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Abstract. In this paper, we deal with Stancu operators which depend on a non-negative integer parameter.
Firstly, we define Kantorovich extension of the operators. For functions belonging to the space Lp [0, 1] , 1 ≤
p < ∞, we obtain convergence in the norm of Lp by the sequence of Stancu-Kantorovich operators, and we
give an estimate for the rate of the convergence via first order averaged modulus of smoothness. Moreover,
for the Stancu operators; we search variation detracting property and convergence in the space of functions
of bounded variation in the variation seminorm.

1. Introduction

Stancu constructed the following Bernstein type positive linear operators

Ln,r
(

f ; x
)

:=
n−r∑
k=0

pn−r,k (x)
[
(1 − x) f

(
k
n

)
+ x f

(
k + r

n

)]
(1)

for f ∈ C[0, 1], where r is a non-negative integer parameter, n is a natural number such that n > 2r and

pn,k(x) =
{ (n

k
)
xk(1 − x)n−k; 0 ≤ k ≤ n

0; k < 0 or k > n
, x ∈ [0, 1], (2)

are the Bernstein basis polynomials satisfying the recurrence

pn,k(x) = (1 − x) pn−1,k(x) + x pn−1,k−1(x), 0 ≤ k ≤ n, (3)

[19]. It is clear that for the cases r = 0 and r = 1, the operators Ln,r reduce to the classical Bernstein operators
In this paper; Stancu gave uniform convergence limn→∞ Ln,r

(
f
)
= f on [0, 1] for f ∈ C[0, 1] and presented an

expression for the remainder Rn,r( f ; x) of the approximation formula f (x) = Ln,r( f ; x) + Rn,r( f ; x) by means
of the second order divided differences and also obtained an integral representation for the remainder.
Moreover, the author obtained an estimate of Voronovskaja-type and computed the order of approximation
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by the operators Ln,r
(

f
)

via modulus of continuity. Finally, investigation of the spectral properties of Ln,r was
given and it was noticed that each Ln,r has the variation diminishing property, in the sense of Schoenberg
[17].

Yang et al. extended the Stancu operators Ln,r given by (1) to the multivariate case on a simplex
and using elementary method, the authors proved the preservation of Lipschitz constant and order of a
Lipschitz continuous function by the multivariate Stancu operators [21]. Concerning Voronovskaja-type
formula; Bustamante and Quesada establihed an asymptotic property for Stancu operators [6]. In [5], we
studied an extension of Stancu operators Ln,r by using the fundamental functions of Cheney and Sharma
operators. In [9], Çetin and Başcanbaz-Tunca studied approximation properties of complex form of the
Stancu operators. In [8], Çetin investigated a generalization of the complex Stancu operators depending on
non-negative two real parameters.

It is well-known that Bernstein polynomials are not appropriate for approximation of discontinuous
functions (see [13, Section 1.9]). In order to get approximation of any Lebesgue integrable function f on
[0, 1], Kantorovich [11] constructed positive linear operators given by

Kn
(

f ; x
)
=

n∑
k=0

pn,k (x) (n + 1)

k+1
n+1∫

k
n+1

f (t) dt, x ∈ [0, 1], n ∈N. (4)

Lorentz proved that for f ∈ Lp [0, 1] , 1 ≤ p < ∞, the sequence of Bernstein-Kantorovich operators satisfies
limn→∞ Kn

(
f
)
= f in Lp [0, 1] (see [13], also [2]). In [7], Campiti and Metafune introduced new Bernstein-

Kantorovich-type operators Kn,α : Lp [0, 1]→ Lp [0, 1] given by

Kn,α :=
n∑

k=0

αn,kxk(1 − x)n−k (n + 1)

k+1
n+1∫

k
n+1

f (t) dt, x ∈ [0, 1], n ∈N,

for f ∈ Lp [0, 1], where the coefficients αn,k satisfy the following recurrence

αn+1,k = αn,k + αn,k−1 for k = 1, 2, . . . ,n,

and for k = 0, n;

αn,0 = λn, αn,n = ρn

with {λn}n∈N ,
{
ρn

}
n∈N are fixed bounded sequences of real numbers. And the authors studied the conver-

gence
{
Kn,α

(
f
)}

n∈N to f ∈ Lp [0, 1] in the norm of Lp as well as the rate of the convergence via τ-modulus.
There are several research papers dealing with multivariable design of Kantorovich operators and their
generalizations. Here, we only cite [3].

As far as we have searched, for the Stancu operators Ln,r; the variation detracting property (see, 4th
section) and Lp-approximation by their Kantorovich variants have not been studied yet. These problems
motivate us in this study.

In this paper, we construct Kantorovich-type extension of the Stancu operators given by (1) and, similar
to that for the Bernstein-Kantorovich operators, we obtain approximation of f ∈ Lp [0, 1] by the sequence
of Stancu-Kantorovich operators, which will be denoted by Kn,r

(
f ; x

)
, in the norm of Lp [0, 1] , 1 ≤ p < ∞.

For the rate of the convergence; using a result of Popov (Theorem 3.4), we present an estimate in terms
of averaged modulus of smoothness of first order. Moreover, we show that for all functions of bounded
variation on [0, 1], each Stancu operator Ln,r has variation detracting property. Finally, using classical
technique (see [4]), we present convergence in the variation seminorm of absolutely continuous functions
on [0, 1] by the sequence of Stancu operators.

For the Lp-convergence, we recall the following definitions which are reproduced here from the survey
article of Altomare [2]:
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Definition 1.1. ([2]) Let I be a real interval of R. A function φ : I→ R is said to be convex if

φ
(
λx + (1 − λ) y

)
≤ λφ (x) + (1 − λ)φ

(
y
)

for every x, y ∈ I and 0 ≤ λ ≤ 1. If I is open andφ is convex, then, for every finite family (xk)1≤k≤n in I and (λk)1≤k≤n in

[0, 1] such that
n∑

k=1
λk = 1, the Jensen inequality

φ

 n∑
k=1

λkxk

 ≤ n∑
k=1

λkφ (xk)

holds.

Definition 1.2. ([2]) Given a probability space
(
Ω,F , µ

)
, an open interval I of R and a µ-integrable function

f : Ω→ I, then
∫
Ω

f dµ ∈ I. Furthermore, if φ : I→ R is convex and φ◦ f : Ω→ R is µ-integrable, then the integral

Jensen’s inequality

φ


∫
Ω

f dµ

 ≤
∫
Ω

(
φ ◦ f

)
dµ

holds.

2. Kantorovich-type extension of Stancu operators

Using standard technique in [13, p. 30], we let f ∈ L1 [0, 1] and consider the indefinite integral of f ; F (x) =
x∫

0
f (t) dt + F (0). Differentiating Ln+1,r(F; x) with respect to x, we get

(
Ln+1,r(F; x)

)′ = n−r∑
k=0

pn−r,k (x) (n + 1 − r)
[
(1 − x)

{
F
(

k + 1
n + 1

)
− F

(
k

n + 1

)}
+ x

{
F
(

k + r + 1
n + 1

)
− F

(
k + r
n + 1

)}]

+

n+1−r∑
k=0

pn+1−r,k (x)
[
F
(

k + r
n + 1

)
− F

(
k

n + 1

)]
=Kn,r

(
f ; x

)
, (5)

where

Kn,r
(

f ; x
)

:=
n−r∑
k=0

pn−r,k (x) (n + 1 − r)

(1 − x)

k+1
n+1∫

k
n+1

f (t) dt + x

k+r+1
n+1∫

k+r
n+1

f (t) dt


+

n+1−r∑
k=0

pn+1−r,k (x)

k+r
n+1∫

k
n+1

f (t) dt, (6)

with r is a non-negative integer parameter and n is a natural number such that n > 2r, f ∈ L1 [0, 1] and
x ∈ [0, 1]. We call the operators Kn,r given by (6) as Stancu-Kantorovich operators in the sequel and consider
these operators from Lp [0, 1] into itself for every f ∈ Lp, 1 ≤ p < ∞. Each Kn,r is positive and linear operator
and the cases r = 0 and r = 1 give the Bernstein-Kantorovich operators given by (4), namely,

Kn,1 = Kn,0 = Kn
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holds. Indeed, the case r = 0 is obvious and the case r = 1 readily follows from (2) and (3).
We should note here that a Kantorovich-type extension of the Stancu operators Ln,r can be proposed as

K∗n,r
(

f ; x
)
=

n−r∑
k=0

pn−r,k (x) (n + 1)

(1 − x)

k+1
n+1∫

k
n+1

f (t) dt + x

k+r+1
n+1∫

k+r
n+1

f (t) dt

 , (7)

where r is a non-negative integer parameter, n is a natural number such that n > 2r, f ∈ L1 [0, 1] and
pn,k (x) are given by (2). But, for our aims, we prefer to deal with the construction given by (6). For a
generalization of the Stancu operator, which depends on two non-negative integer parameters (see [20]); a
Kantorovich-type extension for f ∈ C[0, 1], similar to (7), was constructed and studied in [10] by Kajla, and
also a generalization of which was studied in [12] by Kumar.

3. Lp-approximation by Stancu-Kantorovich operators

Firstly, we need to show the uniform convergence of real-valued and continuous functions by the
sequence

{
Kn,r

(
f
)}

n∈N on [0, 1]. Let us denote ev (t) := tv, t ∈ [0, 1], v = 0, 1, . . ..

Theorem 3.1. If f ∈ C [0, 1] and r is a non-negative fixed integer, then limn→∞ Kn,r
(

f
)
= f uniformly on [0, 1].

Proof. Making use of first three moments of the Stancu operators Ln,r given by

Ln,r (e0; x) = 1, Ln,r (e1; x) = x, Ln,r (e2; x) = x2 +

[
1 +

r (r − 1)
n

]
x (1 − x)

n

(see [19]), it readily follows that

Kn,r (e0; x) = 1,

Kn,r (e1; x) =
(n + r) (n − r + 1)

(n + 1)2 x +
n + 1 + r (r − 1)

2 (n + 1)2 ,

Kn,r (e2; x) =
(n − r) (n − r + 1) (n + 2r − 1)

(n + 1)3 x2 +
2 (n − r + 1)

(
n + r2

)
(n + 1)3 x +

(
n − r + 1 + r3

)
3 (n + 1)3 . (8)

Then, the result is obtained by using the well-known Korovkin theorem.

Remark 3.2. If f ∈ C[0, 1] is a continuously differentiable function on [0, 1] and r is a non-negative fixed integer,
then, from (5), we get(

Ln+1,r
(

f ; x
))′ = Kn,r

(
f ′; x

)
for n ∈ N such that n > 2r and x ∈ [0, 1]. In view of Theorem 3.1, it readily follows that limn→∞

(
Ln,r

(
f
))′ = f ′

uniformly on [0, 1].

Below, we present the convergence of
{
Kn,r

(
f
)}

n∈N in the norm of the space Lp [0, 1] , 1 ≤ p < ∞.

Theorem 3.3. If f ∈ Lp [0, 1] , 1 ≤ p < ∞, and r is a non-negative fixed integer, then limn→∞ Kn,r
(

f
)
= f

in Lp [0, 1] .

Proof. Denoting the operator norm of Kn,r, acting from Lp [0, 1] into itself, by
∥∥∥Kn,r

∥∥∥, where r is a non-negative
fixed integer and n ∈N such that n > 2r; it is sufficient to show that there exist an M > 0 such that

∥∥∥Kn,r

∥∥∥ ≤M.
Now, by setting

Sn,r
(

f ; x
)

:=
n−r∑
k=0

pn−r,k (x) (n + 1 − r)

(1 − x)

k+1
n+1∫

k
n+1

f (t) dt + x

k+r+1
n+1∫

k+r
n+1

f (t) dt


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and

Sn+1,r
(

f ; x
)

:=
n+1−r∑

k=0

pn+1−r,k (x)

k+r
n+1∫

k
n+1

f (t) dt,

we write each of the Stancu-Kantorovich operator Kn,r
(

f ; x
)

given by (6) as

Kn,r
(

f ; x
)
= Sn,r

(
f ; x

)
+ Sn+1,r

(
f ; x

)
and therefore, we immediately get∣∣∣Kn,r

(
f ; x

)∣∣∣p ≤ 2p
(∣∣∣Sn,r

(
f ; x

)∣∣∣p + ∣∣∣Sn+1,r
(

f ; x
)∣∣∣p) . (9)

Now, taking into accout of the fact that φ (t) = |t|p , 1 ≤ p < ∞, t ∈ [0, 1], is convex, we need to estimate
each term in (9). For

∣∣∣Sn,r
(

f ; x
)∣∣∣p; firstly, by taking λ1 = 1 − x and λ2 = x for x ∈ [0, 1] such that λ1, λ2 ≥ 0,

λ1 + λ2 = 1 and applying the definition of convexity, and secondly, making use of Jensen’s inequality for

pn−r,k (x) ≥ 0, where x ∈ [0, 1], k = 0, . . . ,n − r, such that
n−r∑
k=0

pn−r,k (x) = 1 and finally, using integral form

of Jensen’s inequality in the result, with the function φ (t) = |t|p , 1 ≤ p < ∞, t ∈ [0, 1] and the measure
(n + 1 − r) dt, we easily get

∣∣∣Sn,r
(

f ; x
)∣∣∣p ≤ n−r∑

k=0

pn−r,k (x) (n + 1 − r)

(1 − x)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt + x

k+r+1
n+1∫

k+r
n+1

∣∣∣ f (t)
∣∣∣p dt

 . (10)

Now, for
∣∣∣Sn+1,r

(
f ; x

)∣∣∣p; for the function φ (t) = |t|p , t ∈ [0, 1] , 1 ≤ p < ∞, applying Jensen’s inequality with

pn+1−r,k (x) ≥ 0, x ∈ [0, 1] , k = 0, . . . ,n + 1 − r, such that
n+1−r∑

k=0
pn+1−r,k (x) = 1, and next, using integral Jensen’s

inequality, we obtain

∣∣∣Sn+1,r
(

f ; x
)∣∣∣p ≤ n+1−r∑

k=0

pn+1−r,k (x)

k+r
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt. (11)

Integrating (10) over [0, 1], using the well-known beta integral, we get

1∫
0

∣∣∣Sn,r
(

f ; x
)∣∣∣p dx ≤

1
n − r + 2

Tn,r, (12)

where

Tn,r :=
n−r∑
k=0

(n − r − k + 1)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt + (k + 1)

k+r+1
n+1∫

k+r
n+1

∣∣∣ f (t)
∣∣∣p dt

 .
Since n > 2r, r ∈N ∪ {0}, we have n − r > r. Hence, we can express Tn,r as

Tn,r =

 r−1∑
k=0

+

n−r∑
k=r

 (n − r − k + 1)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt +

n−2r∑
k=0

+

n−r∑
k=n−2r+1

 (k + 1)

k+r+1
n+1∫

k+r
n+1

∣∣∣ f (t)
∣∣∣p dt.
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Replacing k with k − r in the sums located in the second term, the above expression of Tn,r reduces to

Tn,r =

r−1∑
k=0

(n − r − k + 1)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt +

n−r∑
k=r

(n − 2r + 2)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt

+

n∑
k=n−r+1

(k − r + 1)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt. (13)

On the other hand, integration of (11) over [0, 1] gives

1∫
0

∣∣∣Sn+1,r
(

f ; x
)∣∣∣p dx ≤

1
n − r + 2

n+1−r∑
k=0

k+r
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt. (14)

By collecting like terms, we decompose the sum in (14) into three parts:

n+1−r∑
k=0

k+r
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt =

n+1−r∑
k=0


k+1
n+1∫

k
n+1

+

k+2
n+1∫

k+1
n+1

+ · · · +

k+r
n+1∫

k+r−1
n+1

 ∣∣∣ f (t)
∣∣∣p dt

=

r−1∑
k=0

(k + 1)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt + r

n−r∑
k=r

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt +

n∑
k=n−r+1

(n − k + 1)

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt.

(15)

Making use of (12), (13), (14) and (15); from (9), we arrive at

1∫
0

∣∣∣Kn,r
(

f ; x
)∣∣∣p dx ≤ 2p

 r−1∑
k=0

+

n−r∑
k=r

+

n∑
k=n−r+1


k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt

= 2p
n∑

k=0

k+1
n+1∫

k
n+1

∣∣∣ f (t)
∣∣∣p dt = 2p

1∫
0

∣∣∣ f (t)
∣∣∣p dt.

Therefore, passing to Lp-norm ∥.∥p, we get
∥∥∥Kn,r

(
f
)∥∥∥

p ≤ 2
∥∥∥ f

∥∥∥
p for every f ∈ Lp [0, 1]. Namely, for every n ∈N

such that n > 2r, Kn,r is a bounded operator with
∥∥∥Kn,r

∥∥∥ ≤ 2. Now, let ϵ > 0 be arbitrary given. Then, by the
density of C[0, 1] in Lp [0, 1] (with respect to the norm∥.∥p), there is a 1 ∈ C[0, 1] such that

∥∥∥ f − 1
∥∥∥

p < ϵ and,
by Theorem 3.1, there exists an n0 ∈N such that for all n ≥ n0 it holds that∥∥∥Kn,r

(
1
)
− 1

∥∥∥ < ϵ,
where ∥.∥ is the usual sup-norm in C[0, 1]. Therefore, Lp-convergency is a direct consequence of the above
arguments and the inequality∥∥∥Kn,r

(
f
)
− f

∥∥∥
p ≤ 2

∥∥∥ f − 1
∥∥∥

p +
∥∥∥Kn,r

(
1
)
− 1

∥∥∥
p +

∥∥∥1 − f
∥∥∥

p < 4ϵ,

which completes the proof.
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Concerning rate of the approximation, averaged modulus of smoothness is very useful tool for the error
of the convergence in the norm of Lp. Here, we adopt the convention that M[a, b] denotes the space

M[a, b] = { f | f is bounded and measurable on [a, b]}.

Recall that for f ∈M[a, b] and δ > 0, averaged modulus of smoothness (or τ-modulus) of the first order for step δ in
Lp-norm, 1 ≤ p < ∞, is denoted by τ1

(
f ; δ

)
p and defined as

τ1
(

f ; δ
)

p =
∥∥∥ω1

(
f , .; δ

)∥∥∥
p ,

where

ω1
(

f , x; δ
)
= sup

{
| f (t + h) − f (t)| : t, t + h ∈

[
x −
δ
2
, x +

δ
2

]
∩ [0, 1]

}
is the local modulus of smoothness of the first order for the function f at the point x ∈ [a, b] and for step δ (see [16]
or, for details, [18]).

For every Borel measurable and bounded function f defined on [0, 1], we already have the following
results for the Bernstein-Kantorovich operators Kn, n ∈N,∥∥∥Kn

(
f
)
− f

∥∥∥
p ≤ 748τ1

(
f ;

1
√

n + 1

)
p

(see [1, p.335]) and

∥∥∥Kn
(

f
)
− f

∥∥∥
p ≤ Cτ1

 f ;

√
3n + 1

12 (n + 1)2


p

, (16)

where C is a positive constant that does not depend on f (see the special case for Proposition 4.2 in [3]).
To get an estimate for the approximation error in Theorem 3.3, we shall use the following theorem due to
Popov [15], in which averaged modulus of smoothness of the first order is used:

Theorem 3.4. ([15]) Let L : M[a, b]→M[a, b] be a positive linear operator, having the properties

L (e0; x) = 1, L (e1; x) = x + α (x) , L (e2; x) = x2 + β (x) , x ∈ [a, b].

Let

A := sup
{∣∣∣β(x) − 2xα(x)

∣∣∣ ; x ∈ [a, b]
}
≤ 1.

Then for f ∈M[a, b] and 1 ≤ p < ∞, the following estimate holds∥∥∥L
(

f
)
− f

∥∥∥
p ≤ Cτ1

(
f ;
√

A
)

p
,

where C is a positive constant which does not depend on the operator L, the function f and the Lp-norm.

For the rate of convergence in Theorem 3.3, we present the following estimate:

Theorem 3.5. If f ∈M[0, 1], r is a non-negative fixed integer, then, for every n ∈N such that n > 2r and 1 ≤ p < ∞,∥∥∥Kn,r
(

f
)
− f

∥∥∥
p ≤ Cτ1

(
f ;

√
An,r

)
p
,

where

An,r =
3n2 + 3nr2

− 3nr + 4n − 2r3 + 3r2
− r + 1

12 (n + 1)3 ≤ 1 (17)

and the positive constant C does not depend on f .
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Proof. Assume that f ∈M[0, 1] and 1 ≤ p < ∞. According to Theorem 3.4, it sufficies to show that

An,r := sup
{
Kn,r

(
(e1 − xe0)2 ; x

)
; x ∈ [0, 1]

}
≤ 1,

where r is a non-negative fixed integer and n ∈N such that n > 2r. From the linearity of the operators and
(8), we obtain, for x ∈ [0, 1],

Kn,r

(
(e1 − xe0)2 ; x

)
=

n2 +
(
r2
− r

)
n − 2r3 + r2 + r − 1

(n + 1)3 x (1 − x) +
n − r + 1 + r3

3 (n + 1)3

≤

n2 +
(
r2
− r

)
n − 2r3 + r2 + r − 1

4 (n + 1)3 +
n − r + 1 + r3

3 (n + 1)3

=
3n2 + 3nr2

− 3nr + 4n − 2r3 + 3r2
− r + 1

12 (n + 1)3

=An,r,

which gives (17). Note that, for the cases r = 0, 1 we get

An,0 = An,1 =
3n + 1

12 (n + 1)2 ,

which is the corresponding result for the Bernstein-Kantorovich operators given by (16). Now, it remains
to show that An,r ≤ 1. Since r ≥ 0 and n > 2r, we get n − 1 ≥ 2r. Thus, we can write

An,r =
1

12 (n + 1)3

[
3n2 + 3nr2

− 3nr + 4n − 2r3 + 3r2
− r + 1

]
≤

1

12 (n + 1)3

[
3n2 + 3nr2 + 4n + 3r2 + 1

]
≤

1

12 (n + 1)3

[
3n2 + 3n

(n − 1
2

)2

+ 4n + 3
(n − 1

2

)2

+ 1
]

=
3n3 + 9n2 + 13n + 7

48 (n + 1)3 ≤ 1.

This completes the proof.

4. Variation detracting property

Recall that the class of all functions of bounded variation on [0, 1] is denoted by TV[0, 1], with the
seminorm

∥∥∥ f
∥∥∥

TV[0,1]
:= V[0,1][ f ], where V[0,1][ f ] is total variation of f . It is well-known that for f ∈ TV[0, 1],

each Bernstein operator Bn satisfies the inequality V[0,1]
[
Bn f

]
≤ V[0,1]

[
f
]

(see [13, p.23]) that is called
as variation detracting property. Moreover, denoting the class of all absolutely continuous functions on
[0, 1] by AC[0, 1], we have the following result for Bernstein polynomials: For f ∈ TV[0, 1],

f ∈ AC[0, 1]⇐⇒ lim
n→∞

V[0,1]
[
Bn

(
f
)
− f

]
= 0 (18)

(see [14] or [4, p.308]). Below, we show that each Stancu operator Ln,r satisfies variation detracting property.

Theorem 4.1. If f ∈ TV[0, 1], r is a non-negative fixed integer, then, for every n ∈N such that n > 2r,

V[0,1]
[
Ln,r

(
f
)]
≤ V[0,1]

[
f
]
.
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Proof. Since the cases for r = 0 and r = 1 give the Bernstein operators, we consider for 0 < r , 1. For
f ∈ TV[0, 1], we have Ln,r( f ; x) is continuous on [0, 1] and

(
Ln,r( f ; x)

)′ is bounded on (0, 1). Therefore, it
follows that Ln,r( f ) ∈ AC[0, 1]. Writing the formula

(
Ln,r( f ; x)

)′ simply by replacing n with n− 1 and F with f
in (5) and using beta integral, we obtain the following inequality for the total variation of Ln,r( f ):

V[0,1]
[
Ln,r

(
f
)]
=

1∫
0

∣∣∣(Ln,r
(

f ; x
))′∣∣∣ dx

≤
1

n − r + 1

n−1−r∑
k=0

[
(n − r − k)

∣∣∣∣∣∣ f
(

k + 1
n

)
− f

(
k
n

)∣∣∣∣∣∣ + (k + 1)

∣∣∣∣∣∣ f
(

k + r + 1
n

)
− f

(
k + r

n

)∣∣∣∣∣∣
]

+
1

n − r + 1

n−r∑
k=0

∣∣∣∣∣∣ f
(

k + r
n

)
− f

(
k
n

)∣∣∣∣∣∣ . (19)

As in the proof of Theorem 3.3, by using the similar decomposition technique to the first and second sums
in (19), we reach to

V[0,1]
[
Ln,r

(
f
)]
≤

1
n − r + 1

 r−1∑
k=0

(n − r − k) +
n−1−r∑

k=r

(n − 2r + 1) +
n−1∑

k=n−r

(k − r + 1)

+

r−1∑
k=0

(k + 1) +
n−1−r∑

k=r

r +
n−1∑

k=n−r

(n − k)


∣∣∣∣∣∣ f

(
k + 1

n

)
− f

(
k
n

)∣∣∣∣∣∣
=

n−1∑
k=0

∣∣∣∣∣∣ f
(

k + 1
n

)
− f

(
k
n

)∣∣∣∣∣∣
≤V[0,1]

[
f
]
,

which completes the proof.

Now, we present the similar result in (18) for the Stancu polynomials:

Proposition 4.2. If f ∈ TV[0, 1] and r is a non-negative fixed integer, then

f ∈ AC[0, 1]⇐⇒ lim
n→∞

V[0,1]
[
Ln,r

(
f
)
− f

]
= 0.

Proof. Since AC[0, 1] is a closed subspace of TV[0, 1] according to the seminorm ∥.∥TV[0,1] (see [4, Lemma
2.1]), for f ∈ TV[0, 1],

lim
n→∞

V[0,1]
[
Ln,r

(
f
)
− f

]
= lim

n→∞

∥∥∥Ln,r
(

f
)
− f

∥∥∥
TV[0,1]

= 0

implies that f ∈ AC[0, 1]. Conversely, we let f ∈ AC[0, 1] (which gives f ′ ∈ L1[0, 1] and f (x) =
x∫

0
f ′ (t) dt +

f (0)). Since, Ln,r( f ) ∈ AC[0, 1], we have
[
Ln,r

(
f
)
− f

]
∈ AC[0, 1]. Thus, we arrive at

lim
n→∞

V[0,1]
[
Ln,r

(
f
)
− f

]
= lim

n→∞

∥∥∥Kn−1,r
(

f ′
)
− f ′

∥∥∥
1
= 0

by (5), (6) and Theorem 3.3. This completes the proof.
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