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Abstract. In this paper, we study warped products of contact skew-CR submanifolds, called contact
skew CR-warped products. We establish a lower bound relationship between the squared norm of the
second fundamental form and the warping function. The equality case of the inequality is investigated and
some special cases of derived inequality are given. Furthermore, we provide non-trivial examples of such
submanifolds.

1. Introduction

The concept of skew CR-submanifolds of almost Hermitian manifolds was given by G. S. Ronsse [21]
to unify and generalize the concepts of holomorphic, totally real, CR, slant, semi-slant and pseudo-slant
(hemi-slant in the sense of B. Sahin [22]) submanifolds by exploiting the behavior of the bounded symmetric
linear operator. Later, this idea is extended to the contact geometry by Tripathi in [24] with the name of
almost semi-invariant submanifolds as a generalized class of invariant, anti-invariant, slant, contact CR,
bi-slant submanifolds of contact metric manifolds.

On the other hand, the warped products of skew CR-submanifolds of Kaehler manifolds were studied
by B. Sahin in [23] as a generalization of CR-warped products introduced by B.-Y. Chen in his seminal work
[9–12] and of warped product hemi-slant submanifolds, studied by B. Sahin in [22]. Later on, the contact
version of skew CR-warped products of cosymplectic manifolds appeared in [17]. Recently, we studied
warped product skew CR-submanifolds of Kenmotsu manifolds in [20]. For up-to-date survey on warped
product manifolds and warped product submanifolds we refer to B.-Y. Chen’s books [13, 15] and his survey
article [14].

In this paper, we study the contact skew CR-warped product submanifolds by considering the base
manifold is the Riemannian product of invariant and proper slant submanifolds of a Sasakian manifold
and the fiber of warped product is an anti-invariant submanifold.
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The paper is organized as follows: In Section 2, we give some basic formulas and definitions for
almost contact metric manifolds and their submanifolds. In Section 3, we recall the definition of skew
CR-submanifolds and provide two non-trivial examples. In this section, we also find some useful relations
for contact skew CR-warped products those are essential to derive our main result. In Section 4, we derive
a lower bound relation for the squared norm of the second fundamental form in terms of components of the
gradient of warping function along both factors of a base manifold. The equality case is also considered.
In Section 5, we give some special cases of our derived inequality. In Section 6, we give two non-trivial
examples of skew CR-warped products in Euclidean spaces.

2. Preliminaries

A (2m+1)-dimensional differentiable manifold M̃ is called an almost contact manifold if there is an almost
contact structure (φ, ξ, η) consisting of a (1, 1) tensor field φ, a vector field ξ and a 1-form η satisfying [3]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (1)

where I : TM̃→ TM̃ is the identity mapping. From the definition it follows that the (1, 1)-tensor field φ has
constant rank 2m (cf. [3]). An almost contact manifold (M̃, φ, η, ξ) is said to be normal when the tensor field
Nφ = [φ,φ] + 2dη ⊗ ξ vanishes identically, where [φ,φ] is the Nijenhuis torsion of φ. It is known that any
almost contact manifold (M̃, φ, η, ξ) admits a Riemannian metric 1̃ such that

1̃(φX, φY) = 1̃(X,Y) − η(X)η(Y) (2)

for any X,Y ∈ Γ(TM̃), where the Γ(TM̃) is the Lie algebra of vector fields on M̃. This metric 1̃ is called a
compatible metric and the manifold M̃ together with the structure (φ, ξ, η, 1̃) is called an almost contact metric
manifold. As an immediate consequence of (2), one has η(X) = 1̃(X, ξ), η(ξ) = 1 and 1̃(φX,Y) = −1̃(X, φY).
Hence the fundamental 2-form Φ of M̃ is defined Φ(X,Y) = 1̃(X, φY) and the manifold is said to be contact
metric manifold if Φ = dη. If ξ is a Killing vector field with respect to 1̃, the contact metric structure is called
a K− contact structure. A normal contact metric manifold is said to be a Sasakian manifold. An almost contact
metric manifold is Sasakian if and only if

(∇̃Xφ)Y = 1̃(X,Y)ξ − η(Y)X (3)

for all X,Y ∈ Γ(TM̃), where ∇̃ is the Levi-Civita connection of 1̃. From the formula (3), it follows that
∇̃Xξ = −φX. A Sasakian manifold is always a K−contact manifold and the converse is true in the dimension
three.

Let M be a submanifold of a Riemannian manifold M̃ equipped with a Riemannian metric 1̃. We use the
same symbol 1 for both the metrics 1̃ of M̃ and the induced metric 1 on the submanifold M. Let Γ(TM) the
Lie algebra of vector fields on M and Γ(T⊥M), the set of all vector fields normal to M. If we denote by ∇,
the Levi-Civita connection of M, then the Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X,Y), (4)

∇̃XN = −ANX + ∇⊥XN, (5)

for any vector field X, Y ∈ Γ(TM) and N ∈ Γ(T⊥M), where∇⊥ is the normal connection in the normal bundle,
σ is the second fundamental form and AN is the shape operator (corresponding to the normal vector field
N) for the immersion of M into M̃. They are related by 1(σ(X,Y),N) = 1(ANX,Y).

A submanifold M is said to be totally geodesic ifσ = 0 and totally umbilical ifσ(X,Y) = 1(X,Y)H, ∀X, Y ∈
Γ(TM), where H = 1

n
∑n

i=1σ(ei, ei) is the mean curvature vector of M. For any x ∈M and {e1, · · · , en, · · · , e2m+1}

is an orthonormal frame of TxM̃ such that e1, · · · , en are tangent to M at x. Then, we set

∥σ∥2 =
n∑

i, j=1

1(σ(ei, e j), σ(ei, e j)), σr
i j = 1(σ(ei, e j), er), i, j ∈ {1, · · · ,n}, r ∈ {n + 1, · · · , 2m + 1}. (6)
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According to the behaviour of the tangent bundle of a submanifold under the action of the almost contact
structure tensor φ of the ambient manifold, there are two well-known classes of submanifolds, namely,
φ-invariant submanifolds and φ-anti-invariant submanifolds. In the first case the tangent space of the
submanifold remains invariant under the action of the almost contact structure tensor φ whereas in the
second case it is mapped into the normal space.

Later, A. Bejancu [1] generalized the concept of invariant and anti-invariant submanifolds in to a semi-
invariant submanifold (also known as contact CR-submanifold [18], [33]). A submanifold M tangent to the
structure vector field ξ of an almost contact metric manifold M̃ is called a contact CR-submanifold if there
exists a pair of orthogonal distributionsD : x→ Dx andD⊥ : x→ D⊥x , ∀ x ∈M such that TM = D⊕D⊥⊕⟨ξ⟩,
where ⟨ξ⟩ is the 1-dimensional distribution spanned by the structure vector field ξ with D is invariant, i.e.,
φD = D and D⊥ is anti-invariant, i.e., φD⊥ ⊆ T⊥M. Obviously, invariant and anti-invariant submanifolds
are contact CR-submanifolds with D⊥ = {0} and D = {0}, respectively.

Slant submanifolds in complex geometry were defined and studied by B.-Y. Chen [7, 8]. In [19], A.
Lotta introduced the contact version of slant submanifolds. Let M be a submanifold of an almost contact
metric manifold M̃. Let D be a differentiable distribution on M. For any non-zero vector X ∈ Dx, the angle
θD(X) between φX and Dx is a slant angle of X with respect to the distribution D. If the slant angle θD(X)
is constant, i.e., it is independent of the choice x ∈ M and X ∈ Dx, then D is called a θ-slant distribution
and θD(X) = θD is called the slant angle of the distribution D. A submanifold M tangent to ξ is said to
be slant if for any x ∈ M and any X ∈ TxM, linearly independent to ξ, the angle between φX and TxM
is a constant θ ∈ [0, π/2], called the slant angle of M in M̃. Invariant and anti-invariant submanifolds are
θ-slant submanifolds with slant angle θ = 0 and θ = π/2, respectively. A slant submanifold which is neither
invariant nor anti-invariant is called proper slant. For more details, we refer to [5, 8].

For any vector field X ∈ Γ(TM), we have

φX = TX + FX, (7)

where TX and FX are the tangential and normal components of φX, respectively. For a slant submanifold
of almost contact metric manifolds we have the following useful result.

Theorem 2.1. [5] Let M be a submanifold of an almost contact metric manifold M̃, such that ξ ∈ Γ(TM). Then M is
slant if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ(−I + η ⊗ ξ). (8)

Furthermore, if θ is slant angle, then λ = cos2 θ.

Following relations are straightforward consequence of (8)

1(TX,TY) = cos2 θ[1(X,Y) − η(X)η(Y)], (9)

1(FX,FY) = sin2 θ[1(X,Y) − η(X)η(Y)] (10)

for any X,Y ∈ Γ(TM).
Beside these classes of submanifolds of almost contact metric manifolds there are some other subman-

ifolds. J.L. Caberizo et al. defined and studied semi-slant submanifolds of Sasakian manifolds in [4]. A
submanifold M of an almost contact metric manifold M̃ is said to be a semi-slant submanifold if there exists
a pair of orthogonal distributions D and Dθ on M such that D is φ-invariant and Dθ is proper slant with
slant angle θ with TM = D ⊕Dθ ⊕ ⟨ξ⟩.

Pseudo-slant submanifolds were defined by Carriazo in [6] under the name of anti-slant submanifolds
as a particular class of bi-slant submanifolds. Later, he called these classes of submanifolds as pseudo-
slant submanifolds. A submanifold M of an almost contact metric manifold M̃ is said to be a pseudo-slant
submanifold if there exists a pair of orthogonal distributionsD⊥ andDθ on M such that TM = D⊥ ⊕Dθ ⊕ ⟨ξ⟩
with D⊥ is anti-invariant, that is, φ(D⊥) ⊂ T⊥M and Dθ is a proper slant distribution with angle θ.
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3. Contact skew CR-warped product submanifolds

Skew CR-submanifolds introduced by Ronsse [21] for almost Hermitian manifolds. Later, for con-
tact metric manifolds, Tripathi [24] studied contact skew CR-submanifolds under the name almost semi-
invariant submanifolds by exploiting the behaviour of a natural bounded symmetric linear operator T2 = Q
on the submanifold. From (2) and (7), it is easy to see that 1(TX,Y) = −1(X,TY), for any X,Y ∈ Γ(TM),
which implies that 1(QX,Y) = 1(X,QY), i.e., Q is a symmetric operator, therefore its eigenvalues are real
and diagonalizable. Moreover, its eigenvalues are bounded by −1 and 0.

Since ξ ∈ Γ(TM), then we have TM = ⟨ξ⟩ ⊕ ⟨ξ⟩⊥ where ⟨ξ⟩ is the distribution spanned by ξ and ⟨ξ⟩⊥ is
the orthogonal complementary distribution of ⟨ξ⟩ in M. For any x ∈M, we may write

Dλx = ker
(
Q + λ2(x)I

)
x
,

where I is the identity transformation and λ(x) ∈ [0, 1] such that −λ2(x) is an eigenvalue of Q(x). We note
that D1

x = kerF and D0
x = kerT. D1

x is the maximal φ-invariant subspace of TxM and D0
x is the maximal

φ-anti-invariant subspace of TxM. From now on, we denote the distributions D1 and D0 by D and D⊥,
respectively. Since Qx is symmetric and diagonalizable, for some integer k if −λ2

1(x), · · · ,−λ2
k(x) are the

eigenvalues of Q at x ∈M, then ⟨ξ⟩⊥x can be decomposed as direct sum of mutually orthogonal eigenspaces,
i.e.

⟨ξ⟩⊥x = D
λ1
x ⊕D

λ2
x · · · ⊕D

λk
x .

Each Dλi
x , 1 ≤ i ≤ k, is a T-invariant subspace of TxM. Moreover if λi , 0, then Dλi

x is even dimensional. We
say that a submanifold M of an almost contact metric manifold M̃ is a generic submanifold if there exists
an integer k and functions λi, 1 ≤ i ≤ k defined on M with values in (0, 1) such that

(1) Each −λ2
i (x), 1 ≤ i ≤ k is a distinct eigenvalue of Q with

TxM = Dx ⊕D
⊥

x ⊕D
λ1
x ⊕ · · · ⊕D

λk
x ⊕ ⟨ξ⟩x

for any x ∈M.
(2) The dimensions of Dx, D⊥x and Dλi ,1 ≤ i ≤ k are independent on x ∈M.

Moreover, if each λi is constant on M, then M is called a skew CR-submanifold. Thus, we observe that
CR-submanifolds are a particular class of skew CR-submanifolds with k = 0, D , {0} and D⊥ , {0}. And
slant submanifolds are also a particular class of skew CR-submanifolds with k = 1, D = {0}, D⊥ = {0} and
λ1 is constant. Moreover, if D⊥ = {0}, D , 0 and k = 1, then M is a semi-slant submanifold. Furthermore, if
D = {0}, D⊥ , {0} and k = 1, then M is a pseudo-slant (or hemi-slant) submanifold.

A submanifold M of an almost contact metric manifold M̃ is said to be a contact skew CR-submanifold
of order 1 if M is a skew CR-submanifold such that k = 1 and λ1 is constant. In this case, the tangent and
normal bundles of M are decomposed by

TM = D ⊕D⊥ ⊕Dθ ⊕ ⟨ξ⟩, T⊥M = φD⊥ ⊕ FDθ ⊕ µ

where µ is a φ-invariant normal subbundle of T⊥M.
We provide the following examples of contact skew CR-submanifolds of order 1 in the Euclidean spaces.

Example 3.1. Consider the Euclidean 11-space R11 with cartesian coordinates (x1, · · · , x5, y1, · · · , y5, t) and
the standard Euclidean metric < , >. Define the almost contact structure on R11 as follows:

φ

(
∂
∂xi

)
= −

(
∂
∂yi

)
, φ

(
∂
∂y j

)
=

(
∂
∂x j

)
, φ

(
∂
∂t

)
= 0; 1 ≤ i, j ≤ 5.
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Then, it is easy to see that (R11, φ, ξ, η, < , >) is an almost contact metric manifold with ξ = ∂
∂t and η = dt.

Let M be a submanifold of R11 defined by the immersion ψ : M→ R11 as follows:

ψ(u, v,w, r, s, t) = (u + v, cosh w, kr, cos r, cos s, u − v, sinh w, s, sin r, sin s, t)

for any non-zero constant k. Then the tangent space of M is spanned by the following vectors:

X1 =
∂
∂x1
+

∂
∂y1

, X2 =
∂
∂x1
−

∂
∂y1

, X3 = sinh w
∂
∂x2
+ cosh w

∂
∂y2

,

X4 = k
∂
∂x3
− sin r

∂
∂x4
+ cos r

∂
∂y4

, X5 = − sin s
∂
∂x5
+

∂
∂y3
+ cos s

∂
∂y5

, X6 =
∂
∂t
.

Hence, we find that φX3 is orthogonal to TM, thus D⊥ = Span{X3} is an anti-invariant distribution and
D = Span{X1,X2} is an invariant distribution; while Dθ = Span{X4,X5} is a slant distribution with slant

angle θ = cos−1

(
k√

2(1+k2)

)
. Hence, the tangent space is decomposed TM = D ⊕D⊥ ⊕Dθ⊕ < ξ >, i.e., M is a

contact skew CR-submanifold of order 1.

Example 3.2. Let M be a submanifold R9 given by

x1 = u, , y1 = −v, x2 = r, y2 = s, x3 = s cosθ, y3 = s sinθ, x4 = cos w, y4 = − sin w, t = t.

It is easy to find that the local frame of TM is spanned by

X1 =
∂
∂x1

, X2 = −
∂
∂y1

, X3 =
∂
∂x2

, X4 = cosθ
∂
∂x3
+

∂
∂y2
+ sinθ

∂
∂y3

,

X5 = − sin w
∂
∂x4
− cos w

∂
∂y4

, X6 =
∂
∂t
.

Then, using the almost contact structure of R9 defined in Example 3.1, we find that φX5 is orthogonal to
TM, thus D⊥ = Span{X5} is an anti-invariant distribution and D = Span{X1,X2} is an invariant distribution;
while Dθ = Span{X3,X4} is a slant distribution with slant angle θ = 45◦. Hence, M is a contact skew
CR-submanifold of order 1.

Let
(
B, 1B

)
and

(
F, 1F

)
be two Riemannian manifolds and f be a positive smooth function on B. Consider

the product manifold B × F with canonical projections π1 : B × F → B and π2 : B × F → F. Then the
manifold M = B × f F is said to be warped product if it is equipped with the following warped metric

1(X,Y) = 1B (π1∗(X), π1∗(Y)) + ( f ◦ π1)21F (π2∗(X), π2∗(Y)) (11)

for all X,Y ∈ Γ(TM) and ‘∗’ stands for derivation maps. The function f is called the warping function and a
warped product manifold M is said to be trivial or simply a Riemannian product of B and F if f is constant.

Proposition 3.3. [2] For X,Y ∈ Γ(TB) and Z,W ∈ Γ(TF), we obtain for the warped product manifold M = B × f F
that

(i) ∇XY ∈ Γ(TB),

(ii) ∇XZ = ∇ZX = X(ln f )Z,

(iii) ∇ZW = ∇′ZW − 1(Z,W)
f ∇⃗ f ,

where ∇ and ∇′ denote the Levi-Civita connections on M and F, respectively and ∇⃗ f is the gradient of f defined by
1(∇⃗ f ,X) = X( f ).
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Remark 3.4. It is also important to note that for a warped product M = B × f F; B is totally geodesic and F is totally
umbilical in M [2, 9].

In this section, we study warped products of contact skew CR-submanifolds of order 1 of a Sasakian
manifold M̃ which we define as: A warped product submanifolds of the form M = B× f M⊥ is called a contact
skew CR-warped product submanifold if B =MT ×Mθ is the product of MT and Mθ, called semi-slant product,
where MT, M⊥ and Mθ are invariant, anti-invariant and proper slant submanifolds of M̃, respectively.
Throughout this paper, we assume the structure vector field ξ tangent to the submanifold. For this reason,
on a contact skew CR-warped product M = B× f M⊥, two case arise either ξ is tangent to M⊥ or ξ is tangent
to B. When, ξ ∈ Γ(TM⊥), then we have the following non-existence result.

Theorem 3.5. Let M = B× f M⊥ be a contact skew CR-warped product submanifold with B =MT×Mθ of a Sasakian
manifold M̃ such that ξ is tangent to M⊥. Then M is simply a Riemannian product submanifold of M̃.

Proof. For any U1 +U2 = U ∈ Γ(TB), where U1 ∈ Γ(TMT) and U2 ∈ Γ(TMθ), we have

∇̃Uξ = −ϕU = −ϕU1 − TU2 − FU2.

Using (4) and equating the tangential components, we derive

∇Uξ = −ϕU1 − TU2.

Then using Proposition 3.3 (ii), we get

U(ln f )ξ = −ϕU1 − TU2.

Taking the inner product with ξ in the above relation, we find that U(ln f ) = 0, i.e., f is constant, which
proves the theorem completely.

From now, for the simplicity we denote the tangent spaces of MT, M⊥ and Mθ by the same symbols
D, D⊥ and Dθ, respectively.

Now, if we consider ξ ∈ Γ(TB), then there are two possibilities that either ξ is tangent to MT or tangent
to Mθ. For this, we have the following useful results.

Lemma 3.6. Let M = B× f M⊥ be a contact skew CR- warped product submanifold of order 1 of a Sasakian manifold
M̃ such that ξ is tangent to B and B = MT ×Mθ, where MT and Mθ are invariant and proper slant submanifolds of
M̃, respectively. Then, we have

(i) ξ(ln f ) = 0,
(ii) 1(σ(X,Y), φZ) = 0,

(iii) 1(σ(X,V), φZ) = −1(σ(X,Z),FV) = 0,

for any X,Y ∈ Γ(D), V ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any Z ∈ Γ(D⊥), we have ∇̃Zξ = −φZ, by using (4), we find that ∇Zξ = 0, σ(Z, ξ) = −φZ. Using
Proposition 3.3, we get the first part of the lemma. For the second part, we have

1(σ(X,Y), φZ) = 1(∇̃XY, φZ) = −1(∇̃XφY,Z) + 1((∇̃Xφ)Y,Z).

for any X,Y ∈ Γ(D) and Z ∈ Γ(D⊥). Using (3) and the orthogonality of vector fields, we derive

1(σ(X,Y), φZ) = 1(∇̃XZ, φY) = 1(∇XZ, φY).

Again, using Proposition 3.3, we find that 1(σ(X,Y), φZ) = X(ln f )1(Z, φY) = 0, which is (ii). Similarly, for
any X ∈ Γ(D), V ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(σ(X,V), φZ) = 1(∇̃XV, φZ) = −1(∇̃XφV,Z) + 1((∇̃Xφ)V,Z).
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Again, from (3), (7) and the orthogonality of vector fields, we obtain

1(σ(X,V), φZ) = −1(∇̃XTV,Z) + 1(∇̃XFV,Z) = 1(∇XZ,TV) − 1(AFVX,Z).

Then from Proposition 3.3, we get 1(σ(X,V), φZ) = X(ln f )1(Z,TV) − 1(σ(X,Z),FV). Hence, by the orthog-
onality of vector fields, the second term vanishes identically which gives the first equality of (iii). On the
other hand, for any X ∈ Γ(D), V ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(σ(X,V), φZ) = 1(∇̃VX, φZ) = −1(∇̃VφX,Z) + 1((∇̃Vφ)X,Z).

Again, using the structure equation of Sasakian manifold, the orthogonality of vector fields and Proposition
3.3, we get 1(σ(X,V), φZ) = 0, which is the second equality. Hence, the proof is complete.

Lemma 3.7. Let M = B × f M⊥ be a contact skew CR-warped product submanifold of order 1 of a Sasakian manifold
M̃ such that ξ is tangent to B. Then

1(σ(U,V), φZ) = 1(σ(U,Z),FV) (12)

for any U,V ∈ Γ(Dθ) and Z ∈ Γ(D⊥).

Proof. For any U,V ∈ Γ(Dθ) and Z ∈ Γ(D⊥), we have

1(σ(U,V), φZ) = 1(∇̃UV, φZ) = −1(∇̃UφV,Z) + 1((∇̃Uφ)V,Z).

Using (3), (7) and the orthogonality of vector fields, we find

1(σ(U,V), φZ) = −1(∇̃UTV,Z) − 1(∇̃UFV,Z) = 1(∇UZ,TV) + 1(AFVU,Z).

By Proposition 3.3 and the orthogonality of vector field, we obtain 1(σ(U,V), φZ) = 1(σ(U,Z),FV), which
proves the lemma completely.

Lemma 3.8. Let M = B × f M⊥ be a contact skew CR-warped product submanifold of order 1 of a Sasakian manifold
M̃ such that ξ is tangent to B. Then, we have

1(σ(φX,Z), φW) = X(ln f )1(Z,W) (13)

for any X ∈ Γ(D) and Z,W ∈ Γ(D⊥).

Proof. For any X ∈ Γ(D) and Z,W ∈ Γ(D⊥), we have

1(σ(X,Z), φW) = 1(∇̃ZX, φW) = −1(∇̃ZφX,W) + 1((∇̃Zφ)X,W).

Using Proposition 3.3, structure equation (3) and the orthogonality of vector fields, we find

1(σ(X,Z), φW) = −φX(ln f )1(Z,W) − η(X)1(Z,W). (14)

Interchanging X by φX and using (1), we find (13), which completes the proof.

A warped product M = B × f F is said to be mixed totally geodesic if σ(X,Z) = 0, for any X ∈ Γ(TB) and
Z ∈ Γ(TF). From Lemma 3.8, we have the following consequence for a mixed totally geodesic warped
product.

Theorem 3.9. Let M = B × f M⊥ be a D −D⊥ mixed totally geodesic contact skew CR-warped product submanifold
of order 1 of a Sasakian manifold M̃ such that ξ is tangent to B. Then M is simply a Riemannian product manifold.

Proof. The proof of this theorem follows from (13) and the mixed totally geodesic condition.
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Lemma 3.10. Let M = B× f M⊥ be a contact skew CR- warped product submanifold of order 1 of a Sasakian manifold
M̃ such that ξ is tangent to B. Then

(i) 1(σ(Z,W),FV) − 1(σ(Z,V), φW) =
(
TV(ln f ) + η(V)

)
1(Z,W),

(ii) 1(σ(Z,W),FTV) − 1(σ(Z,TV), φW) = − cos2 θV(ln f ) 1(Z,W)

for any Z,W ∈ Γ(D⊥) and V ∈ Γ(Dθ).

Proof. For any V ∈ Γ(Dθ) and Z,W ∈ Γ(D⊥), we have

1(σ(Z,V), φW) = 1(∇̃ZV, φW) = −1(∇̃ZφV,W) + 1((∇̃Zφ)V,W).

Using (3) and (7), we derive

1(σ(Z,V), φW) = −1(∇̃ZTV,W) − 1(∇̃ZFV,W) − η(V)1(Z,W),

which on using Proposition 3.3 (ii) implies that

1(σ(Z,W),FV) − 1(σ(Z,V), φW) =
(
TV(ln f ) + η(V)

)
1(Z,W),

which is (i). Interchanging V by TV in (i) and using Theorem 2.1, we find (ii), which ends the proof.

4. Inequality for ∥σ∥2

Let M = B × f M⊥ be a n−dimensional contact skew CR-warped product submanifold of a (2m + 1)-
dimensional Sasakian manifold M̃ with B = MT ×Mθ and ξ is tangent to B. If dim MT = m1, dim M⊥ = m2
and dim Mθ = m3, then, clearly we have n = m1+m2+m3. We denote the tangent bundle of MT, M⊥ and Mθ

by D, D⊥ and Dθ, respectively. Since, ξ ∈ Γ(TB), then we have two cases: either ξ ∈ Γ(D) or ξ ∈ Γ(Dθ). If
we consider ξ ∈ Γ(D) then we set the orthonormal frame fields of M as follows: D = Span{e1, · · · , ep, ep+1 =

φe1, · · · , e2p = φep, em1 = e2p+1 = ξ}, D⊥ = Span{em1+1 = ē1, · · · , em1+m2 = ēm2 } and Dθ = Span{em1+m2+1 =
e∗1, · · · , em1+m2+s = e∗s, em1+m2+s+1 = e∗s+1 = secθTe∗1, · · · , en = e∗m3

= secθTe∗s}. Then, the normal subbundles
of T⊥M are spanned by φD⊥ = Span{en+1 = ẽ1 = φē1, · · · , en+m2 = ẽm2 = φēm2 }, FDθ = Span{en+m2+1 =
ẽm2+1 = cscθFe∗1, · · · , en+m2+s = ẽm2+s = cscθFe∗s, en+m2+s+1 = ẽm2+s+1 = cscθ secθFTe∗1, · · · , en+m2+m3 =
ẽm2+m3 = cscθ secθFTe∗s} and µ = Span{en+m2+m3+1 = ẽm2+m3+1, · · · , e2m+1 = ẽ2(m−m2−m3)−m1+1}.

Now, using the above orthonormal frame fields and some results of previous sections, we derive the
following main result of this paper.

Theorem 4.1. Let M = B× f M⊥ be aD⊥ −Dθ mixed totally geodesic contact skew CR-warped product submanifold
of order 1 of a Sasakian manifold M̃. Then we have:

(i) If ξ is tangent to MT, then

∥σ∥2 ≥ 2m2

(
∥∇

T(ln f )∥2 + 1
)
+m2 cot2 θ ∥∇θ(ln f )∥2.

(ii) If ξ is tangent to Mθ, then

∥σ∥2 ≥ 2m2∥∇
T(ln f )∥2 +m2 cot2 θ ∥∇θ(ln f )∥2,

where m2 = dim M⊥ and ∇T(ln f ) and ∇θ(ln f ) are the gradient components along MT and Mθ, respectively.
(iii) If the equality sign holds in above inequalities, then B is totally geodesic and M⊥ is a totally umbilical in M̃.

Proof. From the definition of the second fundamental from σ, we have

∥σ∥2 =
n∑

i, j=1

1(σ(ei, e j), σ(ei, e j)) =
2m+1∑
r=n+1

n∑
i, j=1

1(σ(ei, e j), er).
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According to the constructed frame filed, the above relation takes the from

∥σ∥2 =
n+m2∑
r=n+1

n∑
i, j=1

1(σ(ei, e j), er)2 +

n+m2+m3∑
r=n+m2+1

n∑
i, j=1

1(σ(ei, e j), er)2 +

2m+1∑
r=n+m2+m3+1

n∑
i, j=1

1(σ(ei, e j), er)2. (15)

Leaving the last µ− components in (15). Then, we can spilt the above relation for the orthogonal spaces as
follows

∥σ∥2 ≥
m2∑
r=1

m1∑
i, j=1

1(σ(ei, e j), ẽr)2 + 2
m2∑
r=1

m1∑
i=1

m2∑
j=1

1(σ(ei, ē j), ẽr)2 +

m2∑
r=1

m2∑
i, j=1

1(σ(ēi, ē j), ẽr)2

+ 2
m2∑
r=1

m2∑
i=1

m3∑
j=1

1(σ(ēi, e∗j), ẽr)2 +

m2∑
r=1

m3∑
i, j=1

1(σ(e∗i , e
∗

j), ẽr)2 + 2
m2∑
r=1

m1∑
i=1

m3∑
j=1

1(σ(ei, e∗j), ẽr)2

+

m2+m3∑
r=m2+1

m1∑
i, j=1

1(σ(ei, e j), ẽr)2 + 2
m2+m3∑
r=m2+1

m1∑
i=1

m2∑
j=1

1(σ(ei, ē j), ẽr)2 +

m2+m3∑
r=m2+1

m2∑
i, j=1

1(σ(ēi, ē j), ẽr)2

+ 2
m2+m3∑
r=m2+1

m2∑
i=1

m3∑
j=1

1(σ(ēi, e∗j), ẽr)2 +

m2+m3∑
r=m2+1

m3∑
i, j=1

1(σ(e∗i , e
∗

j), ẽr)2 + 2
m2+m3∑
r=m2+1

m1∑
i=1

m3∑
j=1

1(σ(ei, e∗j), ẽr)2. (16)

We have no relation for warped product for the third, seventh, eleventh and twelfth terms, so leaving these
terms. Then, using Lemma 3.6 (ii) and Lemma 3.7 with the hypothesis of theorem, we derive

∥σ∥2 ≥ 2
m2∑
r=1

p∑
i=1

m2∑
j=1

1(σ(ei, ē j), φēr)2 + 2
m2∑
r=1

p∑
i=1

m2∑
j=1

1(σ(φei, ē j), φēr)2 + 2
m2∑
r=1

m2∑
j=1

1(σ(e2p+1, ē j), φēr)2

+

s∑
r=1

m2∑
i, j=1

1(σ(ēi, ē j), cscθFe∗r)
2 +

s∑
r=1

m2∑
i, j=1

1(σ(ēi, ē j), cscθ secθFTe∗r)
2. (17)

Since, for a submanifold M of a Sasakian manifold σ(U, ξ) = −φU, for any U ∈ Γ(TM), using this fact in
the third term of (17). Also, using Lemma 3.8 and Lemma 3.10 with the D⊥ − Dθ mixed totally geodesic
condition, we derive

∥σ∥2 ≥ 2
m2∑

j,r=1

p∑
i=1

(
φei(ln f ) + η(ei)

)2
1(ē j, ēr)2 + 2

m2∑
j,r=1

p∑
i=1

(
ei(ln f )

)2
1(ē j, ēr)2 + 2

m2∑
j,r=1

1(σ(φē j, φēr)2

+ csc2 θ
s∑

r=1

m2∑
i, j=1

(
Te∗r(ln f ) + η(e∗r)

)2
1(ēi, ē j)2 + cot2 θ

s∑
r=1

m2∑
i, j=1

(
e∗r(ln f )

)2
1(ēi, ē j)2. (18)

Now, we consider both cases: (i) When ξ ∈ Γ(D), then we have

∥σ∥2 ≥ 2m2

2p+1∑
i=1

(
ei(ln f )

)2
− 2m2

(
e2p+1(ln f )

)2
+ 2m2 +m2 csc2 θ

m3∑
r=1

(
Te∗r(ln f )

)2

+m2 cot2 θ
s∑

r=1

(
e∗r(ln f )

)2
−m2 csc2 θ

m3∑
r=s+1

(
Te∗r(ln f )

)2 .
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Now, using gradient definition and Lemma 3.6 (i), we find

∥σ∥2 ≥ 2m2

(
∥∇

T(ln f )∥2 + 1
)
+m2 csc2 θ∥T∇θ(ln f )∥2 +m2 cot2 θ

s∑
r=1

(
e∗r(ln f )

)2

−m2 csc2 θ sec2 θ
s∑

r=1

1(Te∗r,T∇
θ(ln f ))2

= 2m2

(
∥∇

T(ln f )∥2 + 1
)
+m2 csc2 θ∥∇θ(ln f )∥2,

which is inequality (i). If ξ ∈ Γ(Dθ), then from (17), we obtain

∥σ∥2 ≥ 2m2∥∇
T(ln f )∥2 +m2 csc2 θ

m3∑
r=1

1
(
e∗r,T∇

θ(ln f )
)2
+m2 csc2 θ +m2 cot2 θ

s∑
r=1

(
e∗r(ln f )

)2

−m2 csc2 θ
s∑

r=1

1(e∗r+s,T∇
θ(ln f ))2

−m2 csc2 θ

= 2m2∥∇
T(ln f )∥2 +m2 csc2 θ∥T∇θ(ln f )||2 +m2 cot2 θ

s∑
r=1

(
e∗r(ln f )

)2

−m2 csc2 θ sec2 θ
s∑

r=1

1(Te∗r,T∇
θ(ln f ))2

= 2m2∥∇
T(ln f )∥2 +m2 cot2 θ∥∇θ(ln f )||2,

which is inequality (ii). For the equality case, From the leaving and vanishing terms in (15) and (16), we
obtain

σ(D,D) = 0, σ(D⊥,Dθ) = 0, σ(Dθ,Dθ) = 0, σ(D,Dθ) = 0. (19)

Then, from (19) with the Remark 3.4, we conclude that B is totally geodesic in M̃. Also, we find

σ(D,D⊥) ⊆ φD⊥, σ(D⊥,D⊥) ⊆ FDθ. (20)

Thus, by Remark 3.4 with (19) and (20), we deduce that M⊥ is totally umbilical in M̃. Hence, the theorem is
proved completely.

5. Special cases of Theorem 4.1

There are two special cases of Theorem 4.1:

1. If Dθ = {0} i.e., dim Mθ = 0 in a contact skew CR-warped product, then it reduces to contact CR-warped
products of the form M = MT × f M⊥ studied in [18]. In this case, the statement of Theorem 4.1 will be:
Let M = MT × f M⊥ be a contact CR-warped product submanifold of a Sasakian manifold M̃ such that ξ is tangent
to MT, where MT and M⊥ are invariant and anti-invariant submanifolds of M̃ with their real dimensions m1, m2,
respectively. Then we have:

(i) The squared norm of the second fundamental from σ satisfies

∥σ∥2 ≥ 2m2

(
∥∇

T(ln f )∥2 + 1
)
.

where ∇T(ln f ) is the gradient of ln f along MT.
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(ii) If the equality sign holds in above inequality, then MT is totally geodesic and M⊥ is a totally umbilical in M̃.

Which is the main result of [18].

2. On the other hand, ifD = {0} in a contact skew CR-warped product, then it will change into a pseudo-slant
warped product of the form M = Mθ × f M⊥ studied in [30]. In this case,Theorem 4.2 of [30] is a particular
case of Theorem 4.1 as follows:

Corollary 5.1. ( Theorem 4.2 of [30]) Let M = Mθ × f M⊥ be a mixed totally geodesic warped product submanifold
of a Sasakian manifold M̃ such that ξ ∈ Γ(Dθ), where Mθ is a proper slant submanifold and M⊥ is an m2-dimensional
anti-invariant submanifold of M̃. Then we have:

(i) The squared norm of the second fundamental form of M satisfies

∥σ∥2 ≥ m2 cot2 θ ∥∇θ(ln f )∥2

where ∇θ ln f is the gradient of ln f along Mθ.
(ii) If the equality sign in (i) holds identically, then Mθ is totally geodesic in M̃ and M⊥ is a totally umbilical

submanifold of M̃.

6. Examples

We construct the following non-trivial examples of Riemannian products and contact skew CR-warped
products in Euclidean spaces.

Example 6.1. Let M be a submanifold of Euclidean 9-space R9 with the cartesian coordinates
(x1, · · · , x4, y1, · · · , y4 , t) and the almost contact structure defined in Example 3.1. If M is given by the
equations

x1 = u1 y1 = v1, x2 = u2, y2 = v2, x3 = sin v2, y3 = cos v2, x4 = cos w2, y4 = sin w2, t = t,

then, the tangent space TM is spanned by X1, X2, X3, X4, X5 and X6, where

X1 =
∂
∂x1

, X2 =
∂
∂y1

, X3 =
∂
∂x2

, X4 = cos v2
∂
∂x3
+

∂
∂y2
− sin v2

∂
∂y3

,

X5 = −2w sin w2 ∂
∂x4
+ 2w cos w2 ∂

∂y4
, X6 =

∂
∂t
.

Then, we find that D = Span{X1,X2} is an invariant distribution and D⊥ = Span{X5} is an anti-invariant
distribution. Moreover, Dθ = Span{X3,X4} is a slant distribution with slant angle θ = 45◦. Hence, M is a
skew CR-submanifold of R9. Clearly, each distribution is integrable. If MT, Mθ and M⊥ integral manifolds
ofD, Dθ andD⊥, respectively, then M is a Riemannian product submanifold of B =MT ×Mθ and M⊥ inR9.

Example 6.2. Consider the Euclidean space R13 with the cartesian coordinates (x1, · · · , x6, y1, · · · , y6 , z)
and the almost contact structure

φ

(
∂
∂xi

)
= −

∂
∂yi

, φ

(
∂
∂y j

)
=

∂
∂x j

, φ

(
∂
∂z

)
= 0, 1 ≤ i, j ≤ 6.

It is clear that R13 is an almost contact metric manifold with respect to the given structure and standard
Euclidean metric tensor of R13. Let M be a submanifold of R13 defined by the immersion ψ : R7

→ R13 as
follows

ψ(u, v,w, r, s, t, z) =(u cos(w + r),u sin(w + r), v cos(w − r), v sin(w − r), k(u + v), s + t,
v cos(w + r), v sin(w + r),u cos(w − r),u sin(w − r),−k(u − v),−s + t, z)
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for non-zero vectors and a scalar k , 0. Let the tangent space of M is spanned by the following vectors

X1 = cos(w + r)
∂
∂x1
+ sin(w + r)

∂
∂x2
+ k

∂
∂x5
+ cos(w − r)

∂
∂y3
+ sin(w − r)

∂
∂y4
− k

∂
∂y5

,

X2 = cos(w − r)
∂
∂x3
+ sin(w − r)

∂
∂x4
+ k

∂
∂x5
+ cos(w + r)

∂
∂y1
+ sin(w + r)

∂
∂y2
+ k

∂
∂y5

,

X3 = −u sin(w + r)
∂
∂x1
+ u cos(w + r)

∂
∂x2
− v sin(w − r)

∂
∂x3
+ v cos(w − r)

∂
∂x4

− v sin(w + r)
∂
∂y1
+ v cos(w + r)

∂
∂y2
− u sin(w − r)

∂
∂y3
+ u cos(w − r)

∂
∂y4

,

X4 = −u sin(w + r)
∂
∂x1
+ u cos(w + r)

∂
∂x2
+ v sin(w − r)

∂
∂x3
− v cos(w − r)

∂
∂x4

− v sin(w + r)
∂
∂y1
+ v cos(w + r)

∂
∂y2
+ u sin(w − r)

∂
∂y3
− u cos(w − r)

∂
∂y4

,

X5 =
∂
∂x6
−

∂
∂y6

, X6 =
∂
∂x6
+

∂
∂y6

, X7 =
∂
∂z
.

Then, the distribution D⊥ = Span{X3,X4} is an anti-invariant distribution. It is easy to see that D =
Span{X5,X6} is an invariant distribution and Dθ = Span{X1,X2} is a slant distribution with slant angle
θ = cos−1

(
k2

1+k2

)
. Hence, M is a proper skew CR-submanifold of order 1 of R13 such that ξ = ∂

∂z is tangent to
M. It is easy to observe that each distribution is integrable. If we denote the integral manifolds of D, Dθ

and D⊥ by MT, Mθ and M⊥, respectively, then the induced metric tensor 1 of M is given by

1 = 2(1 + k2)(du2 + dv2) + 2(ds2 + dt2) + dz2 + 2(u2 + v2)(dw2 + dr2)

= 1B + 2(u2 + v2)1M⊥ .

Hence, M is a skew CR-warped product submanifold of R13 with the warping function f =
√

2(u2 + v2)
and the warped product metric 1 such that (B, 11) = (MT ×Mθ, 11) with product metric 11 = 2(1 + k2)(du2 +
dv2) + 2(ds2 + dt2) + dz2.
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