replacing 2" by Pi.Z Z; in (4), and by Lemma 3.3(3), we
get L (P12 2;) = [L4(P1), P12 2] + L4 (P12 2:), that is, [4(Pi),Pi2" 2] = 0. By Lemma 4, we obtain

% (Py),Pi 2 Pi] =0and [.%(Pi), 212 2;] =0.50 [Z(P;), Z] =0 for all 2, and hence .%,(P;) € Z (7).
Therefore, Z;(2;) € Z(.7) can be shown by a congruent altercation to that of the above. [

Lemma 3.6. Forany 2" € 9, we have £ (P, 2" 2:) = P4 (27) 2.
Proof. By Lemma 3.5, we have

L(Pi 2 2:) =Pi[L(Py), 22 + PLA(2) 21 = PLA4(2) 25
foral € O

Lemma 3.7. %, is additive on ;.
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Proof. Start taking every J4, ¢, € M, Ai, A{ € A; and B;, B € B;. Next, we demonstrate that the following
equalities hold:

(L (i + 54) — Zi(A) — LA(4), 4] =0, (5)
[Zi(Bi + ) — Li(Bi) — Li(I4), A] = 0. (6)

In point of fact, since

(Zi(A), 4] = AL, A2, 2)
= LA, A, 2, 21))
—Py(A, LA, 2i, -, 23) — - — Pu(Ay, A, 2y, L(2)
= LA(PyAi+ 4,2, ,21) — Pu(Ai + I, L(A), 25, -, 2Di)

_fgzN(Ai +%I%l1ﬁ(°@i)/' T rgi) - QN(Ai +%1%//°@i/' o /gi(gi))
= '@N(ﬂ(Ai'i_%)/%l/gi/"' /Qi)
= [ZA(A+ A4), A

It follows that (5) holds. Symmetrically, one can show that (6) holds.

L) = L( PP+ 6,2, ,24))
= PNLPi+I4), 2, , D)+ PP+ I, L(2), -, D)
+o A+ PP+ I, 2, -, L(2h))
= LR+ I4), 2, 2h).

Also, we have

LA = LB( AP+ 4,2, ,23))
= PGP+ ), 2, , D)+ PP+ 4, L), 2y, -, 21)
o+ PP+ IR, Dy, L (2)))
= (AP +IR), M, 2, 2i) + L(H])
0 = AlAP+I4),H,2:,---,2:).

Likewise, £ (]') = Py(Py, L(H] + 24), 24, - -+, 2i) and Py (I, L (A + 21), 2i,- -+, 2i) = 0. Using
HE A+ A = [Py + 6, ] + 24], the fact 4 (2;) € Z(T) we see that

LA+ ) = LP+ 94,06 + 2i)
= L(PPi+ A, + 2,2, ,2))
= PGP+ ), + 2,2, , D)
+ PP+ B, LA+ 24), 2y, , Di)
+ P3P+ G, ] + 24, Li(2), -, D)
oo+ PP+ I, + 2,2y, , L(2)))
= PGP+ ), A, 2, , D)+ Py LGP+ ), 2, 2i, -, D)
+ PPy, LA + 240), 2, -+, 21) + PG, LA+ 23), 2s,- -, 24)
= QA4+ L008).

That is, .%; is additive on .Z;. [

Lemma 3.8. For every A; € A; and B; € By, we have %, (A + Bi) — Zi(A) — Zi(Bi) € Z(7).



A. Jabeen et al. / Filomat 36:18 (2022), 6103-6122 6109
Proof. With every s € .#;, we provide

L Py(A+By, ], 2, -+, 2y))
= PyallZi(A+B), 1, 2:,-, 20) + Pualla + By, A, 2, -+, 23)
+Py(Ai + By, A, L(24), -, D)+ + Pu(A+ By, I, 2, -+, L(21))
= [Z(Ai +Bi), 4] + [+ By, LA (4.

On the other way; it follows that

L(Pu(hi + By, A, 2y, , 23))
= LA, ') + LBy, )
= LA(Py(Ai, A, 2, , D)+ L( By, A, 2i,- -+, 24))
= PyallZ(a), 4,2, 20) + Pyallhy, L(H)], 25, 24)
+-+ PAL A Dy, L(20) + Py (4B, ], 2y, -, 20)
+Pya(By, L(HN, 21, , 23) + -+ Pu(By, I, 2, , L(21))
= LA, A+ A, L)) + [(Zi(B1), ] + By, L(H])].

1

Now from above two expressions, we arrive at (% (Ai+Bi) —Zi (Ai) —Zi(Bi), '] = 0forall 2 € ;. With
Lemma 3.4, we have [%; (A; +Bi) — % (Ai) — % (Bi),B/] = 0 forall and [.%; (Ai +Bi) — % (Ai) — Zi(Bi),All =0
for all A{ € Aj and B € B;. These together implies that

[Zi(A; +Bi) — Zi(A)) — Zi(Bi), 7] = 0 and hence .%;(A; +Bi) — Zi(Ai) — Zi(Bi) € Z(7)
forallA; € AjandB; € B;. I
Lemma 3.9. For every A; € Ay, 76 € .#; and By € By, we get
(Zi(Ai + A4 + B) — Zi(A) — L) — Zi(By), #i] = 0.
Proof. For every J¢,' € .4, we can write

L Py(Ai+ A+ By, I, 2y, , D))
= Pyvallb(Ai+ A4 +By), A, 2, , 2:) + Pua(lA+ A+ By, L(HA)], 24, -, 24)
+Py(Bi+ SE + By, A, L2, , D)+ -+ Py(A+ I6+ By, I, 2s, -, L(23))
= [A(A+ JE +By), ]+ [A + JE + By, L(H])].

On the other way; it follows that

L( Py + I+ By, A, 2i, -, 21))
= L(P(Ai+B, A, 2, -, 21))
= PvallL(A+By), 1,2, , 2i) + PyallA + By, L)), 2, -+, 21)
+Py(Ai + By, A, L(24), -, D)+ -+ Pu(A+ By, I, 2, -, L(21))
= [Z(Ai +Bi), 4] + (A + By, LA (4.

The combination of the aforementioned both equations provides [.%; (A + 4 +Bi) — % (A +By), '] = 0.
It concludes through Lemmas 3.3 and 3.8. [

Especially, 7 = A2 + #m/2) + Bz when 1 = [n/2]. Within that scenario, %}, /;) is indeed a
multiplicative Lie derivation with P /21 % 21(Zm/21)Zms2 = 0; in comparison, for just about any
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2 = A2 + Hn2) + By € 7, through Lemmas 3.3 and 3.8 can be written as,
Ho = Zna(2) =Ly (Bmy2) — Ling2) (Hny2) — ZLingz) (Bmy2)

ERSTEEEE T1,in/2] 0 0 T
_ Tin/2],m/2] 0 e 0
= . (7)
Tm/21+1,In/20+1 " Tn/2l+1L,n
L ‘rnn -

Over the next portion, we will illustrate that Hy € 2(.7) mostly with the subsequent Lemmas 3.10-3.13.
For this, we consider 7 :  — S and h; :  — Z,whereie{1,---,n/2]—1,[n/2] +1,--- ,n—1}, such
that

Ni(2) = (L2 (20), 2] and T4 (2) = ZLipja(2) —i(2) for all 2 € 7. (®)

Hence, by offering the same premises like those of Lemmas 3.2-3.9 for .7, it can be shown that 1; would
also be a multiplicative Lie N—derivation enjoying P;7;(2;)Z2; = 0 as well as Lemmas 3.3-3.9 even now
holds the map ;.

Lemma 3.10. For any 56 € M, = Plﬁo@l, we have Ly /7] (%”) = Pif[n/z](%)gi = 1{(J4); and moreover,
Lin 2 is additive on ;. Herei e {1,--- ,n/21—1,In/2] +1,- — 1}

Proof. Letie{l,---,n/2] —1,In/2] +1,--- ,n— 1} and take any % € .#;. Note that
L) = Lnja( (I, 2, -, 21))

P (L2 (F4), 2y, -, 23 + PG, Liny2)(24),- -, 24))

+- yN(%/gi/' o /ﬁn/z](gi))

= PiLn2(H) 2 + (N— 1[I, L1 21 (21)] € M.

Multiplying by P; from left and 2; from right side, we find that (N — 1)[%, -}, /2)(2i)] = 0 and hence
(FE, Lin 2 (21)] = 0. It follows that 2, /21 (F4) = PiLn /21 (4) 2. Thus, by (8), we have

Liny(H4) = ti(H4) — I8, Ly (21)] = 1i(4).
Moreover, the additivity of .#7;, /) on .#; can be obtained by Lemma 3.7 for t;. [

Henceforth, fixany 2" = Ap /2)4+n 20 +Bim /21 € 7. Then (7) holds. Consider themapt; (i=1,---,[n/2]—
1,n/2]+1,--- ,n—1). Z can also be written as 2" = A; + % + B;. So we have

Ki = 7i(Z)—7i(A) —1(s4) — Ti(By)

r S},l . S},"L 0 . 0 T
_ sty . 0 0 )
i+1,i4+1 i+ln
I Shon
Lemma3.11. For " = A2+ 21+ B2 = Ai+ 74 +B € T (i= ,n/21—1,n/2]+1,--- ,n—1),
the following statements hold.
1. Forie{l,- n/2 1}, we have & Ti(Am2))6) = Enti(H4)E for L <h <iand i+ 1 <j < [n/2];

2. Fori E{n/z +l, ,n—1}, we have & 7i (B /2)) 6 = Enti(H4)E; for n/Z +1 <hg umdl—l—l <j<<n
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Proof. For any 2" € 7, we have

Linja(PiZ2:) = f[n/z](yn(% Di,-, 24))
= P(Lm(X), 2, , ) + P, Liny(2h), -, D)
+o 4+ (L o@u"' + L2 (241))
= Pi«f[n/z] ()2 +PilZ, Ln ) (2025 + (N=2)[Pi 22y, Ly (23]

Multiplying by P; from left and by 2; from right and then replacing 2" by P2 2;, find that (N —
D[P 2 2y, Lin2)(21)] = 0it follows that [P 2" 25, L /2)(21)] = 0. Therefore,

Liny2)(PiZ 24) = PiLn 2 () 2i + P2, L 21 (21)] 25
First assume thati e {1,---,[n/2] — 1}. Since

TilAms2)) = Lns2(Amyz)) + [Bmy2), Ling2 (23]
= PiZm,21(Amy21)Pi + PilApn 21, L2 (21)IPi + PiZin /21 (A /2)) 2i
+Pi[Ain 21, Liny2) (21125 + 2102 (A y2)) Zi + LilAm 21, Liny21 (23] 2
= PiZln/21(Amy2))Pi + PilBm 2y, Lny2) (20)IPs + L 2) (PiAn 21 24)
+21Lm21(Amy21)) 21 + 2ilAmn 21, Lin 2 (1)1 24,

then we get
PiTi(Am/2)) 2t = PiLiny2) (Pihin 21 21) 2s. (10)

However, writing J& = PiA, /21 Zi + Pidln 21 %: € A3 by Lemma 3.10, we have

My S () = Lin ) (Pih 2121 + Pidlin 21 21) = Liny2) (Pihny2121) + Liny2) (PiHin /21 21) which and
(10)imply PiTi(An /21) 21 = Ti () —PiLn 21 (PiHn 21 21) Zi. Note that Ly, ) (Pi A 21 21) € Min N A
Hence the last expression yields &1 Ti (A /2))8; = EnTi(J4)&;, where 1 <h <iandi+ 1 <j < [n/2]. For
the case i € {[n/2] +1,--- ,n — 1} the proof being similar is omitted O

Lemma 3.12. In (7), v =0forall 1 <i<j<m/2land[n/2l +1<i<j<n.

Proof. Primarily we prove that rj = -+ = 1,(n /21 = 0. Undoubtedly, for 2" = Ap, /5 + /21 + B2 =
Ay + JA + By, we have

H = H-K
= Zn(2) = (t1(Amy2) + [Lny2 (1), Amy2]) — (T (Hny2) + [Zing2) (1), Hny2)])
—(T1(Biny2)) + [ 21(21), Biny2)l) — (L2 (27) = [Liny21(21), Z) + (Lin 21 (A1)
L2 (21), M) + (L2 (FA) — [Lin 2 (21), JA]) + (Lin 21 (B1) — [Lny21(21),Bi])
= —T(Am/2) = T1(Hny21) — T1Bmy2)) + Liny2) (A1) — [ L2 (21), A1l
Liny2(H4) — [Lin ) (21), 4] + Lin 21 (B1) — [ L2 (21), Bl
= —T(Amy2) — T1(Hny2) — T1(Biny2)) + Lny21 (A1) — P1lZn /2 (21), A1]Py

+

—P1[ L2 (21), Ml 21 — 21[Ln 2 (21), A2 + L y2) (FA) — P12 (21), 74Py
—P1[ L2 (21), FA1 21 + Lin )21 (B1) — 21[Zn 21 (21), 4] 21 — P1[Ln 21 (21), By
—P; [«iﬂn/z (21),B1]21 — 21[Ln 21(21),B1] 2s. (11)

Note that

Pi[Zn/2(21), Ml 21 = Lo (Pu(A1, 21, -, 21)) + PilZn 2 (A1), 21121 = P1.%n 21 (A1) 215
P1[Zn /2 (21),B1] 2y Liny2(Py(B1, 21, -+, 21)) + P1[Zn 21 (B1), 21121 = P1. % 21 (B1) 215
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and by Lemma 3.10 it follows that
T1(HA) = Linj2)(H4) = P1LLwyn(FA) 21+ PilIA, Lin 2 (21124
= L (F4Q) —P1[Lmy2(21), 741 2.
So, (11) changes to
H = —Ti(Am/2) — T1(Hn2) — T1(Bimy2)) + P1-Zny2) (A1)P1 + 21.% 7 21 (A1) 21 + 11 (F4)
+P1.Zn /21 (B1)P1 + 21 %0 /21 (B1) 21 — P1[Ln 21 (21), MIP1 — 21[ L /21 (21), A1l 21
—P1[Zn /2 (21), B1IP1 — 21 (L /21 (21), B1l 21 — P1[ L 21 (21), HAIPL — 21 [ Ly (21), 74120
which and Lemma 3.11 imply
M = —ET(Am)2))E — E1T1(Hn2)) 6 — E1T1(Bny2)) 6 + E1T1 () 6
—ET1(Hn2))E — E171(Bny21)) 65,

where j = 2,---,[n/2]. As By, /2] € By, by Lemma 3.3 for 11, we get &171(Bn/2)6} = 0forj =2,---,m.
Additionally, 1 (1 /2)) = Liny2) (Hny2) — [Liny2(21), Hnj2)) € M j2), which implies 6111 (A 7)) 65 =
0forj=2,---,n/2]. Hence &1H &5 =0 forj =2,--- ,n/2], thatis, rip = -+ =71 [ /2) = 0.
Similarly, by considering the maps T; for i = 2,---,n — 1, respectively, we can show ri; = 0 for
2<i<j<n/2]and [n/2]+1 <i<j<n Thelemma holds. O
Lemma3.13. Hy = P i € (7).
i=1

Proof. By Lemma 3.12, we get Hy = & 1y in (7). To prove Hy € Z(.7), we have to review that
i=1

i=
TiiMij = MyjTyj holds for all mij € .ﬂij,l <i <j <n. (12)
Primarily, take any ‘%ﬂh/w/z} = [my] € A}y 2. By Lemma 3.9 for the map %}, 2, we have [H, jfh’im] =

[ 1@1 Tii, %”[1’1 /2]] = 0. A direct calculation provides the following

Tiymy; = myry; fori=1,2,---,[n/2]and j=[Mm/2]+1,--- ,n. (13)

Note that, by Lemma 3.9 fort; (i € {1,---,m/2]—1, [n/2]+1,--- ,n—1}) and (13), we know that [K;, 7] =0
holds for all ;" € .#; implying

S%imi]' = mijs}j for all mij € «//ij/ 1<i<jsn (14)
Our aim is to reveal

(ryg — s}i)mi]- = myj(rj5 — s}j) for allmy € A5,1 <i<j</2],n/2]+1<i<j<n, (15)

which and (13)—(14) lead to (12). Hence, finding the proof of (15) would be our aim in the upcoming part
of this manuscript.
Forany Y € .7 and any fixedi€{1,---,In/2] —1,[n/2] +1,--- ,n — 1}, by Lemma 3.10, one has
T(Y) = ZLn2(Y) = [ Ln 2 (2:),Y]
= Zin/(Y) =Pl 2 (21), Y12 — Pi[ L2 (21), YIPy — 21 (L 21 (21), Y124
Y) + Zin 2 (PiY2y) — Piln 21 (Y) 2y — Pi[ L /21 (21), YIPy — 2i[ L 21 (21), Y124
= Zin/(Y) +Ti(PiY21) — PiLln 2 (V) 2i — Pil L 2 (1), YIPy — 2i[ L 2 (Z1), Y] 25,

As Ti(PiYZ;) — PiZn 2 (Y) 2 € A, the above equation implies Ti(Y) — Ly /21 (Y) + Pi[-Zn 21 (24), YIP; +
2i[Ln 2 (21),Y]12; € A; and hence Pi(Ti(Y) — Zjn/2)(Y))2: € A for all Y € 7, and so & (Ti(Y) —
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Lin/(Y))é = 0 holds for all Y € 7,k = 1,2,--- ,n. Also noting that £y, 21(Hn/2)) € An/z) and
T (JR) € M, we get

k(o —Ki)& = E(Ln/a(Z) — Zinya(Bmya) — Linya) (Hnj2) — Liny2 (Bmyay))
=6k (ti(Z7) — Ti(A) — Ti(H4) — Ti(Bi))x
= L2 (X)E — ELins2)(Am2))Ex — ExLin/2)(Bn/2))
— kT X)E + EiTi(AD) E + SiTi(Bi)Ex
= k(L2 (Bi) + Lny2)(Bi) — Lnj2i(Amy21) — Liny21 (Bmya)) )k, (16)

whereic{1,---,m/2] -1,m/2] +1,--- ,n—1}andk=1,2,---,n
Now, we consider two cases.

Casel.1<1i<j<n/2].

Take any J#; € .#i;. Since J&; € Ay, ) N #;, by Lemma 3.10, we get £y, /51 (J4;) = Ti(J6;) €
A2 N ;. Additionally, it can be easily checked that [A; + Bi — A /), 74j] € M1/ and [A; + By —
A 21, ZLiny2)(H65)] € Min 2. So, by Lemma 3.3 for i = [n/2], we have

(L2 (AL +Bi —Apmy2), 7650 = Pa(Liny2 (AL + By — Awya)), A5, 925, -, 25)
= L (Pu(Ai+Bi —Amya), 5,95, ,25))
—z@n(Ai-FBi—An/z Linya(F65), 25, -+, 25)
— = Py(Ai +Bi — Ay, G5, 25, Ly (Z5))
= L2 ([Ai + By — Ay 2), JE5])
—[Ai + By — An 21, Lin 21 (F65)] € Min 2

Implying
Piny21[Zin 21 (AL + Bi — Apn2)), H51Pn 2y = 0. (17)
Nevertheless, note that [Ai, 78], [Bi, 74;], [Apn /21, 76;] € ;. By Lemma 3.10, we acquire

L2 ([Bi + B — A, H5])

L2 ([As, FE5]) + L 21 By, H5]) — Lin 21 ([ 21, 65])
Ly (Py(Ay, 5,25, -, 25) + Lo (Pu(By, 565,25, -+, 25))
—Zin/2(Pu(Biny2), K5, 25, 1 25))

= r@N(g[n/z](Ai)r%j/Qj/"' ,9D5) + Pu(Ai, Linyn(HE5), 25, -+, D)

o+ PyA, 5,95, Ly ( D)) + Pu(Linya(Bi), 7G5, 25, -+, D)

+3”N(Bu /2 (HE5), 25, , 25) + -+ Pu(Bi, 5,25, -, Lny2(2))
— P (L2 (Amy2), K5, 25, 1 25) — Pu(Amy2), Linya(H65), D5, -+ 25)
- gZN( (n/2] rl%ﬂwglf” f-ip[n/zl(gj))

= [Ln (A1), HE5] + (A, Liny2) (F65)] + [Lin 21 (By), 765]
+[Bi, Zin 21 (F6;5)] — [Lin 21 (A 21), H65] — (A 21, Lin 21 (F65)].

So

[Lin /21 (At + By — Apn ), ;]
= Ly ([Ai + By — Ay gy, H5]) — [Ai + By — A 21, Lin 21 (H5)]
= [Lny2(A) + L2 (Bi) — Linya)(Amy21), 765
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which and (17) imply
Pin/2)[Lin /21 (A1) + Liny21(Bi) — Zin 21 (Amy2)), H5]Pmj2) = 0.
It follows that
(L2 (A) +ZLn 21 (Bi) — Lin 2y (A 2))) 61565 = H565(Lin 21 (Ai) +Lny2) (Bi) — Lny2) (A 2))) 65 (18)

Combining (16) and (18), keeping in mind that Py, /21 % /2)(Bin/21)Pim/21 € Z(Am/21) (Lemma 3.4 for
Zin/21), we have
Ei(Hy —Ki)& 5 = A58 Ly (AL) + Linya (Bi) — Liny2) (Amy21)) 6 — E1-Zn /21 (Bin /21 6176
= H;E(Hy —Ki) & + G565 L1n 21 (Biny2)) & — E1-Ln 21 (Bin 21 6176
= J;65(Hy —Ki) &

thatis, (ri; — st)myy = myj (155 — s}j) forl <i<j< /2l
Case2.n/2]+1<i<j<n

In this case, for any J%; € .#i;, we have J&; € By, /o) N Ay and s0 Ly, 21 (F45) = Ti(HE5) € By o) N A
Moreover, [A; +B; — Bin /21, %J] € /f[n/z] and [A; +B; — Biny2), f[n/z] (%] )Ne /ﬂ[n/z]. Now, for 92”[“/2] ([A; +
Bi — B[ /2], #i;1), by a congruent discussion to that of Case 1, it follows that

(ry — s}i)mij = My (T‘jj — S}j) holds for[n/2]+1<i<j<n
Again, the combination of Cases 1 and 2, (15) holds proving the lemma. [
Until now, by Lemmas 3.13 and 3.3-3.4, we prove that, for any 2" = A, 2] + Hin 2] + Binyz € 7,

LX) = Liny21(Amy2) — L2 (Hny2) — Liny21(Bmy2) =Ho € Z(.7),

Liny2(Amy2) € Amya) + Z (Bimy21), ZLins21(Bimy2) € Bz + Z(Amy2),

Linya(Miny2) C Min -
Let Y :¥a,, ,, (2(7)) = ¥p,, ,,, (Z(T)) be the unique ring isomorphism so that z & P (z) € Z/(7) (that
is, Lemma 3.3). Following the hypotheses on .7 in Theorem 3.1, we have V4, ,,, (Z'(7)) = Z (A 2)) and

VB, (Z(T)) = Z(Bpn2))- Thus, foreach A € Z°(Ayy, 2)), A7 = P (A) holds for all 7 € |y, 2). Define
twomaps O, (: J — J respectively by

O(Z) = Pm/aLm/2Am2)Pm/2 — ¥ (2Lin/21Lin /21 (Bin/2)) 2in21)
+2n/21Ln/2) Biny21) Zins2) — W(Piny21-Ln 21 Bin/21)Piny2)) + ZLiny2) (Hn 2))

and
UZ) =L (2)—=0O(X), VX = Az + Hinj2) +Binye € 7.

It can be inferred that

O(Am/21) € A2, OBiny21) € B2, O( M 2)) = Linja)(Minj2) S M2, (19)
O(2) =O(Amy/2) + OB 2) + O(Hn 2)). (20)
Additionally,
U2) = 2m2aZLn2Bin2)2m2 + ¥ 2im2Lin2(Bin2)2m)2)
+Pin/21Ln /21 Biny2))Piny2) + W(Piny21Zn 21 (Bn2))Pny2)) +Ho € 2°(7). (21)

Lemma 3.14. For any 6 € M = P;.T 2;, we have O(J4) = L2 (H4) € M; and therefore, O is additive on
My(A=1,--- ,n—1).
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Proof. If i = [n/2], it is evidently true. Assume thati € {1,---,[n/2] — 1}. Keep in mind that

Pi 2 2y =P 2PiZ 2iPiy2) + Piny2Pii 2 2iZm 2. (22)
Since £y, /51 (%) € #; (Lemma 3.10), we have

Zin/21Zin /21 (Pin/21Pi 2" 2iPin /21) 2 /2 = 0. (23)

However, by the definition of O and (22)-(23), we get

OPiZ2)) = PmyaZin/2(Pm/2aPiZ 2iPpm,2)Pmy2)
V(2121 %n2 (Pin/2Pi 2 2iPin21) Zins2)) + Liny2) (Piny2Pi 2 2 20m 2))
= P21 %m/2(Pim/2iPiZ ZiPn /21 )Pinmy2) + Lins2) (P2 Pt 2 212 /2)). (24)

While, by (23) and the additivity of %}, /2) on .#; (Lemma 3.10), we have

Liny)(PiZ2:) = Lnj2)(Pm2PiZ Z2iPny2)) + Lnj2) (P2 Pi 2 2120 2))
= P21 %21 (Pin/21Pi 2" 2iPin/2))Pims2) + Zin/21Zm /2 (Pim/21Pi 2 2iPmys2)) Zin2)
+Zn/21(Piny2Pi 2 21 20m 2))
= P21 %2 (Pin/2iPi 2 2iPins2))Piny2) + Liny2) (Pin/2PiZ 2i 2 2))- (25)

Combining (24)-(25) yields O(Py 2" 2;) = ZLin /2 (P12 2;) forie {1,--- ,n/2] —1}.

Ifie {[TI/Z] +1, ey, TL}, noting that Pigbrgi = P[n/Z]Pi%QiQ[n/Z] +Q[n/2]Pi%Qia@[n/2]/ by a congruent
discussion to the above, one can also prove that O(P; 2" 2;) = Zn/2)(Pi 2 Zi), and so O(J4) € #; by
Lemma 3.10. Lastly, the additivity of O on .#; can be obtained by the one of %}, /5). O

Lemma 3.15. O is additive on .

Proof. We will now show this lemma by various steps.
Step 1. U is additive on .#};, /). By Lemma 3.14, this is true.

Step 2. Ois additive on Ay /). Take any A /21, Af,, /) € Ay and any #i, jz) € M /7). By the definition
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of U and (19)-(21), we get

O((Amyz) AL o) Hny2) = Ling2 (B2 #ins2) + Linsa) (Afn/z Hiny2))

= Zin/2(Pu(Bms2), Hns2, L2t 1 Z2ing2)))
+Zny2) (Pu(Bln 21, K21, Linsars - 1 Ling2))

= P (Lm2Bm21), Hins2, Lims2lr s 1 2imy2))
+Pu(Bm 21, Lins2 (Hns2) Limsa s Linga)
+ -+ PulBmy2, Hns2 Lmsa 1 L2 (L))
+Pu(Lins2) (Al 2)) Hins21, Lingalr s 1 2iny2))
+P(Aln 21 Ling2) (Hns2), Linsa -+ Ling2))
+o+ PulAln2) Hns2, L2t Ling2)(2mya))

= (O(Awmy2) + CBms21), Hny21, Linsarr - 1 2my2))
+Pu(Amn 21, O(Hn j21) + UHn 1), Linsatr -+ 1 Z2inga))
+ A+ Pu(Amy2), 2 Ping2lr 1 O(LPiny2)) + U Lny2y))
+ (O, 2) + U Hnya), Hn g2 Linsar - 1 2inga))
+r@N(A[n/z}/U(fffn/z )+ C(Hns2) Linsarr 1 Zmy2)
+ o+ PulAf 2 Hng21 Lingar - O(Liny2)) + U2my2)

= Pn(OAm/2), #ins2, Ly 1 Z2ing2))
+ (A2, O(Hn 1), Linsarr 1 Linya))
+o «%(A[n/zl,%n/zhg[n/zh -, 0(2my2))
+ (O 2), Hng21, Lingatr - 1 Piny2))
+Pu(Aln 2, O s2), Linsal - ZPinya))
+o @N(A[n/z]/jf[n/z]/g[n/zh -, 0(2my2))

and

O((Any2) + Al y2)) Hny2)

= L2 Pu(Bimyz) + Aoy Hnsa1 Lins2r 1 2imy2)))

= P Lm/2aBmy2 +Afn/zJ)/%”[n/z]re@[n/2]r'" + 2ny21)
+Pu(Bin 2 + Alnyay Ling2 () Lins2 0 2iny2)
++ PulBnya) + Al oy A2, Linga 0L (Linga))

= P(OAmy2) + Alnjz) + CAmy2) + Al j2) Hng2, Ling2ts  Linga))
+Pu(Amy2) + Al 2, O(Hny2) + U Hnya), Linsar -+ 1 2inga))
oo+ PulBmya + A2y Hns2 Linga s O0(Zmy2)) + U 2imy2))

= P(OAmy2) +Aly2), Hny2), Ling2), Q[n/z])
+Pu(Amy2) + Al 21, O(Hny21), Lingaly s 1 2iny2))
+o+ PulBmga) + Az A2 Linga - 0(Liny2))-

From the above two equations, we get (O(A(y, /2] +Afn/2]) —O(Amy2) — U(Afn/z] ))Hn j2) = 0forall 74, 5 €
M 7). Since A is a faithful left #;-module, the above equation implies

éai(U(A[n/z] + Afn/z]) — U(A[n/z]) — U(Afn/z]))gi =0 fori=1,---, [TI/Z]. (26)
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Contrarily, leti €{1,2,---,[n/2] — 1}. Note that, for any 2" € .7, by Lemma 3.14, it is true that
O((Amy2) + Al 2)24)
= ZLns2(Am/a20) + Lins2) (Al 2 21)
= L Pu(Bmya, 2+, 20) + Linya)(Pu(Al 2, 2 24))
= '@N(oiﬁ[n/z](A[n/Z])/Qir"' D) + Pn(Amya, Linga(2i), -+, 24)
o+ Py(Amy2), i, ,fn/z]( V) + Pu(Linja (Al ), 25, 21)
+«@N( 2 ZLin2a(2i), -+, 20) + -+ PulAly 2,21 Linya(21))
= «@N(U( m/21) + CAmy21), Zi, o Zi) + Pu(Bmy2), O(24) + U(2s), -+, Zs)
o PuAmya, i, O(25) + U(20) + Py(O(A, ) + AL 2), - 24)
+«@N( (n/2,O(21) +C(21), -+, 20) + -+ PulAl, 5, 21, -+, O(2) + (24)
= OBm/2), 2, 20) + P2, O(&3), -, Zi) + -+ Pu(Amya, Zi, -, O(24))
+P(O(Al2), 21+, 20) + Pu(Al )2, O(21), -, 2i) + -+ PulAl 2, 2, O(21))
and
O((Amy2) + A 2))21)
= Lns2(Pu(Bmya) + ALy, Lo, 20)
= P LmjaBma + AL 2), 20 20 + PulBimya + Al 2y Linga (i), -+, i)
o+ Pz + AL L Ly (21)

]
= Pu(O(Amya) + AL yy) + UBmy2 + AL 2), 21 20) + PulBmga) + AL 2, O(20) + 0(24), -, 24)
+oo ot PulBmya) + Afnya, 2o, O(25) +((24)
= Pu(O(Amy2) +Alyg), i, ) + Pu(Amy2 + Al 2, O(21), -, 2)
+o o+ Pu(Amy2 +A[/n/2]’°@ i, O(24))
implying that
Pi(O(Amy/2) + Al z) —OBmy2) —O(A[, )2 =0fori=1,---,[n/2] - 1. (27)

Now, combining (26)-(27) yields O (A, /2 +Afn/2] )—O(Am,21) —U(Afn/z]) = 0, thatis, Oisadditive on Ap, ;1.
Step 3. U is additive on By, /). The proof being similar to that of Step 2 is omitted here.

Step 4. Ois additive on 7. For any 21 = Apn/2) + H#in /2 +Bny2y, 22 = A, 51 + K 1) +Bln g € 7, by
(20) and Steps 1-3, we get

O(21+ 22) = O(Amy2) +Afnyz) +Binsz) + Blnyg + Hnj2) + 4 )
= O(Ap/z +A n/z]) +O(Hn /2 + %1/1/2]) + O(Bn /2 + Bfn/z )
(A

= O(Amy2)) + O(Biny2)) + O(Hn 21) + O(Af, /2) + OB, ) + 0O, )
= O(21) +0(22).

That is, O is additiveon .7. O
Lemma 3.16. O is a derivation on 7.
Proof. We will prove it by various steps.

Step 1. For any 0, 21, 7], /5 € M1n /21, we have

U(jf[n/ﬂ%ﬂ[wlx/z]) = U(f%ﬂ[n/z])jf[r’t/z] + jﬁn/ZJU(%L/z]) =0.
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Note that O(#4,, /2)) € An /2 by (19). This step is obvious.

Step 2. For any An /21, A[,, /) € An/2) and any i j5) € M n /2), we have
OAm/21#0ns21) = OAmy2) Hn 2y + A2 O(Hn 21),
OAm/28fn/2) = OlAm/2)Af 2 + A2 0BG, ).
Take any Apn 25, A, /) € Az and any 4y, 2] € M /2)- By the definition of O and (19)-(21), we have

O(Am/2A 2 2) = Zin2a(Pva(BmyaAln 2, Hnal L2 1 Lmya)
= Pl[OBm/21Al2), Hns2), Lingar - 2ing2)
+Pu-1(Amy2800 /21, O(Hn ), Linsa -+ ) Zinya)

+ o+ PacalBmy21Aln 21 Ayl Lins2) - 0(2my2)), (28)
implying to O(Am 21 #n 21) = O(Amy21) #n/2) + Am/21O(Hn2)) for all Ay j2) € Apya), Hinja) € Miny2)-
Moreover,

OAm 218l #n2) = Lnj2a(Pua(Bmy2, Ay Hnsal Lingai - Linga))
= PvllOAm/2) A2 #ins2), Lins2)r - 2ing2)
+Pu-1(Bpn /21, OB 2 # 2l Lingaty -+ Linga1)

+oo gszl([A[n/Z]rA/n/z sl Lins2 1 0(Lmys2))- (29)
Comparing (28)-(29) yields (U(A[n/z]Afn/z]) —O(Am 2 ) (/2] A2 O(A n/z]))%p[n/Z] =0 for all 7, /2 €
M 2), implying

E(O(Amy21An /7)) — O(Amy2))AlL /21 — Amy210(Af, 2)))61 =0 for i=1,---,[m/2]. (30)
Especially, by taking A, /2] = Axx and Af, ,; = &k with k = i in Equation (30) and by Lemma 3.14, we get

0 = &1(O(Akk k) — O(Akk) bk — Ak O(6k ))& = & O(Akk) 8 — E1AkO(6k )& = &0(Akk) &,

that is,
é"iO(Akk)(g;; = 0,1 = 1, ey, [TL/Z] withi=k < [T‘L/Z]. (31)
In the conclusion, leti € {1, -, [n/2l}, A /21 = (akt)ny2ixin/21 and A ) = (Age) /2% /21, then
A2 2 = Z AniAg = Z AriAj,
1<k<I<s <t [n /2] 1<kt /2]

where Ay is the matrix with (k, 1) position ay,; and other positions 0.

To show that O is a derivation on Ay, /,), that is, U(A[n/z]Afn/z]) = U(A[n/z})Afn/z} + A[n/Z}U(Afnm), as
O is additive by Lemma 3.15, one only needs to check that O satisfies the derivable condition on every
element of A, /2), that is, to analyse that

O(AxiAl,) = O(Ak)Al; + A O(Af,) for all 1
3

K<<
O(Ak1)Ag, +AO(Ag) =0for all1 <k < 1

<
< < [n/2] withl=s. (32)

We will prove this by the following steps.

Step 2.1. For any Ay, AL, € Ay, /2 with k < s, we have

0= U(Akk)A -l—AkkU( ss) and U(Ags)Akk :A;SU(Akk) =0.
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For Ak and A with k < 1, by the definition of O and the fact ¢(-) € 2°(.7), we have

0 = O(P(A,Aly, 2, 23))
= ZLn2(PulAk A, 24, -+, 23))
= PyvillEmy2 (Akk)/ASS] 2, , 2i) + Py-alB, Linga (B, 24, -+, 24)
= Py 1([O(Axk) + C(Akk);Ags] i, , 20 + Pua([Ae, O(AL) + QAL 24, -, 24)
= Py 1([O(Ak), Al + [Akk,U(Aésﬂ,a@i,'“ ,24)
= Pi (O(Aki)A{, — A O(Aki) + Ak O(Ag ) — O(Ag ) Ai) 2. (33)

Note that, by (31), we have

/2]

O(Axk )AL EZT]S,A Oa) € ) T,
j=s+1
n/2 k—1

AO(AL) € Y Ty, OAL Ak € ) T
j=k+1 j=1

These and (30),(31),(33) 1mply to U(Akk)Ags + AkkU(Ags) =0= U(AkkAgS) and AQSU(Akk) = U(A;S)Akk = 0,
completing the proof. Note that, by Step 2.1, we can easily check that

O(Aw) € A+ + T + Tk + Ty + -+ Ty, k=12, ,n/2]. (34)

Step 2.2. For any Ay, A, € A /) for s < tand k < 1, we have O(Ax )AL =0fork > s; AiO(AL) =0
for 1 > s. It is obvious by (34).

Step 2.3. For any Ay, Al € A, /) withk < land s < t, we have

(1) G(Akl)Agt = AkLU(Aét) =0ifk>sork=s,k<l;
(11) A;tU(Akl) = U(A;t)Akl =0ifk<sork=s,s<t.

Note that, by Lemma 3.14, we know that O(Sy;) C .# N A, /) holds for all Sy € Apy, /2) with k < 1. So, the
step is true.

Step 2.4. For any Ay, Al/<k S A[n/z], we have U(AkkAﬁk) = U(Akk)A]Qk + AkkU(A{(k)- For Ay € A[n/z], by
Lemma 3.15, we get

0 = O(Aé) — O(SkAky)
= O(PyallAkx, &I, 24, -+, 24))
= L PvaaBre &, 2y, -+, 24)) — U Pv—1 (B, &, 24, -+, 24))
= Pyl (Axk), 6, 2y, -, 24) + Py (A, Ly (E)] Li, -, 24)
= Py a1(O(Akx), 6kl 21, -+, 2i) + Pu1 (A, O(&)], 2y, -+, 2h)
Pi(O(Axk) Sk — EO(Akk) + Ak O(6x) — Ok )Axk ) 2.

Hence by (34), we obtain

(Cl) PiU(Akk)Qi = PiU(Akk)ng = Pj U((g)k)Aka forl <i< k;

35
(b) PiU(Akk)Qi = PiéakU(Akk)gi = PiAkkU((fk)gi for k < i < TI/Z]. ( )
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Therefore, for any Ay, € Ap, /2, if 1 < i <k, (35)(a) implies
Pi (O(AxkAry) — O(Akk)Ary — AO(Ay ) 2:

= PiO(AkkAr)Z2i — PiO(Axk)Ar2i = PiO(AkAyy ) 2i — PiO(Akk) 2iAr, 2:

= PiO(&k)AkkAr 2 — PiO(&k) Ak 2iA 2i = 0;
if k <1< [n/2], (35)b) also implies P; (O(AxkAr; ) — O(Axk )AL, — AkkO(A1,))2i = 0. So until now we prove
that

Pi (O(AxkAry) — O(Akk)Ary — AO(Agy )2 =0forie {1,---, [n/2]}.

Combining the above equation and (30) gives O(AxkAry ) — O(Akk)Ar, — AkO(Ar,) = 0.

Step 2.5. For any Ay, Ay, € Ap,z) with k < 1, we have O(AxkAr ) = O(Axi)Ar + AO(AL,). Let k < L.
Then, by Lemma 3.14 and Steps 2.2-2.3, we have
O(AkkAy) = O(Pu(A A, 25, -+, 23))
= Linya(Pu(A, A, 24, -+, 24))
= Py 1([‘:?”[11/2 (Axi), A, 24, -+, 20) + Pyoa (B, Ly ()], 24, -+, 24)
+oo o+ PyoalA A, 24, Lngy2) (24))
= @N 1([O(Akx) + C(Akk), AkJ + (A, O(A)], 24, -+, 24)
o+ Py 1( AkkIAkl 1,2, - /U(o@i))

= WN 1(10(Akx), A + [Awie, O(A)], 25, -+, 24)

= Pi(O(Axk)Ar — A O(Akk) + Ak O(Ayy) — O(Ar)Aki) 25

= Pi(O(Aki)Ar + AO(81)) 2:.
Multiplying by P; and 2; from left and right respectively, we have P; (O(AxkAr ) —O(Akk )AL —AkO (A1) 25 =
0 which together with (30) leads to the required outcome.

By a similar argument to that of Step 2.5 and by using Steps 2.2-2.3 again, we can show the following
Steps 2.6-2.7.

Step 2.6. For any Ay, A{; € Apy, /2) with k < |, we have O(AxiA{) = O(Ax)A{; + A O(A]).
Step 2.7. For any Ay, A{; € Az withk <1< t, we have O(AriA{,) = O(Ax)A{; + AlO(Af,).

Step 2.8. For any Ay, Al € Ap 2 with k < < tand 1 # s, we have O(A )AL, + A O(AL) = 0. If
<1< s <t byStep 2.1, (34) and Step 2.3(ii), we have
0 = Ln2( P, AL, 2,0, 20))
= Pyv1llZmy2 (Akl) ALL 2, 20) + PyalBey, Lny2 (BL)], 24, -+, 24)
= P a1(OA), Agd, 2, -, 20) + Pu1([Bk, O(Ag )L, 24, -+, 24)
= Pi(O(A)Ag, AgtU(Akl) + A O(Ag) — O(A)Ak) 2;
Pi(O(Ax1 Ay + A O(AL))2s. (36)
This with (30) gives O(Ax1)AL + A O(AL) =0.
Fk<s<l<tk<s<t<lork<s <t<l, theby similar argument as above gives
O(Ak)Ag; + AO(Ag) = A O(Ar) = O(Ag A = 0;
ifk=s=1t<1,wehave
—O(Aj A1) = Omya(Pya(lA, Al 2, -, 24))
= L Pya(AAld, 24, -+, 24))
= Pi(O(Ak)Ar — A O(Aky) + A O (A ) — O(Ag )Ak) 24
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Multiplying by P; and 2; from left and right respectively, we have P; (O(Ar A1) —O(Ax1)Ar + AL O(Ax) —
A O(ALy) + O(AL )Ak) 2: = 0 which together with (30) and Step 2.5 gives O(Ax1)Ary + AiO(A1,) = 0.

Similarly, if s < k, by considering subcases s <k <t <l,s <k <l<t,ands <t <k <1, one can give
O(Ak)AL + A O(AL,) = 0. The substep is true. Now, combining Steps 2.1-2.8, and by an easy and direct
calculation, we can show that

O(Am/21Afmy2) = > O(AA)
1<kt /2]

= D> (O(AkAL +AO(4],))
1<kt (/2]

= O(Amy2))Al /2 T Am/20(Af, /)

Hence, the step holds.

Step 3. For any Bin 2], B[, /) € Bin/2) and any 4, 2) € A /2), we have
O(Htn/2Bins21) = O(Hn/2))Bny2) + Hiny200(Bmy2)),
O(Bin/21B(n2) O(Bn/21)Bn/2) T Bm/210(B(, /2))-

The proof is similar to that of Step 2. Now, combining Lemma 3.15 and Steps 1-3, one can prove that O is a
derivation. [

Lemma 3.17. {(Py_1(21, Z2,---, Zn)) =0holds forall 21, Z5,- -+, Zn € 7.

Proof. Note that ( = Z},,/,) — O. Since %}, /2 is a multiplicative Lie type derivation, U is an additive
derivation and ( is a central-valued map, it is a direct calculation that {(Py_1(21, 22, , Zn)) = 0 holds
forall 21, 25, ,Zn€ 7. O

Proof. [Proof of Theorem 3.1] Note that & = Z1,, /5) + Dinj2) = Liny2) + L (Zmy21), 1 and Ly ) = O+ C
Let 9 = P2 + O. Then £ = P + (; moreover, ¥ is an additive derivation as Lemmas 3.15-3.17 and
the definition of Zy,, 2}, and (is a central-valued map annihilating all commutators. Thereby, finishing the
proof of the theorem. [
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