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Abstract. The aim of this work is to prove the existence and uniqueness of the Drazin inverse and the
DMP inverses of a bounded finite potent endomorphism. In particular, we give the main properties of
these generalized inverses, we offer their relationships with the adjoint operator, we study their spectrum,
we compute the respective traces and determinants and we relate the Drazin inverse of a bounded finite
potent operator with classical definitions of this generalized inverse. Moreover, different properties of the
Moore-Penrose inverse of a bounded operator are studied.
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1. Introduction

For an arbitrary (n × n)-matrix A with entries in the complex numbers, the index of A, i(A) ≥ 0, is the
smallest integer such that rk(Ai(A)) = rk(Ai(A)+1).

In 1958, M. P. Drazin in [10] showed the existence of a unique (n × n) complex matrix AD, called the
Drazin inverse, satisfying the equations:

• Ar+1AD = Ar for r = i(A);
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• ADAAD = AD;

• ADA = AAD.

When i(A) ≤ 1, it is known that the Drazin inverse AD coincides with the group inverse A#.
Moreover, given again A ∈ Matn×n(C) with i(A) = r, in [15] S. B. Malik and N. Thome showed the

existence of a unique matrix Ad,†
∈Matn×n(C) satisfying the equations:

• ArAd,† = ArA†;

• Ad,†AAd,† = Ad,†;

• Ad,†A = ADA;

A† being the Moore-Penrose inverse of A.
Ad,† is called the Drazin-Moore-Penrose (DMP) inverse of A and its explicit expression is ADAA†.

Moreover, if A has index 1, the matrix Ad,† coincides with the core inverse of A offered by O. M. Baksalary
and G. Trenkler in [2].

Furthermore, the dual Drazin-Moore-Penrose (dDMP) of A is denoted by A†,d and its explicit expression
is A†AAD. One has that A†,d ∈Matn×n(C) is the unique matrix satisfying the conditions:

• A†,dAr = A†Ar;

• A†,dAA†,d = A†,d;

• AA†,d = AAD.

On the other hand, the notion of finite potent endomorphism on an arbitrary vector space was introduced
by J. Tate in [26] as a basic tool for his elegant definition of Abstract Residues.

During the last decade, the theory of finite potent endomorphisms have been applied to studying
different topics related to Algebra, Arithmetic and Algebraic Geometry. Thus, A. Yekutieli in [27] and O.
Braunling in [3] and [4] have addressed problems of arithmetic symbols by using properties of finite potent
endomorphism; C. P. Debry in [9] and L. Taelman in [25] have offered results about Drinfeld modules from
these linear operators; and V. Cabezas Sánchez and F. Pablos Romo have given explicit solutions of infinite
linear systems from reflexive generalized inverses of finite potent endomorphisms in [5]. Moreover, the
author of this work has extended to finite potent endomorphisms the notions of Drazin inverse, group
inverse and DMP inverses in [18], [20] and [22] and, recently, has studied the properties of bounded finite
potent operators on Hilbert spaces in [19]. As far as we know, this last paper is the first approach for
studying finite potent endomorphisms from the point of view of the Functional Analysis that has appeared
in the literature.

The aim of this work is to prove the existence and uniqueness of the Drazin inverse and the DMP
inverses of a bounded finite potent endomorphism. In particular, we give the main properties of these
generalized inverses, we study their relationships with the adjoint operator, we show that their spectrum
coincides and we compute the respective traces and determinants. Moreover, different properties of the
Moore-Penrose inverse of a bounded operator are offered.

The paper is organized as follows. In section 2 we recall basic definitions of Functional Analysis (inner
product spaces, Hilbert spaces, bounded operators, orthogonality and the adjoint of a bounded linear map)
and we provide a summary of statements of the articles [1], [6], [17], [19], [22] and [26].

For the sake of completeness, Section 3 is devoted to offer different properties of the Moore-Penrose
inverse of a bounded linear map between two Hilbert spaces. Most of the given properties are well known
to specialists and we provide new proofs of them.

The purpose of Section 4 is to study the Drazin inverse of a bounded finite potent endomorphism on
a Hilbert space. Indeed, we show that the Drazin inverse of a bounded finite potent endomorphism is
also a bounded finite potent operator, we analyze the Drazin inverse of the adjoint of these operators, we
compute their spectrum, trace and determinant and we relate the Drazin inverse of a bounded finite potent
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operator with the classical definitions of the Drazin inverse for bounded operators on Banach spaces given
in [7], [12] and [13]. Moreover, in this section the main properties of the group inverse of a bounded finite
potent operator are offered.

Section 5 deals with the main properties of the Drazin-Moore-Penrose inverses of a bounded finite
potent operator on Hilbert spaces. Thus, we prove their existence and uniqueness as bounded finite potent
linear maps, we characterize their adjoint operator and we calculate the corresponding spectrum, trace and
determinant.

Accordingly, Proposition 5.8 shows that

TrH (φd,†) = TrH (φ†,d) = TrH (φD)

and
detH (Id + φd,†) = detH (Id + φ†,d) = detH (Id + φD) ,

where φ is a bounded finite potent operator with closed Im φ on a Hilbert spaceH , φD is the Drazin inverse
of φ and φd,† and φ†,d are the DMP inverses of φ.

Finally, we translate to finite square complex matrices the results offered in this section for the DMP
inverses.

2. Preliminaries

2.1. Finite Potent Endomorphisms

Let k be an arbitrary field and let V be a k-vector space. Let us now consider an endomorphism φ of V.
We say that φ is “finite potent” if φnV is finite dimensional for some n. This definition was introduced by
J. Tate in [26] as a basic tool for his elegant definition of Abstract Residues.

In 2007, M. Argerami, F. Szechtman and R. Tifenbach showed in [1] that an endomorphism φ is finite
potent if and only if V admits a φ-invariant decomposition V = Uφ ⊕Wφ such that φ|Uφ is nilpotent, Wφ is
finite dimensional and φ|Wφ

: Wφ
∼
−→Wφ is an isomorphism.

Indeed, if k[x] is the algebra of polynomials in the variable x with coefficients in k, we may view V as an
k[x]-module via φ, and the explicit definition of the above φ-invariant subspaces of V is:

• Uφ = {v ∈ V such that φm(v) = 0 for some m };

• Wφ =

{
v ∈ V such that p(φ)(v) = 0 for some p(x) ∈ k[x]
relatively prime to x

}
.

Note that if the annihilator polynomial of φ is xm
· p(x) with (x, p(x)) = 1, then Uφ = Kerφm and

Wφ = Ker p(φ).
Hence, this decomposition is unique. We shall call this decomposition theφ-invariant AST-decomposition

of V.
Basic examples of finite potent endomorphisms are all endomorphisms of a finite-dimensional vector

spaces and finite rank or nilpotent endomorphisms of infinite-dimensional vector spaces.
For a finite potent endomorphism φ, a trace TrV(φ) ∈ k may be defined as

TrV(φ) = TrWφ (φ|Wφ
) . (1)

This trace has the following properties:

1. if V is finite dimensional, then TrV(φ) is the ordinary trace;
2. if W is a subspace of V such that φW ⊂W then

TrV(φ) = TrW(φ) + TrV/W(φ) ;
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3. if φ is nilpotent, then TrV(φ) = 0.

Usually, TrV is named “Tate’s trace”.
Moreover, D. Hernández Serrano and the author of this paper have offered in [11] a definition of a

determinant for finite potent endomorphisms satisfying the following properties:

• if V is finite dimensional, then detV(Id + φ) is the ordinary determinant;

• if W is a subspace of V such that φW ⊂W, then

detV(Id + φ) = detW(Id + φ) · detV/W(Id + φ) ;

• if φ is nilpotent, then detV(Id + φ) = 1.

It is known that

detV(Id + φ) = detWφ (Id + φ|Wφ
) . (2)

For details readers are referred to [11], [23], [24] and [26].

2.2. Drazin inverse of Finite Potent Endomorphisms
Let V be an arbitrary k-vector space and let φ ∈ Endk(V) be a finite potent endomorphism of V. Let us

consider the AST-decomposition V = Uφ ⊕Wφ induced by φ.
We shall call “index of φ”, i(φ), to the nilpotent order of φ|Uφ , which coincides with the smaller n ∈ N

such that Im φn = Wφ. One has that i(φ) = 0 if and only if V is a finite-dimensional vector space and
φ is an automorphism and, bearing in mind the well-known equivalence between square matrices and
endomorphisms of finite-dimensional vector spaces, when V is finite-dimensional and φ ≡ A, it follows
from [22, Lemma 3.2] that i(φ) coincides with the index i(A) referred to in Section 1.

For each finite potent endomorphism φ ∈ Endk(V), it follows from [22, Theorem 3.4] that there exists a
unique finite potent endomorphism φD

∈ Endk(V) which satisfies that:

1. φr+1
◦ φD = φr;

2. φD
◦ φ ◦ φD = φD;

3. φD
◦ φ = φ ◦ φD,

where r is the index of φ.

2.3. CN Decomposition of a Finite Potent Endomorphism
Let V be again an arbitrary k-vector space. Given a finite potent endomorphismφ ∈ Endk(V), there exists

a unique decomposition φ = φ1 + φ2 , where φ1 , φ2 ∈ Endk(V) are finite potent endomorphisms satisfying
that:

• i(φ1 ) ≤ 1;

• φ2 is nilpotent;

• φ1 ◦ φ2 = φ2 ◦ φ1 = 0.

According to [17, Theorem 3.2], if φD is the Drazin inverse of φ, one has that φ1 = φ ◦ φD
◦ φ is the core

part of φ. Also, φ2 is named the nilpotent part of φ and one has that

φ = φ1 ⇐⇒ Uφ = Kerφ⇐⇒Wφ = Im φ⇐⇒ (φD)D = φ⇐⇒ i(φ) ≤ 1 . (3)

Moreover, if V = Wφ ⊕ Uφ is the AST-decomposition of V induced by φ, then φ1 and φ2 are the unique
linear maps such that:
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φ1 (v) =
φ(v) if v ∈Wφ

0 if v ∈ Uφ

and φ2 (v) =
 0 if v ∈Wφ

φ(v) if v ∈ Uφ

. (4)

By definition of Tate’s trace, for every finite potent endomorphism φ ∈ Endk(V), one has that

TrV(φ) = TrV(φ1) .

2.4. Bounded finite potent endomorphisms on Hilbert spaces
Let k be the field of the real numbers or the field of the complex numbers, and let V be a k-vector space.
An inner product on V is a map 1 : V × V → k satisfying that:

• 1 is linear in its first argument:

1(λv1 + µv2, v′) = λ1(v1, v′) + µ1(v2, v′) for every v1, v2, v′ ∈ V ;

• 1(v′, v) = 1(v, v′) for all v, v′ ∈ V, where 1(v, v′) is the complex conjugate of 1(v, v′);

• 1 is positive definite:
1(v, v) ≥ 0 and 1(v, v) = 0⇐⇒ v = 0 .

Note that 1(v, v) ∈ R for each v ∈ V, because 1(v, v) = 1(v, v).
Also, an inner product space is a pair (V, 1).
If (V, 1) is an inner product vector space, we say that two vectors v, v′ ∈ V are orthogonal when

1(v, v′) = 0 = 1(v′, v). Also, given a subspace L of an inner vector space (V, 1), we shall call “orthogonal of
L”, L⊥, to the subset of V consists of all vectors that are orthogonal to every h ∈ L, that is

L⊥ = {v ∈ V such that 1(v, h) = 0 for every h ∈ L} .

The norm on an inner product space (V, 1) is the real-valued function

∥ · ∥1 : V −→ R

v 7−→ +
√
1(v, v) ,

and the distance is the map
d1 : V × V −→ R

(v, v′) 7−→ ∥v′ − v∥1 .

Every inner product vector space (V, 1) has a natural structure of metric topological space determined
by the distance d1. Complete inner product C-vector spaces are known as “Hilbert spaces”. Usually, the
inner product of a Hilbert spaceH is denoted by < ·, · >H . Henceforth, we shall writeH to refer to a Hilbert
space and keep the inner product < ·, · >H implicit.

If L ⊆ H is a subspace of an arbitrary Hilbert space, it is known that (S⊥)⊥ = S where L denotes the
closure of L. Accordingly, if L ⊆ H is closed, then (L⊥)⊥ = L andH = L ⊕ L⊥.

We shall now recall the main properties of bounded operators of Hilbert spaces.

Definition 2.1. IfH1 andH2 are two Hilbert spaces, a linear map f : H1 →H2 is said “bounded” when there exists
C ∈ R+ such that

∥ f (v)∥12 ≤ C · ∥v∥11 ,

for every v ∈ H1.
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We shall denote the set of bounded linear maps f : H1 → H2 by B(H1,H2) and the set of bounded
endomorphisms of a Hilbert space H by B(H). Given a linear map f : H1 → H2, it is known that f is
continuous if and only if f is bounded.

The spectrum of a bounded operator f ∈ B(H) consists of complex numbers λ such that f − λId is not
invertible. We shall denote the spectrum of f by σ( f ), and it is clear that every eigenvalue of f is an element
of σ( f ). It is known that it is possible that an element of σ( f ) is not an eigenvalue.

Recently, the author of this work has studied in [19] the set of bounded finite potent endomorphisms on
an arbitrary Hilbert space, which will be denoted by B f p(H).

If φ ∈ B f p(H), H = Wφ ⊕ Uφ is the AST-decomposition induced by φ and φ = φ1 + φ2 is the CN-
decomposition, then the following properties hold:

1. φ is quasi-compact;
2. φ1 , φ2 ∈ B f p(H) and φ1 is of trace class;
3. φ is compact if and only if φ2 is compact;
4. if Tr(φ1) is the trace of φ1 as a trace class operator, then Tr(φ1 ) = TrH (φ);
5. given a non-zero λ ∈ C, one has that λ is an eigenvalue of φ if and only if λ is an eigenvalue of φ|Wφ

;
6. if i(φ) ≥ 1, then σ(φ) = {0, λ1, . . . , λn}where {λ1, . . . , λn} are the eigenvalues of φ|Wφ

;

7. TrH (φ) = TrWφ
(φ|Wφ

) = Tr(φ1) = TrL
H

(φ) = TrR
H

(φ);

where TrH (φ) is the Tate’s trace of φ as a finite potent endomorphism; TrWφ
(φ|Wφ

) is the trace of the
endomorphism φ|Wφ

on the finite-dimensional C-vector space Wφ ; Tr(φ1 ) is the trace of φ1 of a trace class

operator; TrL
H

(φ) is the Leray trace; and TrR
H

(φ) is the trace of φ as a Riesz trace class operator.
Moreover, the adjoint operator φ∗ satisfies that:

1. φ∗ ∈ B f p(H);
2. i(φ∗) = i(φ);
3. φ∗ = (φ1 )∗ + (φ2 )∗ is the CN-decomposition of φ∗;
4. if H = W

φ∗
⊕ U

φ∗
is the AST-decomposition induced by φ∗, then one has that W

φ∗
= [Uφ ]⊥ and

U
φ∗
= [Wφ ]⊥;

5. σ(φ∗) = σ(φ).

Now we shall recall two statements of [19] that shall be useful for the present work.
Thus, it follows from [19, Lemma 3.3] that

Lemma 2.2. IfH is a Hilbert space, f ∈ EndC(H) and U ⊆ H is a closed subspace of finite codimension such that
f|U = 0, then f ∈ B(H).

Moreover, from [19, Proposition 4.1] we know that

Proposition 2.3. If H is a Hilbert space and we consider φ ∈ B f p(H), then the adjoint φ∗ is also a bounded finite
potent endomorphism.

2.5. Moore-Penrose Inverse
2.5.1. Moore-Penrose Inverse of an (n ×m)-Matrix

Let C be the field. Given a matrix A ∈ Matn×m(C), the Moore-Penrose inverse of A is a matrix
A† ∈Matm×n(C) such that:

• A A† A = A;

• A† A A† = A†;

• (A A†)∗ = A A†;
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• (A† A)∗ = A† A;

B∗ being the conjugate transpose of the matrix B.
The Moore-Penrose inverse of A always exists, it is unique, [A†]† = A, and, if A ∈ Cn×n is non-singular,

then the Moore-Penrose inverse of A coincides with the inverse matrix A−1.
For details, readers are referred to [8].

2.5.2. Moore-Penrose Inverse of a Linear Map over Arbitrary Inner Product Spaces
Let (V, 1) and (W, 1̄) be inner product vector spaces over k, with k = C or k = R.
Given a linear map f : V →W, a linear map f+ : W → V is a reflexive generalized inverse of f when

• f ◦ f+ ◦ f = f ;

• f+ ◦ f ◦ f+ = f+.

Definition 2.4. Given a linear map f : V → W, we say that f is admissible for the Moore-Penrose inverse when
V = Ker f ⊕ [Ker f ]⊥ and W = Im f ⊕ [Im f ]⊥.

According to [6, Theorem 3.12], if (V, 1) and (W, 1̄) are inner product spaces over k, then f : V → W
is a linear map admissible for the Moore-Penrose inverse if and only if there exists a unique linear map
f † : W → V such that:

1. f † is a reflexive generalized inverse of f ;
2. f † ◦ f and f ◦ f † are self-adjoint, that is:

• 1([ f † ◦ f ](v), v′) = 1(v, [ f † ◦ f ](v′);
• 1̄([ f ◦ f †](w),w′) = 1̄(w, [ f ◦ f †](w′);

for all v, v′ ∈ V and w,w′ ∈ W. The operator f † is named the Moore-Penrose inverse of f and it is the
unique linear map satisfying that

f †(w) =

( f|[Ker f ]⊥
)−1(w) if w ∈ Im f

0 if w ∈ [Im f ]⊥
.

The Moore-Penrose inverse f † : W → V also satisfies the following properties:

• f † is admissible for the Moore-Penrose inverse and ( f †)† = f ;

• If f ∈ Endk(V) and f is an isomorphism, then f † = f−1;

• f † ◦ f = P[Ker f ]⊥ ;

• f ◦ f † = PIm f ;

where P[Ker f ]⊥ and PIm f are the projections induced by the decompositions V = Ker f ⊕ [Ker f ]⊥ and
W = Im f ⊕ [Im f ]⊥, respectively.

Lemma 2.5. If V is k-vector space, f ∈ Endk(V) is an endomorphism admissible for the Moore-Penrose inverse and
1 ∈ Endk(V) is such that Im 1 ⊆ Im f , then

f ◦ f † ◦ 1 = 1 .

Proof. The statement is immediately deduced from the equality f ◦ f † = PIm f .

Analogously, we can easily check that

Lemma 2.6. If V is k-vector space, f ∈ Endk(V) is an endomorphism admissible for the Moore-Penrose inverse and
1̃ ∈ Endk(V) is such that Im 1̃ ⊆ [Ker f ]⊥, then

f † ◦ f ◦ 1̃ = 1̃ .

For more details on the Moore-Penrose inverse over arbitrary inner product spaces readers are referred
to [6].
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3. Moore-Penrose inverse of a bounded linear map

For the sake of completeness, in this section we shall now offer different properties of the Moore-Penrose
inverse of a bounded linear map between two Hilbert spaces. Most of these properties are well known and
we provide in this work new proofs of them.

LetH1 andH2 two Hilbert spaces. Given a linear map f : H1 → H2, recall from Definition 2.4 that f is
admissible for the Moore-Penrose inverse whenH1 = Ker f ⊕ [Ker f ]⊥ andH2 = Im f ⊕ [Im f ]⊥.

Lemma 3.1. If f ∈ B(H1,H2), then f is admissible for the Moore-Penrose inverse if and only if Im f is a closed
subspace ofH1.

Proof. Since f is bounded, we have that Ker f is closed and, therefore,

H1 = Ker f ⊕ [Ker f ]⊥ .

Thus, f is admissible for the Moore-Penrose inverse if and only if

H2 = Im f ⊕ [Im f ]⊥ .

However, bearing in mind that Ker f ∗ = [Im f ]⊥, one has that [Im f ]⊥ is closed and

H2 = ([Im f ]⊥)⊥ ⊕ [Im f ]⊥ = Im f ⊕ [Im f ]⊥ .

Accordingly, we conclude that f is admissible for the Moore-Penrose inverse if and only if Im f = Im f ,
from where the claim is proved.

Proposition 3.2. If f ∈ B(H1,H2) is admissible for the Moore-Penrose inverse, then f † ∈ B(H2,H1).

Proof. Since [Ker f ]⊥ and Im f are closed with the hypothesis of the proposition, we have that
f|[Ker f ]⊥

∈ B([Ker f ]⊥, Im f ). Since f|[Ker f ]⊥
is bijective, from the Bounded Inverse Theorem one has that

( f|[Ker f ]⊥
)−1 = ( f †)|Im f ∈ B(Im f , [Ker f ]⊥) and there exists C̃ ∈ R+ such that

∥ f †(v2)∥H1 ≤ C̃ · ∥v2∥H2

for every v2 ∈ Im f .
Now, for every h2 ∈ H2, if we write h2 = v2 + u2 with v2 ∈ Im f and

u2 ∈ (Im f )⊥, bearing in mind that ∥v2∥H2 ≤ ∥h2∥H2 , one has that

∥ f †(h2)∥H1 = ∥ f †(v2)∥H1 ≤ C̃ · ∥v2∥H2 ≤ C̃ · ∥h2∥H2 ,

and the assertion is proved.

Proposition 3.3. If f ∈ B(H1,H2) is admissible for the Moore-Penrose inverse, then f ∗ is also admissible for the
Moore-Penrose inverse and ( f ∗)† = ( f †)∗.

Proof. From Proposition 3.2, one deduces the existence of ( f †)∗ because f † is a bounded linear map.
Moreover, bearing in mind the conditions that uniquely determine the Moore-Penrose inverse of f , from

the properties of the adjoint operator of a bounded linear map, one has that:

• f ∗ ◦ ( f †)∗ ◦ f ∗ = f ∗;

• ( f †)∗ ◦ f ∗ ◦ ( f †)∗ = ( f †)∗;

• f ∗ ◦ ( f †)∗ = ( f † ◦ f )∗ = f † ◦ f = [ f ∗ ◦ ( f †)∗]∗;
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• ( f †)∗ ◦ f ∗ = ( f ◦ f †)∗ = f ◦ f † = [( f †)∗ ◦ f ∗]∗,

from where we conclude that ( f †)∗ satisfies the conditions of the Moore-Penrose inverse of f ∗ and [6,
Theorem 3.12] shows that f ∗ is also admissible for the Moore-Penrose inverse and ( f ∗)† = ( f †)∗.

Corollary 3.4. If f ∈ B(H1,H2) such that Im f is a closed subspace ofH2, then Im f ∗ is a closed subspace ofH1.

Proof. The statement is a direct consequence of Lemma 3.1 and Proposition 3.3.

From the properties of the Moore-Penrose inverse of a linear map, if f ∈ B(H1,H2) with Im f being a
closed subspace ofH2, one has that:

• f ∗ ◦ ( f ∗)† = P[Ker f ]⊥ ;

• ( f ∗)† ◦ f ∗ = PIm f ,

where P[Ker f ]⊥ and PIm f are the projections induced by the decompositions H1 = Ker f ⊕ [Ker f ]⊥ and
H2 = Im f ⊕ [Im f ]⊥ respectively.

Lemma 3.5. If f ∈ B(H1,H2) such that Im f is a closed subspace ofH2, then one has that:

• f ∗ ◦ f ◦ f † = f ∗;

• f † ◦ f ◦ f ∗ = f ∗;

• ( f ∗)† ◦ f ∗ ◦ f = f ;

• f ◦ f ∗ ◦ ( f ∗)† = f .

Proof. The assertion follows immediately from Proposition 3.3 and the above properties of the Moore-
Penrose inverse for bounded finite potent linear maps.

Given a Hilbert spaceH , let us recall now that a bounded endomorphism f ∈ B(H) with closed Im f is
said to be “EP” when f † ◦ f = f ◦ f †.

Lemma 3.6. If H is a Hilbert space and f ∈ B(H) is a bounded endomorphism with closed Im f , one has that f is
EP if and only if f ∗ is EP.

Proof. Bearing in mind the properties of the adjoint operator, the assertion is immediately deduced from
Proposition 3.3.

If V is an arbitrary inner product vector space, it is known that if a finite potent endomorphism φ is EP,
then i(φ) ≤ 1.

4. Drazin inverse of a bounded finite potent operator

In this section, we shall now study the structure and basic properties of the Drazin inverse of a bounded
finite potent endomorphism of an arbitrary Hilbert space. In particular, we shall show that the Drazin
inverse of a finite potent endomorphism offered in [22] coincides with the definitions of the Drazin inverse
for bounded operators given in [7] and [13].
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4.1. Classical definitions of the Drazin inverse of a bounded operator

Let f be a bounded operator on a Banach space X. According to [14, Section 1], the “ascent of f ”, α( f ),
and the “descent of f ”, δ( f ), are given by

α( f ) = inf {n ∈Nwith Ker f n = Ker f n+1
} and

δ( f ) = inf {n ∈Nwith Im f n = Im f n+1
} ,

(5)

where the infimum over the empty set is taken as +∞.
If α( f ) = p < ∞ and δ( f ) = q < ∞, it follows from [14, Theorem 1.2] that p = q and

X = Ker f p
⊕ Im f p . (6)

Accordingly, writing
f1 = f|Im f p : Im f p

→ Im f p

and
f2 = f|Ker f p : Ker f p

→ Ker f p ,

D. C. Lay in [13] defined the Drazin inverse of f as the unique bounded linear operator f d that equals to
f−1
1 on Im f p and is zero on Ker f p, and showed that f d satisfies the following system of equations:

1 ◦ f ◦ 1 = 1
1 ◦ f = f ◦ 1

f s+1
◦ 1 = f s

(7)

for every s ≥ p.
Moreover, S. L. Campbell in [7] gives an alternative generalization of the Drazin inverse of bounded

linear operators on Banach spaces. Thus, if f is a bounded operator on a Banach space X such that the
hyperrange

R( f∞) =
∞⋂

n=1

Im f n

is closed and complemented by a closed f -invariant subspace M ⊂ X, and bearing in mind the f -invariant
decomposition

X = R( f∞) ⊕M , (8)

when f|R( f∞ ) : R( f∞)→ R( f∞) is invertible, the generalized Drazin inverse provided by S. L. Campbell is the
unique bounded operator f δ that equals to ( f|R( f∞ ) )

−1 on R( f∞) and zero on M.
Furthermore, J. J. Koliha in [12, Section 7] showed that if f d and f δ both exist, then f d = f δ if and only if

f|M : M→M is quasinilpotent.

4.2. Structure of the Drazin inverse of a bounded finite potent operator

Let V be an arbitrary k-vector space and let φ ∈ Endk(V) be a finite potent endomorphism. Recall from
Section 2.2 that the Drazin inverse of φ is the unique finite potent endomorphism φD

∈ Endk(V) satisfying
that:

1. φr+1
◦ φD = φr;

2. φD
◦ φ ◦ φD = φD;

3. φD
◦ φ = φ ◦ φD,
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where r is the index of φ.
The map φD is the Drazin inverse of φ and is the unique linear map such that:

φD(v) =

(φ|Wφ
)−1(v) if v ∈Wφ

0 if v ∈ Uφ

. (9)

Note that for finite potent endomorphisms, the system of equations (7) has the Drazin inverse φD as its
unique solution.

Moreover, φD satisfies the following properties:

• (φD)D = φ if and only if i(φ) ≤ 1;

• φ = φD if and only if φ|Uφ = 0 and (φ|Wφ
)2 = Id|Wφ

;

• if ψ is a projection finite potent endomorphism, then ψD = ψ.

We shall now study the Drazin inverse of a bounded finite potent operator on a Hilbert space.

Lemma 4.1. If H is a Hilbert space and φ ∈ B f p(H), then the Drazin inverse φD is also a bounded finite potent
endomorphism.

Proof. Since φD is finite potent, we only need to prove that φD is bounded. However, bearing in mind the
explicit expression of φD offered in (9), the boundedness of φ is immediately deduced from Lemma 2.2.

Proposition 4.2. IfH is a Hilbert space and φ ∈ B f p(H), then (φD)∗ = (φ∗)D.

Proof. Since from Lemma 4.1 one has that φD is bounded finite potent, Proposition 2.3 shows that (φD)∗ is
also a bounded finite potent endomorphism.

Accordingly, bearing in mind that i(φ) = i(φ∗), from the definition of the Drazin inverse of a finite potent
endomorphism and the properties of the adjoint operator of bounded linear maps, we have that:

• (φD)∗ ◦ φ∗ = φ∗ ◦ (φD)∗;

• (φ∗)r+1
◦ (φD)∗ = (φ∗)r;

• (φD)∗ ◦ φ∗ ◦ (φD)∗ = (φD)∗,

where r = i(φ∗).
Hence, the uniqueness of the Drazin inverse of a finite potent endomorphism implies that (φD)∗ =

(φ∗)D.

Moreover, it is immediately deduced from the basic properties of the Drazin inverse of a finite potent
endomorphism that

Corollary 4.3. IfH is a Hilbert space and φ ∈ B f p(H), then one has that:

• ([φ∗]D)D = φ∗ if and only if i(φ) ≤ 1;

• φ∗ = (φ∗)D if and only if φ|Uφ = 0 and (φ|Wφ
)2 = Id|Wφ

;

• if ψ is a projection finite potent endomorphism, then (ψ∗)D = ψ∗.

Furthermore, if φ ∈ B f p(H) andH =W(φ∗)D ⊕W(φD)∗ is the AST-decomposition determined by (φ∗)D, we
have that

• W(φ∗)D = [U(φD)]⊥ = [Uφ ]⊥;



F. Pablos Romo / Filomat 36:18 (2022), 6139–6158 6150

• U(φ∗)D = [W(φD)]⊥ = [Wφ ]⊥.

We shall now study the spectrum of φD.

Proposition 4.4. If H is an arbitrary Hilbert space, φ ∈ B f p(φ) and H = Wφ ⊕ Uφ is the AST-decomposition
determined by φ, one has that the spectrum of φD is:

• σ(φD) = {λ−1
1 , . . . , λ

−1
n } when i(φ) = 0;

• σ(φD) = {0, λ−1
1 , . . . , λ

−1
n } when i(φ) ≥ 1;

where {λ1, . . . , λn} are the eigenvalues of φ|Wφ
.

Proof. Given a Hilbert space, it follows from [19, Proposition 3.14] that the spectrum of a bounded finite
potent endomorphism φ ∈ B f p(φ) is:

• σ(φ) = {λ1, . . . , λn}when i(φ) = 0;

• σ(φ) = {0, λ1, . . . , λn}when i(φ) ≥ 1;

where {λ1, . . . , λn} are the eigenvalues of φ|Wφ
.

Accordingly, the statement is immediately deduced from the explicit expression of φD and Lemma 4.1
bearing in mind that, if E is a finite dimensional k-vector space and f ∈ Autk(E), a non-zero λ ∈ k is an
eigenvalue of f if and only if λ−1 is an eigenvalue of f−1.

Lemma 4.5. Keeping the previous notation, if {λi(φ)}i∈{1,...,s} is the listing of all non-zero eigenvalues of φ ∈ B f p(H),
counted up to algebraic multiplicity, we have that:

• TrH (φD) =
∑s

i=1[λi(φ)]−1;

• detH (φD) =
∏s

i=1(1 + [λi(φ)]−1).

Proof. If E is a finite-dimensional k-vector space and f ∈ Autk(E), it is clear that

dimk Ker( f − λId)n = dimk Ker( f−1
− λ−1Id)n

for every non-zero λ ∈ k and for each n ∈N.
Hence, the algebraic multiplicity of a non-zero eigenvalue λ of φ|Wφ

coincides with the algebraic multi-
plicity of λ−1 as an eigenvalue of (φ|Wφ

)−1 and, therefore, the statement follows from (1), (2) and (9).

Example 4.6. Let {ui}i∈N be an orthonormal basis of a separable Hilbert space H . If we consider φ ∈ B f p(H)
determined by the conditions

φ(ui) =


u1 + u2 + u4 if i = 1

2u1 + u3 if i = 2
u1 − 2u2 + 3u3 − 2u4 if i = 3

0 if i = 4
1
i2 u4 if i ≥ 5

,

an easy computation shows that

φ∗(ui) =


u1 + 2u2 + u3 if i = 1

u1 − 2u3 if i = 2
u2 + 3u3 if i = 3

u1 − 2u3 +
∑

j≥5
1
j2 u j if i = 4

0 if i ≥ 5

.

Thus, since Wφ = ⟨u1,u2 + u4,u3⟩ and Uφ = ⟨ui⟩i≥4, one has that:
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• W
φ∗
= U⊥

φ
= ⟨u1,u2,u3⟩;

• U
φ∗
=W⊥

φ
= ⟨u2 − u4⟩ ⊕ ⟨u j⟩ j≥5.

Also, it is clear that i(φ) = i(φ∗) = 2.
In this case we have that

φD(ui) =


−

2
3 u1 + u2 −

1
3 u3 + u4 if i = 1

5
3 u1 − u2 +

1
3 u3 − u4 if i = 2

4
3 u1 − u2 +

2
3 u3 − u4 if i = 3

0 if i ≥ 4

and

(φD)∗(ui) =



−
2
3 u1 +

5
3 u2 +

4
3 u3 if i = 1

u1 − u2 − u3 if i = 2

−
1
3 u1 +

1
3 u2 +

2
3 u3 if i = 3

u1 − u2 − u3 if i = 4

0 if i ≥ 5

,

and one can easily check that (φD)∗ = (φ∗)D.
Moreover, since W

φD =Wφ and

(φD)|W
φD
≡


−

2
3

5
3

4
3

1 −1 −1

−
1
3

1
3

2
3


in the basis {u1,u2 + u4,u3} of W

φD , one has that

TrH (φD) = −1 and detH (Id + φD) = −
15
9
.

4.2.1. Relationship of the Drazin inverse of a bounded finite potent endomorphism with the classical definitions of the
generalized Drazin inverse for bounded operators

Our task is now to relate the Drazin inverse of a bounded finite potent operator on a Hilbert space
studied above to the classical definitions of the Drazin inverse for bounded operators on Banach spaces
referred to in Section 4.1.

Lemma 4.7. IfH is a Hilbert space and φ ∈ B f p(H), then

i(φ) = α(φ) = δ(φ) ,

where α(φ) and δ(φ) are the ascent and the descent of φ respectively.

Proof. IfH =Wφ ⊕Uφ is the AST-decomposition ofH induced by φ, bearing in mind that Im φm =Wφ and
Kerφm = Uφ for every m ≥ i(φ), the claim is deduced from the definitions of α(φ) and δ(φ) given in (5).

Proposition 4.8. IfH is a Hilbert space and φ ∈ B f p(H), then φ satisfies the Lay condition for the existence of the
generalized Drazin inverse φd and φd = φD.

Proof. It follows from Lemma 4.7 that the AST decomposition H = Wφ ⊕ Uφ coincides with the Lay
decomposition (6). Hence, the explicit expression of φD given by (9) shows that φd = φD.

Proposition 4.9. IfH is a Hilbert space and φ ∈ B f p(H), then φ satisfies the Campbell conditions for the existence
of the generalized Drazin inverse φδ and φδ = φD.
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Proof. IfH =Wφ⊕Uφ is again the AST-decomposition ofH induced byφ, since Im φm =Wφ for all m ≥ i(φ),
one has that R(φ∞) = Wφ . Hence, bearing in mind that the AST-decomposition satisfies the conditions of
the Campbell decomposition (8) with M = Uφ and φ|Wφ

is invertible, from (9) we deduce that φδ = φD.

We can summarize the statements of Propositions 4.8 and 4.9 in

Theorem 4.10. IfH is a Hilbert space and φ ∈ B f p(H), then φd and φδ exist and we have that

φd = φδ = φD .

4.3. Group Inverse of a bounded finite potent endomorphism

Given an arbitrary k-vector space V and a finite potent endomorphism
φ ∈ Endk(V), we say that φ#

∈ Endk(V) is the group inverse of φ when

• φ ◦ φ#
◦ φ = φ;

• φ#
◦ φ ◦ φ# = φ#;

• φ#
◦ φ = φ ◦ φ#.

It is known from [18, Lemma 3.4 and Theorem 3.5] that the group inverse of a finite potent endomorphism
φ exists if and only if i(φ) ≤ 1 and, in this case, φ# = φD.

Lemma 4.11. If H is a Hilbert space and φ ∈ B f p(H), then the group inverse φ#
∈ B(H) exists, is unique and

coincides with φD if and only if i(φ) ≤ 1.

Proof. Bearing in mind the properties of the group inverse of a finite potent endomorphism of a vector
space, we only need to check that φ# = φD

∈ B(H), which is immediately deduced from Lemma 4.1.

Corollary 4.12. If H is a Hilbert space and φ ∈ B f p(H) with i(φ) ≤ 1, then (φ∗)#
∈ B f p(H) and (φ∗)# = (φ#)∗ =

(φD)∗.

Proof. Bearing in mind that from the properties of the adjoint operator we have that

• φ∗ ◦ (φ#)∗ ◦ φ∗ = φ∗;

• (φ#)∗ ◦ φ∗ ◦ (φ#)∗ = (φ#)∗;

• (φ#)∗ ◦ φ∗ = φ∗ ◦ (φ#)∗,

the claim is immediately deduced from the uniqueness of the group inverse of finite potent endomor-
phisms with an index less than or equal to 1, from Proposition 2.3 and from Lemma 4.11.

Example 4.13. Using the data from Example 4.6 and an easy computation we have that

φ1 (ui) =


u1 + u2 + u4 if i = 1

2u1 + u3 if i = 2
u1 − 2u2 + 3u3 − 2u4 if i = 3

0 if i ≥ 4

and, since (φ1 )# = (φ1 )D = φD, from Corollary 4.12 and the explicit expression of (φD)∗ offered in Example 4.6 one
has that

(φ∗1)#(ui) =



−
2
3 u1 +

5
3 u2 +

4
3 u3 if i = 1

u1 − u2 − u3 if i = 2

−
1
3 u1 +

1
3 u2 +

2
3 u3 if i = 3

u1 − u2 − u3 if i = 4

0 if i ≥ 5

.
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5. DMP inverses of a bounded finite potent endomorphism

This final section deals with the study of the DMP inverses of finite potent endomorphisms on arbitrary
Hilbert spaces.

Given an arbitrary k-vector space V and a finite potent endomorphism φ ∈ Endk(V) admissible for the
Moore-Penrose inverse, according to [20, Theorem 3.2], there exists a unique finite potent endomorphism
φd,†
∈ Endk(V) verifying that:

1. φd,†
◦ φ ◦ φd,† = φd,†;

2. φr
◦ φd,† = φr

◦ φ† with r = i(φ);
3. φd,†

◦ φ = φD
◦ φ,

where φD is the Drazin inverse and φ† is the Moore-Penrose inverse of φ.
The map φd,† is called the left-Drazin Moore-Penrose (lDMP) inverse of φ.
Moreover, from [20, Theorem 3.17] one has the existence and uniqueness of a finite potent endomorphism

φ†,d ∈ Endk(V) satisfying that:

1. φ†,d ◦ φ ◦ φ†,d = φ†,d;
2. φ†,d ◦ φr = φ† ◦ φr with r = i(φ);
3. φ ◦ φ†,d = φ ◦ φD.

The map φ†,d is the right-Drazin Moore-Penrose (rDMP) inverse of φ.
The lDMP-inverse and the rDMP-inverse of a finite potent endomorphism respectively generalize the

notions of DMP-inverse and dual DMP-inverse of a finite complex matrix introduced by S. B. Malik and N.
Thome in [15].

According to the statements of [20, Section 3.A], if φ ∈ Endk(V) is finite potent admissible for the
Moore-Penrose inverse, then one has that:

1. φ ◦ φd,†
◦ φ = φ1 ;

2. φd,† = φD
◦ PIm φ;

3. (φd,†)n =

 (φD
◦ φ†)

n
2 if n is even

φ ◦ (φD
◦ φ†)

n+1
2 if n is odd

;

4. i(φd,†) ≤ 1;
5. ((φd,†)D)D = φd,†;
6. If φd,† = φ, then φ† = φD;
7. φd,† = φ if and only if φ is EP and tripotent;
8. φd,† = 0 if and only if φ is nilpotent or φ = 0.

Moreover, given a finite potent endomorphism φ ∈ Endk(V) admissible for the Moore-Penrose inverse,
from [20, Section 3.B] we have that:

1. φ ◦ φ†,d ◦ φ = φ1 ;
2. φ†,d = P[Kerφ]⊥ ◦ φD;

3. (φ†,d)n =

 (φ† ◦ φD)
n
2 if n is even

(φ† ◦ φD)
n+1

2 ◦ φ if n is odd
;

4. i(φ†,d) ≤ 1;
5. ((φ†,d)D)D = φ†,d;
6. φ†,d = 0 if and only if φ is nilpotent or φ = 0;
7. if φ†,d = φ, then φ† = φD;
8. φ†,d = φ if and only φ is EP and tripotent.
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Lemma 5.1. IfH is a Hilbert space and φ ∈ B f p(H) with closed Im φ, then one has that φd,†, φ†,d ∈ B f p(H).

Proof. Since φd,† and φ†,d are finite potent, we only have to check that both linear maps are bounded to
prove the claim. Thus, bearing in mind that from [20, Theorem 3.2] we know that φd,† = φD

◦φ◦φ† and [20,
Theorem 3.17] shows that φ†,d = φ† ◦ φ ◦ φD, the boundedness of these endomorphisms are immediately
deduced from Lemma 4.1 and Proposition 3.2.

Proposition 5.2. IfH is a Hilbert space and φ ∈ B f p(H) with closed Im φ, then the lDMP-inverse (φ∗)d,† and the
rDMP-inverse (φ∗)†,d of the adjoint linear map φ∗ exist. Moreover, (φ∗)d,†, (φ∗)†,d ∈ B f p(H), (φ∗)d,† = (φ†,d)∗ and
(φ∗)†,d = (φd,†)∗.

Proof. The existence and uniqueness of the bounded finite potent endomorphisms (φ∗)d,† and (φ∗)†,d follow
from Proposition 2.3 and Lemma 5.1. Now, if i(φ) = r, from Proposition 4.2 and Proposition 3.3 we have
that

• (φd,†)∗ ◦ φ∗ ◦ (φd,†)∗ = (φd,†)∗;

• (φd,†)∗ ◦ (φ∗)r = (φ∗)† ◦ (φ∗)r;

• φ∗ ◦ (φd,†)∗ = φ∗ ◦ (φ∗)D;

and

• (φ†,d)∗ ◦ φ∗ ◦ (φ†,d)∗ = (φ†,d)∗;

• (φ∗)r
◦ (φ†,d)∗ = (φ∗)r

◦ (φ∗)†;

• (φ†,d)∗ ◦ φ∗ = (φ∗)D
◦ φ∗.

Hence, bearing in mind that [19, Corollary 4.4] shows that i(φ∗) = r, we conclude that (φ∗)d,† = (φ†,d)∗

and (φ∗)†,d = (φd,†)∗.

From the above-mentioned properties of the lDMP-inverse and the rDMP-inverse of finite potent endo-
morphisms, given φ ∈ B f p(H) with closed Im φ, one has that:

1. φ∗ ◦ (φ∗)d,†
◦ φ∗ = φ∗ ◦ (φ∗)†,d ◦ φ∗ = (φ1 )∗;

2. (φ∗)†,d = PIm φ ◦ (φ∗)D;
3. (φ∗)d,† = (φ∗)D

◦ P[Kerφ]⊥ ;
4. (((φ∗)d,†)D)D = (φ†,d)∗;
5. (((φ∗)†,d)D)D = (φd,†)∗;
6. If (φ∗)†,d = φ∗ or (φ∗)d,† = φ∗, then φ† = φD;
7. (φ∗)†,d = φ∗ = (φ∗)d,† if and only if φ is EP and tripotent;
8. (φ∗)†,d = 0 = (φ∗)d,† if and only if φ is nilpotent or φ = 0.

Lemma 5.3. If H is a Hilbert space and φ ∈ B f p(H) with closed Im φ, then (φ∗)†,d = (φD)∗ if and only if
Kerφ† ⊆ KerφD.

Proof. The assertion follows from Proposition 5.2, because [21, Proposition 3.1 and Corollary 3.2] show that
φd,† = φD if and only if Kerφ† ⊆ KerφD.

Lemma 5.4. If H is a Hilbert space and φ ∈ B f p(H) with closed Im φ, then (φ∗)d,† = (φD)∗ if and only if
Wφ ⊆ [Kerφ]⊥.

Proof. The claim is again immediately deduced from Proposition 5.2, because from [21, Proposition 3.1 and
Corollary 3.2] we know that φ†,d = φD if and only if Wφ ⊆ [Kerφ]⊥.
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We shall now study the spectrum of the DMP inverses of bounded finite potent endomorphisms.

Lemma 5.5. If H is a Hilbert space and φ ∈ B f p(H) with closed Im φ, given a non-zero λ ∈ C, one has that λ is
an eigenvalue of φd,† if and only if λ−1 is an eigenvalue of φ. Moreover, the multiplicity of λ as an eigenvalue of φd,†

coincides with the multiplicity of λ−1 as an eigenvalue of φ.

Proof. Recall from [19, Proposition 3.12] that λ is an eigenvalue of φd,† if and only if λ is an eigenvalue of
(φd,†)|W

φd,†
. Thus, since from [20, Lemma 3.5] we know that Wφd,† =Wφ , bearing in mind that

(φd,†)|W
φd,†
= (φ|Wφ

)−1 ,

we deduce that λ is an eigenvalue of φd,† if and only if λ−1 is an eigenvalue of φ.
Moreover, given a non-zero λ ∈ C, bearing in mind that

dimCKer(φ|Wφ
− λId)n = dimCKer((φ|Wφ

)−1
− λ−1Id)n

for every n ∈N, the statement is proved.

Corollary 5.6. If H is an arbitrary Hilbert space, φ ∈ B f p(φ) and H = Wφ ⊕ Uφ is the AST-decomposition
determined by φ, one has that the spectrum of φd,† is:

• σ(φd,†) = {λ−1
1 , . . . , λ

−1
n } when i(φ) = 0;

• σ(φd,†) = {0, λ−1
1 , . . . , λ

−1
n } when i(φ) ≥ 1;

where {λ1, . . . , λn} are the eigenvalues of φ|Wφ
.

Proof. The claim is a direct consequence of [19, Proposition 3.14] and Lemma 5.5.

Lemma 5.7. IfH is a Hilbert space and φ ∈ B f p(H) with closed Im φ, then σ(φ†,d) = σ(φd,†).

Proof. Bearing in mind that from [19, Proposition 4.8] we know that σ(φ∗) = σ(φ), one has that

σ(φ†,d) = σ([(φ∗)∗]†,d) = σ([(φ∗)d,†]∗) = σ((φ∗)d,†)

and the assertion is deduced from [19, Proposition 3.14] and Corollary 5.6.

Proposition 5.8. Given a Hilbert spaceH and a bounded finite potent endomorphism φ ∈ B f p(H) with closed Im φ,
one has that

TrH (φd,†) = TrH (φ†,d) = TrH (φD)

and
detH (Id + φd,†) = detH (Id + φ†,d) = detH (Id + φD) .

Proof. IfH =Wφ ⊕Uφ is the AST-decomposition ofH induced by φ, it is known from [20, Section 3.B] that

Wφ†,d = P[Kerφ]⊥ (Wφ ) = φ†(Wφ ) .

Now, bearing in mind that

(φ†,d ◦ φ†)(Wφ ) = (φ† ◦ φD)[(φ ◦ φ† ◦ φ)(Wφ )] = (φ† ◦ φD)(Wφ ) ,
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we have the commutative diagram of isomorphisms of linear maps

Wφ

φD
//

φ†

��

Wφ

φ†

��
Wφ†,d

φ†,d // Wφ†,d

and we deduce that

TrH (φ†,d) = TrH (φD) and detH (Id + φ†,d) = detH (Id + φD) .

Thus, the statement is immediately deduced from (1), (2), Proposition 4.4 and Corollary 5.6.

Example 5.9. If H and φ ∈ B f p(H) are as in Example 4.6, since a non-difficult computation shows that φ† is
determined by the assignations

φ†(ui) =



−
2
3 u1 + u2 −

1
3 u3 if i = 1

5
3 u1 − u2 +

1
3 u3 −

1
λ

∑
j≥5( 1

j2 u j) if i = 2
4
3 u1 − u2 +

2
3 u3 if i = 3

1
λ

∑
j≥5( 1

j2 u j) if i = 4

0 if i ≥ 5

with λ =
∑

j≥5
1
j4 =

π4

90 −
827
768 , from the explicit expression of φD obtained in Example 4.6, we have that

φd,†(ui) =


−

2
3 u1 + u2 −

1
3 u3 + u4 if i = 1

5
3 u1 − u2 +

1
3 u3 − u4 if i = 2

4
3 u1 − u2 +

2
3 u3 − u4 if i = 3

0 if i ≥ 4

and

φ†,d(ui) =


−

2
3 u1 + u2 −

1
3 u3 if i = 1

5
3 u1 − u2 +

1
3 u3 if i = 2

4
3 u1 − u2 +

2
3 u3 if i = 3

0 if i ≥ 4

.

Furthermore, according to Proposition 5.2, one has that

(φ∗)d,† = (φ†,d)∗ =


−

2
3 u1 +

5
3 u2 +

4
3 u3 if i = 1

u1 − u2 − u3 if i = 2

−
1
3 u1 +

1
3 u2 +

2
3 u3 if i = 3

0 if i ≥ 4

and

(φ∗)†,d = (φd,†)∗ =



−
2
3 u1 +

5
3 u2 +

4
3 u3 if i = 1

u1 − u2 − u3 if i = 2

−
1
3 u1 +

1
3 u2 +

2
3 u3 if i = 3

u1 − u2 − u3 if i = 4

0 if i ≥ 5

.
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Now, since Wφd,† =Wφ = ⟨u1,u2 + u4,u3⟩, Wφ†,d = φ
†(Wφ ) = ⟨u1,u2,u3⟩ and

(φd,†)|W
φd,†
≡


−

2
3

5
3

4
3

1 −1 −1

−
1
3

1
3

2
3

 ≡ (φ†,d)|W
φ†,d

in the bases {u1,u2 + u4,u3} of W
φd,† and {u1,u2,u3} of W

φ†,d
respectively, we obtain that

TrH (φd,†) = TrH (φ†,d) = −1 and detH (Id + φd,†) = detH (Id + φ†,d) = −
15
9
.

Finally, from the computations made in Example 4.6, readers can check that this example allows us to illustrate
the statements of Lemma 5.3 and Proposition 5.8.

Remark 5.10. Given an arbitrary k-vector space V, recall that a finite potent endomorphism φ ∈ Endk(V) with
CN-decomposition φ = φ1 + φ2 and admissible for the Moore-Penrose inverse is Core-EP when φ1 ◦ φ† = φ† ◦ φ1
([17, Definition 4.12]). Moreover, from [20, Section 3.C] it is known that a finite potent endomorphism φ ∈ Endk(V)
admissible for the Moore-Penrose inverse is Core-EP if and only if

φ†,d = φd,† .

Accordingly, the endomorphism φ ∈ B f p(H) studied in Example 5.9 is not Core-EP because φ†,d , φd,†.

Remark 5.11 (Final Remark). Bearing in mind the equivalence between finite square matrices and endomorphisms
of finite-dimensional vector spaces, given an (n×n) complex matrix A with core-nilpotent decomposition A = A1+A2,
from the statements of this work we have obtained proofs of the following assertions:

1. A∗ · (A∗)d,†
· A∗ = A∗ · (A∗)†,d · A∗ = (A1 )∗;

2. (A∗)†,d = PR(A) · (A∗)D;
3. (A∗)d,† = (A∗)D

· P[N(A)]⊥ ;
4. (((A∗)d,†)D)D = (A†,d)∗;
5. (((A∗)†,d)D)D = (Ad,†)∗;
6. If (A∗)†,d = A∗ or (A∗)d,† = A∗, then A† = AD;
7. (A∗)†,d = A∗ = (A∗)d,† if and only if A is EP and tripotent;
8. (A∗)†,d = 0 = (A∗)d,† if and only if A is nilpotent or A = 0;

where R(A) is the range of A, N(A) is the nullspace of A, PR(A) is the orthogonal projection onto R(A) and P[N(A)]⊥

is the orthogonal projection onto [N(A)]⊥.
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