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Abstract. The main contributions of this paper is twofold. First, our primary concern is to suggest a new
iterative algorithm using the P-n-proximal-point mapping technique and Nadler’s technique for finding
the approximate solutions of a system of generalized multi-valued nonlinear variational-like inclusions.
Under some appropriate conditions imposed on the parameters and mappings involved in the system of
generalized multi-valued nonlinear variational-like inclusions, the strong convergence of the sequences
generated by our proposed iterative algorithm to a solution of the aforesaid system is proved. Second, the
H(., .)-n-cocoercive mapping considered in [R. Ahmad, M. Dilshad, M. Akram, Resolvent operator technique
for solving a system of generalized variational-like inclusions in Banach sapces, Filomat 26(5)(2012) 897-
908] is investigated and analyzed, and the fact that under the assumptions imposed on H(., .)-n-cocoercive
mapping, every H(.,.)-n-cocoercive mapping is P-n-accretive and is not a new one is pointed out. At

the same time, some important comments on H(.,.)-n-cocoercive mapping and the results given in the
above-mentioned paper are stated.

1. Introduction

The study of variational inequalities has a long history and interest in these types of inequalities is caused
by their wide applications in solving a large variety of problems arising in many diverse fields of pure
and applied science, such as mechanics, economics, engineering science, physics, elasticity, game theory,
optimization and control, and so forth. For this reason, the theory of variational inequalities has always
been an important subject as it evolved through the last decades, and the mathematical literature dedicated
to this is growing rapidly. In the course of the past few decades, because of their extraordinary utility and
broad applicability in many branches of sciences, variational inequalities have received a lot of attention
and many interesting generalizations of them are appeared in the literature. For a detailed description
of these generalizations along with relevant commentaries, the reader is referred to [4-7, 9, 10, 14, 20]
and the references therein. Without doubt, among the generalizations, variational inclusions are the most
important and well known ones, and in the last two decades the study of various types of variational
inclusion problems and related optimization problems has become a rapidly growing area of research, see,
for example, [1, 3, 8,11, 12, 15-19, 24, 26-28, 32, 33, 35-37, 39] and the references contained therein. With the
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purpose of constructing iterative algorithms for solving various kinds of variational inequality problems
and other related optimization problems in the setting of different spaces, in the past several decades,
many interesting methods are designed and planned. Among the methods existing in the literature, the
proximal-point mapping method (resolvent operator technique) as a useful and significant generalization of
projection method is of interest and importance. For references in this regard and some detailed information,
we refer the interested reader to [1, 3, 15-19, 24, 26, 27, 29, 33, 34, 36, 37, 39] and the references given therein.

In the last two decades, the notions of monotone, maximal monotone, accretive and m-accretive op-
erators, which the beginning of the study and formulating of them comes back to the sixties, have been
developed and generalized in different contexts. In 2001, Huang and Fang [24] succeeded to introduce the
concept of maximal 7-monotone operator as a generalization of maximal monotone operator. The same
authors [25] introduced the notion of generalized m-accretive (also referred to as m-n-accretive or n-m-
accretive [12]) mapping as a generalization of maximal n-monotone operators and m-accretive mappings.
Subsequently, another successfully efforts in this direction led to the emergence of several other extensions
of maximal monotone operators and m-accretive mappings which for example one can refer to H-monotone
operators [16], H-accretive mappings [15] and (H, 17)-monotone operators [19]. With the goal of defining and
the introduction of a wider class of accretive mappings as a unifying framework for the generalized mono-
tone and generalized accretive operators existing in the literature, the efforts in this direction have been
continued and Kazmi and Khan [27], and Peng and Zhu [33] were the first, independently, to introduce and
study the notion of P-n-accretive mapping in a Banach space setting. They defined the P-n-proximal-point
mapping associated with a P-n-accretive mapping and gave some properties concerning it. The systems
of variational inclusions involving P-n-accretive mappings are considered in [27, 33] and the existence of
a unique solution for the above-mentioned systems of variational inclusions is proved under some suit-
able conditions. By using the P-n-proximal-point mapping technique, they proposed Mann-type iterative
algorithms for finding the approximate solution of the aforesaid systems of variational inclusions. In the
meanwhile, they studied the convergence analysis of the sequences generated by the Mann-type iterative
algorithms proposed in [27, 33].

Recently, Ahmad et al. [3] introduced and studied another class of generalized accretive mappings, the
so-called H(.,.)-n-cocoercive mappings as a generalization of P-n-accretive and H(., .)-accretive mappings.
They used the resolvent operator associated with an H(.,.)-n-cocoercive operator to suggest an iterative
algorithm for solving a system of generalized variational-like inclusions in g-uniformly smooth Banach
spaces. Moreover, they proved the strong convergence of the sequences generated by the proposed iterative
algorithm to a solution of the above mentioned system.

The paper is structured as follows. Section 2 provides the basic definitions and preliminaries concerning
P-n-accretive mappings. In Sect. 3, a new system of generalized multi-valued nonlinear variational
inclusions (in short, SGMNVI) is considered and its equivalence with a fixed point problem is proved
under some appropriate conditions. The obtained equivalence and Nadler’s technique are employed to
construct a new iterative algorithm for finding the approximate solution of the SGMNVI. We study the
convergence analysis of the sequences generated by our proposed iterative algorithm under some imposed
conditions on the parameters and mappings involved in the SGMNVI In the final section, the notion of
H(., .)-n-cocoercive operator introduced and studied by Ahmad et al. [3] is investigated and analyzed. The
fact that contrary to the claim of the authors in [3], under the conditions imposed on it, every H(.,.)-1-
cocoercive operator is actually a P-n-accretive mapping and is not a new one is pointed out. At the same
time, we give some important comments on H(.,.)-n-cocoercive operators and with the help of them we
discuss the results appeared in [1].

2. Notation, basic definitions and fundamental properties

In what follows, unless otherwise stated, we always let X be a real Banach space with a norm ||.||, d be
the metric induced by the norm ||.||, X* be the topological dual space of X, (.,.) be the dual pair between X
and X*, and 2% (resp. CB(X)) denote the family of all the nonempty (resp. nonempty closed and bounded)
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subsets of X. Further, let D(.,.) be the Hausdorff metric of CB(X) defined by
D(A, B) = max{sup inlgllx —yll, sup inj llx—yll}, VA,Be CB(X).
B X€E.

xeA Y€ ye
For a given multi-valued mapping M : X — 2%,
(i) the set Range(M) defined by

RangeM) ={ye X:Ixe X: (x,y) e M} = UM(x)
xeX
is called the range of M;
(ii) the set Graph(M) defined by

Graph(M) = {(x,u) € X X X : u € M(x)},
is called the graph of M.

For a Banach space X, the unit sphere of X, denoted by Sx, is the set of all elements of X having
norm 1. Recall that a Banach space X is strictly convex if for each x and y in Sx such that x # y and
each A in (0,1), [IAx + (1 — A)yll < 1, ie., Sx is strictly convex. As a consequence of this definition, the
condition that for x and y in Sx such that x # y, 2 — [|x + y|| > 0 is equivalent to X being strictly convex
and provides us a characterization of strict convexity. X is said to be smooth if for every x € Sy there exits
a unique x* in X* such that ||x*|| = (x*,x) = 1. It is well known that X is smooth if X" is strictly convex,
and that X is strictly convex if X* is smooth. A Banach space X is uniformly convex if for each ¢ in (0,2],
20x(e) =inf{2 = |lx + yll : x, y € Sx, |lx — y|l = €} is positive. It is said to be uniformly smooth whenever given
€ > 0 there exists 0 > 0 such that for all x € Sx and y € X with [|y|| < 6, then ||x + yl| + |lx — yll <2 + &llyll.

The functions 6x : [0,2] — [0,1] and px : R* — IR* given by

: 1
ox(¢) := inf{l — §“x +yll:x, ¥ € Sx, llx — yll = 2¢}

and
Il + 7yl + llx — Tyl
2

are respectively called the modulus of convexity and smoothness of X. In the light of the definitions of the
functions 6x and px, a Banach space X is

px(7) := supf 1:x,y€Sx)

(i) uniformly convex if and only if Ox is strictly positive for every ¢ € (0, 2];
(ii) uniformly smooth if and only if lirr(} pr(T) =0.
T

It is worthwhile to stress that in the definitions of 0x(¢) and px(7), one can as well take the infimum and
supremum over all vectors x, y € X with ||x]|, |lyll < 1.

A Banach space X is uniformly convex (resp. uniformly smooth) if and only if X* is uniformly smooth
(resp. uniformly convex). The spaces I, LF and Wﬁ,, 1 < p < oo, m € N, are uniformly convex as well
as uniformly smooth, see [13, 22, 30]. In the meanwhile, the modulus of convexity and smoothness of a
Hilbert space and the spaces I, L¥ and Who1< p < oo, m € N, can be found in [13, 22, 30].

For a real constant g > 1, a mapping J, : X — 2%’ satisfying the condition

Jo@) = {x" € X" {x,x) = Il Il = ™Y, Vxe X,

is called the generalized duality mapping of X. In particular, J, is the usual normalized duality mapping. It is
known that, in general, J,(x) = [Ix]19722(x), for all x # 0 and J; is single-valued if X" is strictly convex. If X is
a Hilbert space, then ], becomes the identity mapping on X.

A Banach space X is uniformly convex (resp., uniformly smooth) if and only if the dual X* is uniformly
smooth (resp., uniformly convex). Note that J; is single-valued if X is uniformly smooth.
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For a real constant g > 1, X is called g-uniformly smooth if there exists a constant C > 0 such that
px(1) < Cti, for all T € R*. It is well known that (see e.g. [38]) L, (or ;) is g-uniformly smooth for 1 < g < 2
and is 2-uniformly smooth if g > 2.

In the study of characteristic inequalities in g-uniformly smooth Banach spaces, Xu [38] proved the
following result.

Lemma 2.1. Let X be a real uniformly smooth Banach space. For a real constant q > 1, X is q-uniformly smooth if
and only if there exists a constant ¢, > 0 such that for all x,y € X,

Il + yllT < Mlxll7 + ¢y, Ty () + cqllyll”.
We also recall the following concepts and some known results which shall be used in the sequel.

Definition 2.2. Let X be a real g-uniformly smooth Banach space and let T : X — X and n : X x X — X be the
mappings. Then T is said to be
(i) n-accretive if
(T) = T(W), Jo(nCx, y)) 20, Vx,y€X;

(ii) strictly n-accretive if T is n-accretive and equality holds if and only if x = y;
(iii) r-strongly n-accretive if there exists a constant v > 0 such that

(TC) = TW), JgCe, ) = rllx —yll!, Vx,yeX;
(iv) n-cocoercive with constant k if there exists a constant k > 0 such that
(T(x) = T(), Jy(x, ) 2 KIT(x) =TI, Yx,y € X;

(v) y-relaxed n-cocoercive (as referred to as n-relaxed cocoercive with constant vy, see, for example [3, Definition
2.2(ii)]) if there exists a constant y > O such that

(T() = T(y), Jy(n(x, ) = =YIIT@) =TI, Yx,yeX;
(vi) a-expansive if there exists a constant o > 0 such that

ITQ) =TIl = allT(x) =TI, Vx,y€X;
(vil) B-lipschitz continuous if there exists a constant § > 0 such that

ITG) =TIl < Bllx—yll, VYx,yeX

Definition 2.3. [15, Definition 1.2] Let X be a real g-uniformly smooth Banach space, P : X — X be a single-valued
mapping and M : X — 2% be a multi-valued mapping. M is said to be

(i) accretive if
(u-0v,J;(x-y) 20, V(x u),(yv) € Graph(M);
(ii) m-accretive if M is accretive and (I + AM)(X) = X holds for all A > 0, where I is the identity mapping on X;
(iii) P-accretive if M is accretive and (P + AM)(X) = X holds for every A > 0.

Chidume et al. [12] defined a class of n-accretive mappings the so-called m-n-accretive (also referred
to as generalized m-accretive [25]) mappings as a generalization of the class of m-accretive mappings as
follows.

Definition 2.4. [12] Let X be a real g-uniformly smooth Banach space, 1 : X X X — X be a vector-valued mapping.
The multi-valued mapping M : X — 2% is said to be

(i) n-accretive if

(u—v,J,(n(x,y)) >0, Y(x,u),(y,v)ec Graph(M);
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(if) m-n-accretive if M is n-accretive and (I + AM)(X) = X holds for all A > 0, where I is the identity mapping on
X.

We note that M is an m-nj-accretive mapping if and only if M is n-accretive and there is no other 7-
accretive mapping whose graph contains strictly Graph(M). The m-n-accretivity is to be understood in
terms of inclusion of graphs. If M : X — 2% is an m-n-accretive mapping, then adding anything to its graph
so as to obtain the graph of a new multi-valued mapping, destroys the n-accretivity. If fact, the extended
mapping is no longer n-accretive. In other words, for every pair (x,u) € X X X\ Graph(M) there exists
(y,v) € Graph(M) such that (u — v, J;(n(x, y))) < 0. Taking into account of the above-mentioned arguments,
a necessary and sufficient condition for a multi-valued mapping M : X — 2% to be m-n-accretive is that the

property
(u—20,J;(nlx,y)) =0, Y(y,v) € Graph(M)

is equivalent to u € M(x). The above characterization of m-n-accretive mappings provides a useful and
manageable way for recognizing that an element u belongs to M(x).

Kazmi and Khan [27] and subsequently Peng and Zhu [33] introduced and studied another class of
generalized accretive operators the so-called P-n-accretive (also referred to as (H, n)-accretive) mappings as
an extension of m-n-accretive mappings as follows.

Definition 2.5. [27, 33] Let X be a real g-uniformly smooth Banach space, P : X — X and n: X X X — X be two
single-valued mappings and M : X — 2% be a multi-valued mapping. M is said to be P-n-accretive if M is n-accretive
and (P + AM)(X) = X holds for every constant A > 0.

The following example illustrates that for given mappings : XX X — Xand P : X — X, a P-n-accretive
mapping may be neither P-accretive nor m-n-accretive.

Example 2.6. Let m,n € N be arbitrary but fixed and let M,,x,(IF) be the space of all m X n matrices with
real or complex entries. Then

Mn(F) ={A = ( aij )lag € F,i=1,2,...,m;j=1,2,...,m;F=RorC}

is a 2-uniformly smooth Banach space with respect to the Hilbert-Schmidt norm
m n 1
Al = ()Y 1ayP)’, YA € Myneu(F)
=1

i=1 j=1

induced by the Hilbert-Schmidt inner product

(A, B) = tr(A'B) = Z Z Gibij, YA, B € Myn(F),
i=1 j=1

where tr denotes the trace, that is, the sum of the diagonal entries, A* denotes the Hermitian conjugate (or

adjoint) of the matrix A, that is, A* = A, the complex conjugate of the transpose A, the bar denotes complex

conjugation and superscript denotes the transpose of the entries. Fori = 1,2,...,mand j = 1,2,...,n,

let E;; be the m x n such that (i, j)-entry equals to one and all other entries equal to zero. Then the set

{Eij:i=1,2,...,m;j=1,2,...,n}is called the set matrix-units and form a basis of M;;x,(IF). Any matrix
m n

A= ( ajj ) € Myxu(F) can be written as A = )’ ¥’ a;;E;j. If m = n, then {E;; : i,j = 1,2,...,n} is the set of
i=1 j=1

matrix units of the space Mx,(IF) = M, (FF), that is, the space of all n X n real or complex matrices, and for

n n
any A = ( ajj ) € Myuxn(F), we have A = ' a;;E;;. Furthermore, I,, = } Ej;, where for each k € {1,2,...,n},
i,j=1 i=1
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Ey = ( eij ) is an n X n matrix with the entry ¢ = 1 and 0’s everywhere else, is a representation of the
identity matrix I,, in M, (F). Indeed, I,, = ( 0ij ) and

_lLi=g
0ij = { 0, i#]
is the Kronecker delta. Let us denote by D, (IR) the space of all diagonal n X n matrices with real entries, that
is, the (i, j)-entry is an arbitrary real number if i = j, and is zero if i # j. Then

Du(R) = {A = aj )la € Ra;; = 0ifi # j;i,j=1,2,...,n)

is a subspace of M;x,(R) = M,(R) with respect to the operations of addition and scalar multiplication
defined on M,,(R), and the Hilbert-Schmidt inner product on D, (IR), and the Hilbert-Schmidt norm induced
by it become as (A, B) = tr(A*B) = tr(AB) and ||All = V(A,A) = /tr(AA) = (5‘1 ai)i, respectively. Let the
mappings M : D,(R) — 2P:® 5 : D,(R) X D,,(R) — D,(R) and P : D,(R) — D,(R) be defined, respectively,
by

_J{Ei—-Ew:i=12,...,mi#kj, A=Eg,
M(A) - { -A +Ekkr A+ Ekk/

_ C, A,B # Ey,
(A, B) = { 0, otherwise,

and P(A) = BA + yEy, forall A = ( ajj ),B = ( bij ) € Dy(R), where C = ( Cij ) is an n X n matrix with the
entries

Lli(aii+bi; qi _ A T 4
o= | O —ay, =]
] 0, i# ],

where fori =1,2,...,n, a;,I;(i = 1,2,...,n),p,7 € R are arbitrary constants such that § < 0 < «a; for each
i€f{l,2,...,n},q;(i=1,2,...,n) are arbitrary but fixed odd natural numbers, 0 is the zero vector (the zero
matrix) of the space D,(R), and k € {1,2,...,n} is an arbitrary but fixed natural number. Then for any

A= ( a;j ),B = ( bij ) € D,(R), A # B # E, we have
n
(M(A) = M(B), Ja(A - B)) = (B— A, A= B) = —| A= BI? = = } (@i — bs)* <,
i=1
which means that M is not accretive and so it is not a P-accretive mapping.
For any given A = ( ajj ),B = ( bij ) € D,(R), A # B # Ei, we obtain

(M(A) = M(B), J2(n(A, B))) = (M(A) — M(B), (A, B))
= tV(( bij — aij )( Cij ))

n qi
(b =5 o
= Z Oli(bii - Hii)zel’(u”+b”) Z b?l' ﬂ?i 1.
i=1 s=1

qi . .
Since for each i € {1,2,...,n}, g; is an odd natural number, it follows that }, b?lf saf.l.’l > 0 for each i €
s=1

{1,2,...,n}. Thus, the preceding relation implies that
(M(A) = M(B), J]2(n(A,B))) 20, VA,B € Dy(R),A # B # Ex.
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For each of the cases when A # B = E, B # A = Ei¢ and A = B = Ey, thanks to the fact that (A, B) = 0, we
infer that

(u—-2v,]2(n(A,B)) =0, VYueMA),veM(B).

Therefore, M is an n-accretive mapping. Taking into account that for any Ey # A € D,(R),
n
I+ M)A = |A — A+ Egll* = IEl* = (Exe, Exi) = tr(EeEnc) = Zei- = =1>0
i=1
and (I + M)(E) ={E;; : i =1,2,...,n;i # k}, where I is the identity mapping on X = D,(RR), we deduce that

0 ¢ (I +M)(D,(R)). This fact ensures that I + M is not surjective, and so M is not an m-n-accretive mapping.
For any given constant A > 0 and A € D,(IR), by taking Q = ﬁA + %Ekk (A # p because $ < 0), it follows

that

(P+AM)(Q)=(P+AM)(LA+MEM): B, BOY+A)

p—A A=B p—-A A-B

A Ay +A) 3
_ﬁ—/\A_ /\—ﬂ Ei + AE = A.

Thereby, the mapping P + AM is surjective for any real constant A > 0 and so M is a P-n-accretive mapping.

Ep + yE

The following example shows that for given mappings P : X — X and 1 : X X X — X, an m-n-accretive
mapping need not be P-nj-accretive.

Example 2.7. Suppose that the space D,(RR) is the same as in Example 2.6 and let the mappings P, M :
Du(R) = D,(R) and 1 : D,(R) X D,(R) — D,(R) be defined, respectively, by P(A) = P(( ajj )) = ( a;; )

M(A) = M(( aij )) = ( ﬂ/-],- )and T](A,B) = T](( aij ),( b,‘]‘ )) = ( Cij )for allA = ( ajj ),B = ( bij ) S Dn(]R),
where for eachi,j €{1,2,...,n},

a. = a%., Z - ]:’
ij 0, 1#],

v ) Qillii, i=j,
0, i# ],

and
o ﬁiekz‘(ﬂi#bn)(a?; — b?zl)’ i=j
7700, i#],
ki € R and aj, ; > 0 are arbitrary but fixed, and g; are arbitrary but fixed odd natural numbers. Then, for
any A = ( aij ),B = ( bij ) € D,(R), we get
(M(A) = M(B), J2(n(A, B))) = (M(A) — M(B), n(A, B))
(5357 ) )
(7)) @

qi
_ 2 kiai+bi gi=lyp1-1
= ) aifilai — b)? 5@t N gy,
i=1 1=1
where foreachi,j€{1,2,...,n},

RoAr.. — h.\oki(aii+bii qi _ 19 s
a;j = aifi(ai; — bi)e @0 (alt — b)), L=
0, i# ]
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9

Since for each i € {1,2,...,n}, g; is an odd natural number, it can be easily observed that ), a?i’ lbff > 0, for
=1

eachi € {1,2,...,n}. Consequently, from (1) it follows that M is an n-accretive mapping.

Letforeachi € ({1,2,...,n}, the mapping f; : R — R be defined by f;(x) = x4+ a;x, for all x € R. Then, for
any A = ( a;j ) € Dy(R), we obtain (P + M)(A) = (P + M)(( a;; )) = ( @; ), where for eachi,j € ({1,2,...,n},

7= { gi+aiaii/ {; o { flaw, i=],
, i# ], 0, i# ]

— 2 2

In virtue of the fact that for each i € {1,2,...,n}, fi(x) = X2 +apx = (x + %)2 — % > —%", it follows that for
— 2

eachi e {1,2,...,n}, fi(R) = —%", +00) # R. This fact implies that (P + M)(D,(R)) # D,(R), thatis, P + M

is not surjective, and so M is not P-n-accretive. Now, let A > 0 be an arbitrary constant and let for each

i €{1,2,...,n}, the mapping 7; : R — R be defined by 7i(x) = (1 + Aa;)x, for all x € R. Then, for any

A =( aj )€ Dy(R), it yields (I + AM)(A) = (I+ AM)(( a;j )) = ( a}; ), where for eachii, j € {1,2,...,n},
o= (1 + Aay)aii, i=j _ gi(aii), i=j,
ii=) 0, i+ 0, i#]

where [ is the identity mapping on D,(R). Since gi(R) = R for each i € {1,2,...,n}, it follows that
(I + AM)(D,(R)) = D,(R), that is, I + AM is surjective. Taking into account the arbitrariness in the choice of
A > 0, we conclude that M is an m-accretive mapping.

Example 2.8. Let the space D,(IR) be the same as in Example 2.6 and assume that the mappings P1, P, M :
D,(R) = D,(R) and 1 : D,(R) X D, (R) — D,(IR) are defined, respectively, by P1(A) = Pl(( ajj )) = ( ﬂ,'j ),
Py(A) = Py(( a ) = (a7 ), M(A) = M(( a5 )) = ( 4 ), and n(A,B) = (( a; ),( by )) = ( cij ), forall
A= ( ajj ),B = ( bij ) € D,(R), where for each i,j € {1,2,...,n},

20%-1 . .

a2
1o, i#],

" o_ 3aii +2+ |uii - 2|/ i= j/
7710, i# ]

a

/n:{ Q%/ i:j/

ij 0, i#],
and

o= y0oibi(a; — by), Q=]
gl 0, i# ]

where y,0,0 > 0 and ¢ € R are arbitrary constants, and k is an arbitrary but fixed odd natural number.
In view of the fact that (D,(IR), ||.||) is a finite dimensional normed space, we infer that it is a 2-uniformly

smooth Banach space. Then, for any A = ( a; ),B = ( by ) € D,(R), it yields
(M(A) — M(B), ](n(A, B))) = (M(A) — M(B), n(A, B))
= (=) (e )
= VQZ:(% — Vbi) 07 (ai; — by).

Foranyie€{l1,2,...,n},
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(i) if @i = by = 0, then ({fa;; — Vbii) (@i — bi) = 0;

(ii) if a; # 0 and by = 0, then ({fa; — Vbi) (@i — big) = az{fai = Jak;
(iii) if a; = 0 and by # 0, then ({/a; — Vbii)(ai; — bii) = bV = {[b5H;
(iv) if a, b; # 0, then {fa; — Vb;; = ““—”

LT
k
Since k is an odd natural number, it follows that { /a’f.“, s /b’?.“ > 0and Z ‘ aﬁ.‘tbfi‘l > 0. These facts guarantee
n
that ({/a; — Vbii)(ai; — bi;) > 0 and Z({/a_,, Vi) (aii—bi) = ¥ - b g Taking into account that y, ¢ > 0,
ST

il
=

in the light of the above-mentioned discussions, we deduce that for all A = ( ajj ), B = ( bij ) € D,(R),

0aiibii _ b”
(M(A) = M(B), J2(n(A, B))>—y@Z(</cTu Vbi) 07 (ay —bw)—ﬂ’z_e by

i=
1 ll

~

i.e.,, M is an accretive mapping. Assume that the function f : R — R is defined by f(x) := 2"2 =L forallx € R.
Then, for any A = ( ajj ) € D,(R), we get

(Pr+M)A) = (Pr+M)(ay )= (a;+a) )=(a; ),

where for eachi,j €{1,2,...,n},

2221 . .

"a"” — ;2:_1 7 1= ]/ — f(aii)/ Z = ]‘/
1] ii . . O i ;&

0, i#] ’ J:

In virtue of the fact that f(R) = [-1,2), we conclude that (P; + M)(D,(R)) # D,(R), which means that the
mapping P; + M is not surjective, and so M is not a P;-n-accretive mapping. Now, let the real constant A be
chosen arbitrarily but fixed and suppose that the function g : R — Ris defined by g(x) := 3x+2+|x—2|+ApVx,

for all x € R. Then, for any A = ( ajj ) € D,(IR), we obtain
(P2 + AM)(A) = (P2 + AM)( @ )) = ( af +Aaf’ )= (@5 ),
where for eachi,j €{1,2,...,n},
= _ { 3aii + 2 + |ai; — 2| + Ao/ai, 1:= ]} _ { g(ai), 1:= ]}
if 0, i# ], 0, L# ]
Relying on the fact that g(R) = RR, it follows that (P, + AM)(D,(R)) = D,(R), that is, P, + AM is a surjective

mapping. Since the positive real constant A was arbitrary, we deduce that M is a P»-n-accretive mapping.

In accordance with Example 2.6, for given mappings P : X — X and  : X X X — X, a P-n-accretive
mapping need not be m-n-accretive. The following proposition states conditions under which for given
mappings P: X — Xand n: X X X — X, every P-n-accretive mapping is m-n-accretive.

Proposition 2.9. [27, Theorem 3.1] Let X be a real g-uniformly smooth Banach space, 11 : X X X — X be a vector-
valued mapping, P : X — X be a strictly n-accretive mapping, and M : X — 2X be a P-n-accretive mapping, and let
x, u € X be two given points. If (u — v, J,(1n(x, y))) = 0 holds, for all (y,v) € Graph(M), then u € M(x), that is, M is
an m-n-accretive mapping.
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Regarding to Example 2.7, for given mappings P : X — X and n : X X X — X, an m-n-accretive
mapping may not be P-nj-accretive. In the next result, the sufficient conditions for guaranteeing that for
given mappings P : X — X and n: X X X — X, an m-n-accretive mapping to be P-n-accretive are provided.
Before proceeding to it, we need to recall the following concepts.

Definition 2.10. Let X be a real g-uniformly smooth Banach space. A single-valued mapping P : X — X is said to
be coercive if

(PQ), J;(¥)
_ =4

llxll—+co (Il

Definition 2.11. Let X be a real g-uniformly smooth Banach space and P : X — X be a single-valued mapping.
P is said to be bounded, if P(A) is a bounded subset of X, for every bounded subset A of X. We say that P is a
hemi-continuous mapping if for any x,y,z € X, the function t — (P(x + ty), J;(2)) is continuous at 0*.

Proposition 2.12. Let X be a real g-uniformly smooth Banach space, 1 : X X X — X be a vector-valued mapping,
and P : X — X be a bounded, coercive, hemi-continuous and n-accretive mapping. If M : X — 2% is an m-n-accretive
mapping, then M is P-n-accretive.

Proof. Taking into consideration the fact that P is bounded, coercive, hemi-continuous and n-accretive,
invoking Theorem 3.1 of Guo [21, P.401], we conclude that P + AM is surjective for every A > 0, ie,
(P + AM)(X) = X holds for every A > 0. Accordingly, M is a P-n-accretive mapping. This completes the
proof. O

Lemma 2.13. [33, Theorem 3.1(b)] Let X be a real g-uniformly smooth Banach space, 1 : X X X — X be a vector-
valued mapping, P : X — X be a strictly n-accretive mapping, and M : X — 2X be a P-n-accretive mapping. Then,
the mapping (P + AM)™\ is single-valued for every real constant A > 0.

Based on Lemma 2.13, one can define the P-nj-resolvent operator R;I"A associated with a P-n-accretive
mapping M and an arbitrary real constant A > 0 as follows.

Definition 2.14. [27, 33] Let X be a real q-uniformly smooth Banach space, n : X X X — X be a vector-valued
mapping, P : X — X be a strictly n-accretive mapping, M : X — 2% be a P-n-accretive mapping, and A > 0 be an

arbitrary real constant. The resolvent operator R;}IA : X — X associated with P, 1, M and A is defined by
RV (u) = (P+ AM)'(u), VueX.

Definition 2.15. A vector-valued mapping n : X X X — X is said to be t-Lipschitz continuous if there exists a
constant T > 0 such that ||n(x, y)|l < zllx — yll, forall u,v € X.

Under some suitable conditions imposed on the mappings and parameter, the authors [33] proved
the Lipschitz continuity of the resolvent operator Rf/’I”A associated with a P-n-accretive mapping M and an
arbitrary real constant A > 0 and compute an estimate of its Lipschitz constant as follows.

Lemma 2.16. [33, Lemma 2.4] Let X be a real g-uniformly smooth Banach space, 1 : X x X — X be t-Lipschitz
continuous, P : X — X be an r-strongly n-accretive mapping, M : X — 2% be a P-n-accretive mapping, and A > 0
be an arbitrary real constant. Then, the P-n-proximal mapping RZIUA : X — X is Lipschitz continuous with constant
-1 .
- ie,
q-1

P, P, T
IRy, @) = Ry, @) < Il =oll, Va0 € X.
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3. Formulation of the Problem, Iterative Algorithms and Convergence Results

Let for each i € {1, 2}, X; be a real g;-uniformly smooth Banach space with dual space X} and norm ||.[|;,
and (., .); be the dual pair between X; and X:. Assume that fori = 1,2, f;,p; : X; = X;, S; : X1 X Xa — X; and
Qi X;x X; — X; (j € {1,2}\{i}) are the mappings. Further, let fori = 1,2, F; : X; — CB(X;), M; : X; — 2%
and T; : X; — CB(X;) (j € {1,2}\{i}) be the multi-valued mappings. We consider the following system
of generalized multi-valued nonlinear variational inclusions (SGMNVI): find (x,y) € X1 X Xo, u € Fi(x),
v € Fy(y), w € T1(y) and t € T(x) such that

0 € S1(p1(x),v) + Qu(w, t) + Mi1(f1(x)), ®
0 € Sa(u, p2(y)) + Qa(t, w) + Ma(fo(v))-

Ifqi=qf0ri:1/2151 :S/S2=T/Ml :M/MZ :er:l =E1F2 :FIQl :QZ EOlfl :f/fZ =g, pP=p
and p, = d, then the SGMNVI (2) collapses to the following generalized multi-valued nonlinear variational
inclusions system: find (x, y) € X; X X5, u € E(x), v € F(y) such that

{ 0 € S(p(x),v) + M(f(x)), 3)
0 € T(u,d(y)) + N(g(v))-

A special case of the system (3) where the underlying spaces are Hilbert spaces and the multi-valued
mappings M and N are A-monotone operators is considered in [28]. It should be remarked that for suitable
and appropriate choices of the mappings S;, Q;, Fi, Ti, M, f;, pi and the spaces X; (i = 1,2), the SGMNVI
(2) reduces to various classes of variational inclusions and variational inequalities, see for example, [17-
19, 23, 28, 32, 33, 36, 37, 39] and the references therein.

In order to construct an iterative algorithm for approximating the solution of the SGMNVI (2), we
require the lemma mentioned below, in which the equivalence between the SGMNVI (2) and a fixed point
problem is stated.

Lemma 3.1. Let X;, F;, S;, Ti, Qi, M, fi,pi (i = 1,2) be the same as in the SGMNVI (2). Suppose further that for
eachi e (1,2}, n; : X; X X; — X is a vector-valued mapping, P; : X; — X; is a strictly n;-accretive mapping, and M,;
is a Pi-n;-accretive mapping. Then (x,y) € X1 X Xo, (u,v) € F1(x) X Fo(y) and (w, t) € T1(y) X To(x) are the solution
of the SGMNVI (2), if and only if

AE) = R PL((0) = AS1(p1(2),0) + Qu(aw, )],
£y) = Ry IP2AH(1) = p(Sa(, pa(y) + Qalt, w))],

where A, p > 0 are two constants.

(4)

Proof. The conclusions follow directly from Definition 2.14 and some simple arguments. []
As an immediate consequence of the above result, we obtain the following conclusion.

Lemma 3.2. Suppose that X; (i = 1,2), S,T,E,F,M,N, f, g,p,d are the same as in the system (3). Further, let for
each i € {1,2}, n; : Xi — X; be a vector-valued mapping, P; : X; — X; be a strictly n;-accretive mapping, M be a
Py-ni-accretive mapping and N be a Py-na-accretive mapping. Then (x, y) € X3 X Xp and (u,v) € F(x) X F(y) are the
solution of the system (3) if and only if
£) = Ry MPL(F() = AS(p(x), )],
P,
9(y) = Ry [P2(9(v)) — pT(, d(y))],

where A, p > 0 are two constants.

Lemma 3.3. [31] Let (X, d) be a complete metric space and T : X — CB(X) be a multi-valued mapping. Then, for
any € > 0 and for any given x,y € X, u € T(x), there exists v € T(y) such that

d(u,v) < (1 + &)D(T(x), T(y)),
where D(., .) is the Hausdorff metric on CB(X).



J. Balooee, ].-C. Yao / Filomat 36:19 (2022), 6591-6620 6602

The fixed point formulation (4) and Nadler’s technique [31] enable us to construct the following iterative
algorithm for approximating the solution of the SGMNVI (2).

Algorithm 3.4. Let X;, F;, Si, T, Q;, fi, pi (i = 1,2) be the same as in the SGMNVI (2). Suppose that foreachi € {1,2},
ni + Xi X Xij = Xj is a vector-valued mapping, P; : X; — X; is a strictly ni-accretive mapping and M; : X; — 2% jsq
Pj-nj-accretive mapping. For any given (xo, yo) € X1 X Xp, (o, vo) € F1(x0) X F2(yo) and (wo, to) € T1(yo) X Ta(xo),

define the iterative sequences {(xn, Yn)} o {(Wn, )}y © U F1(xn) X Fa(yn) and {(wy, ta)} ) S U T1(yn) X Ta(xn)
n=0 n=0
in Xy X Xy in the following way:

Xuer = (1= a0y + a1 fon — £ () + RO [P (fi(x2))
-AS: (pl(xn)r 0y) + Q1(wy, t))l} + a1, + 1y,
Yunr = (1= )y + @y = folyu) + Ryy 2 [Pa(fo(yn)
—P(Sz(um pZ(yn)) + Qa(ty, wn))]} + azly + ki, )]
€ Fy(0); ltter =l < (1+ (1 + 1) )D1(F1(xue1), F1(x)),
On € Fo(x); 10041 = Oulla < (1 + (1 + 1) )Do(Fo(Yns1), Fa (),
Wy € T1(Yn); w1 = walla < (1+ (1 +1))Da(T1 (Y1), Tr(ya)),
tn € To(xn); lItns1 — tall < 1 + (1 + 1) )D1(Ta(xns1), T2(xn)),

where n = 0,1,2,...; A,p > 0 are constants, ay, ar € (0,1] are two parameters such that oy + oy € (0,1] and
{(en, L)}y and {(ry, ki)Y, are two sequences in X1 X X3 to take into account a possible inexact computation of the
resolvent operator point satisfying the following conditions:

lim [le,ll1 = Lim |lrylly = Lim [|,[l2 = Lim [[ky|l> = 0,
n—o0 n—oo n—o0 n—0o0

(o] (o]

Y llenst —enllt <00, X |Irnsr — rullt < o0, ©6)
n=0 n=0

(o) (o)

Z ||ln+1 - ln||2 < 00, Z ka1 = kull2 < oo.

n=0 n=0

Ifgi=qfori=1,25=555=T, Mi=M,M =N,Fi=E,FL=FQi=Q:=0,fi=f Lh=gp=p
p2 =d,and e, =1, =1, =k, =0, then Algorithm 3.4 collapses to the following algorithm.

Algorithm 3.5. Suppose that X; (i = 1,2),S,T,E,F, f, g,p, d are the same as in the system (3). Let for each i € {1,2},
i+ X1 X X — X; be a vector-valued mapping, P; : X; — X; be a strictly ni-accretive mapping, M : X; — 2%
be a Py-ny-accretive mapping and N : Xy — 2%2 be a Py-p-accretive mapping. For any given (xo,yo) € X1 X Xa,
ug € E(xo) and vg € F(yo), define the iterative sequences {(xy, yn)},, in X1 X Xa, {un};, in Xy and {v,};7 , in Xp in
the following way:

Xue1 = (1= @), + o, — £() + Ry T [P1(F()) = AS(p(xa), o)),

Yns1 = (1- az)]/n + a2{]/n - g(]/n) + R;Z:]z [PZ(g(]/n)) - PT(unrd(yn))]}/
U € EQ); llttns1 = tnllt < (1 + (1 + 1) )D1(E(xns1), E(xn)),
Oy € F(Yu); 1041 = Oulla < (1 + (1 + 1) ™)Do(F(Yns1), F(yn)),

where n = 0,1,2,...; A, p > 0 are two constants, and ay,ay € (0,1] are two parameters the same as in Algorithm
3.4.

We are now in a position to give the main result of this section concerning the strong convergence of
the sequences generated by our suggested iterative algorithm to a solution of the SGMNVI (2). For this
purpose, we need to recall the following definitions.

Definition 3.6. A multi-valued mapping T : X — CB(X) is said to be D-Lipschitz continuous with constant 6, if
there exists a constant 0 > 0 such that

D(T(), T(y) < Sl —yll, Vx,y € X,
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Definition 3.7. Let X be a real g-uniformly smooth Banach space. A mapping f : X — X is said to be

(i) (y, p)-relaxed cocoercive if there exist two constants y, u > 0 such that

fQ) = fW), Jyx =) =2 =Yl f @) = FIT + pllx = yll?,  Vx,y e X;
(ii) O-strongly accretive if there exists a constant 6 > 0 such that
FO) = fW), Jgx =y z ol —yll,  Vx,y € X.
Definition 3.8. Let X be a real q-uniformly smooth Banach space. Further, letp : X — X, S : X x X — X and
1 : X X X — X be the mappings. S is said to be
(i) (&, m)-relaxed n-cocoercive with respect to p in the first arqument if there exist two constants &, > 0 such that
forallx,y,u € X,
(S(p(x), u) = S(p(y), u), J;(n(x, y)) = —ElIS(p(x), u) = S(p(y), W7 + wllx — i’
(ii) (¢, p)-relaxed n-cocoercive with respect to p in the second argument if there exist two constants ¢, 0 > 0 such
that for all x, y,u € X,
(S(u, p(x)) = S(u, p(W)), Jo(n(x, Y))) 2 =cliS(w, p(x)) = S, p)II* + allx = yll*;

(iii) k-strongly n-accretive with respect to p in the first argument if there exists a constant k > 0 such that

(S(pC), u) = S(p(y), ), JonCe, y))) 2 Kllx = wll?, - Vx,y,u € X;
(iv) y-strongly n-accretive with respect to p in the second arqument if there exists a constant y > 0 such that

(S, p(x)) = S(u, p(), Jo(nCx, ) 2 yllx = yll",  Vx,y,ueX;
(v) S-Lipschitz continuous with respect to p in the first arqument if there exists a constant 8 > 0 such that

IS(p(x), u) = S(p(y), Wl < Sllx = yll, Vx,y,ueX;

(vi) O-Lipschitz continuous with respect to p in the second argument if there exists a constant 6 > 0 such that
5@, p(x)) = S, pWIl < Ollx = yll,  Yx,y,u € X.

Definition 3.9. Let X be a real g-uniformly smooth Banach space. A mapping Q : X X X — X is said to be
(0, w)-mixed Lipschitz continuous in the first and second arquments if there exist two constants 0, i > 0 such that

Q(, y) = Q' , Yl < Ollx =Xl + plly = y'll, Vx,x',y,y €X

Theorem 3.10. Let for each i € {1,2}, X; be a g;-uniformly smooth Banach space with q; > 1, n; : X; X X; — X; be
a t;-Lipschitz continuous mapping, P; : Xi — X; be a 0;-strongly n;-accretive and g;-Lipschitz continuous mapping,
and M; : X; — 2% be a Pj-nj-accretive mapping. Suppose that for each i € {1,2}, fi : Xi = X; is a (&;, 6;)-relaxed
cocoercive and Ag-Lipschitz continuous mapping, and Qi : X; X X; — X; for j € {1,2\\{i} is (Ag,, Ap, )-mixed
Lipschitz continuous in the first and second arguments. Let S1 : X1 X X, — X be (ys,, 0s, )-relaxed n1-cocoercive
and @1-Lipschitz continuous with respect to py in the first argument and @,-Lipschitz continuous with respect to py
in the second argument, and S : X1 X Xo — Xj be (ys,, 0s,)-relaxed 1np-cocoercive and m,-Lipschitz continuous with
respect to py in the second argument and m1-Lipschitz continuous with respect to p, in the first arqument. Let for
each i € {1,2}, the mapping F; : X; — CB(X;) be D;-Lipschitz continuous with constant Ap, and for each i € {1,2}
and j € {1,2}\{i}, Ti : X; — CB(X|) be Dj-Lipschitz continuous with constant ADT;" Ifth'ere exist two constants
A, p > 0 such that

q-1
aq Tl

1- a1+ aq ‘”\/1 - q161 + (E]lél + C‘ﬁ)/\z + o (‘Lll + AAQT /\DTZ)

-1
az’[g p(ﬂ1 ADFl +AQZ /\DT2 )

0>

<1,

q-1
27T,

1- ar + ‘K/l - q262 + (qz(fz + qu)/\;}; + Z 0, (,UZ + p/\QZ/\DTl)
25} ‘[;]7] /\((Dz/\DFz +AQ1 ADTI )
01

<1,
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where

= Yol AL+ pAys, @l —qidds, + pA@id] AL AT + e Ana],

= RIOPAT +42p75,TT = @apds, + Qaprady AT+ qapriaty | +cppnl,

and for the case where q; (i = 1,2) are even natural numbers, in addition to (7), the following conditions hold:
gio; <1+ (gi&; + Cq,)/\jﬁ,
q1Ads, < Ql /\'71 + ql)\ys@ + ql/\cal /\;’f + ql/\caﬂql_l +Cy, )\‘ilcaql
G2pds, < qumz + 2Py s, T + G2pT2 0l A?ﬁ + Gaprat T + ¢ p i,

where c;, (i = 1,2) are two constants guaranteed by Lemma 2.1, then, the iterative sequences {(xn, Yn)}
{(un, o)} and {(wy, ty)},, generated by Algorithm 3.4 converge strongly to (x,y), (u,v) and (w,t), respectively,
and (x,y,u,v,w, t) is a solution of the SGMNVI (2).

Proof. By using (5), Lemma 2.16 and the assumptions, it yields

Pner = ally = 1I(L = a0)n + a1 (30 = ) + Ryy [Py (fi (x))
= AS1(pr (), ) + Qu(wn, t))]) + a1 + 1o
— (1= an)xus = aa(nc — finnn) + Ry [P (A1)
— AS1(p1 (n-1), 1) + Qi (W, b 1)]) = arens = racalls

< (1= an)lben = xuealh + (b = 21 = (AG) = fiCra1)lh

+ IRy M P (fi () = AS1(p1 (x0), ) + Qi (0, £))]
= Ry M P (fi (x01)) = AS1(p1 (X-1), 041)

- Qi b)) + cllen = en-ally + llrn = rucalh
<@- a1>||xn = Xyl + aall = X1 = (i) = i)l ®)

l

||P1(f1(xn> A(S1(pr(x), 0n) + Qi (a0, 1))

- P1< fl 2u1)) + A(S1(p1 (1), 1) + Q1 (@nc1, 1))l
+ aillen — en1llt + 11 — il
< (1 - 0(1)”xn - xn—l“l + alllxn —Xp-1— (fl(xn) - fl(xn—l))Hl
111

(||P1<f1<xn)) = P1(fi(xa-1)) = A(S1(pr(xa), 00)

- Sl(Pl(xn—l)/ Un))lll + AIS1(p1(xn-1), 7n) — S1(p1(xn=1), Vu-1)llt
+ AMQ1(wy, tn) — Q1(wn-1, tn—l)”l) + arllen — en-1lli + llrn — ru-1llr.

Since f; is (&1, 01)-relaxed cocoercive and A -Lipschitz continuous, invoking Lemma 2.1, there exists a
constant c;, > 0 such that for each n € IN,

Xy = xp—1 — (fl(xn) - fl(xn—l))”?l
<|lx, - Xn—lIIT - q1<f1(xn) - fl(xn—l)/ ]ql(xn = Xp—1))1 + qullfl(xn) - fl(xn—l)HLlh
< 1t = Tyl — a1l o) — Fiad)IT + B2l — 2aall?) + i ) — fiCono)I

< (1= @61+ @& + AT Jbw = 01l
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which implies that

Iy — x0-1 — (f1(xn) — fi(xn=1))lh < ”{/1 - 4101 + (1&1 + qu)/\ﬂnxn — Xp-1ll1. )

Owing to the fact that S; is (ys,, 0s,)-relaxed 1;-cocoercive and @1-Lipschitz continuous with respect to p;
in the first argument, 1; is 71-Lipschitz continuous, P; is gi-Lipschitz continuous and f; is Ay -Lipschitz
continuous, utilizing Lemma 2.1, we get

1P (fi () = Pa(fi (1)) = A(S1(p1 (), 00) = S1(pr (euea), o) I}
<Py (fi () = Pr(AGea)IIE = 914481 (p1 (xn), 0n) = Sa(pr(xu-1), 00),
Jor (M (X, Xu-1))1 — 1 ALS1(p1(x0), Un) = S1(p1(xn-1), Un),
Jor (Pr(A @) = Pr(AG-1))) = Jgu (1 Gon, 1)1
+ ¢ ATIIS1(p1 (), ©) = S1(p2(n1), V)]
< 07 A% en = X ll] = A (= s, 1S (pr(en), ) = S1(p1 (1), o)
+ 05, [y — xn—l”?) + 1 ACS1(p1(xn), 0n) = S1(P1(Xu-1), On), g (N1 (X, Xn-1))
= Jor (P (i) = Pr(fitua)1 + g AT @' n = 21l
< oy Al = xuall]' + quAys, @ v = xu-all]’ = q1A8s, Il — xu-ll]
+ uAlIS1(p1 (), 2n) = S1(p1 (1), )l (15, (11 Gen, 1)
+ Wgu (PrCAGn) = Pr(Aaa)))lh) + e AT @ ey = x5 ]
< (6I'A] + @Ays @] = qAds, + ¢ AT D iy = xu I
+ qiA@1 1, = Xl ([l e, 2D+ IPLAGE)) = Pr(fi I )
= (6I'A7 + @ Ays, 0] — qAds, + ¢ AT @7 )y = X ]
+ qA@1l%n = Bl (] e = I+ 6] TAY e =zl
= (eI A7 + mAys,@f' —qiAds, + mA@ie] AL + iA@' + ey AT ik — xaal]
from which we deduce that for each n € IN,
IP1(f1(xn)) = P1(fi(xn-1)) — /\n(sl(Pl(xn),Un) = S1(p1(xn-1), Un))”l
< wllxy = xn-alh,

(10)

where

U = "{/Q’il/\lg + ql/\)/sl(Dql - 1/]1/\651 + qlA®107171A7(171 + 6]1/\6’01’[?171 + ¢y /\’71(0?1.

In virtue of the facts that S; is @,-Lipschitz continuous with respect to p; in the second argument and F; is
D,-Lipschitz continuous with constant /\DF2 , by using (5), it follows that
”Sl(pl(xn—l)/ Uy) — Sl(pl(xnfl)/ vn—l)”l < @|lvy = vp-tll2
< (1 + 17 )Dy(Fa(Ya), Fa(yn-1)) (11)
< @2Ap,, (1+ 1Y = Yu-rll:

Taking into account that Q; is (Ag,, Af, )-mixed Lipschitz continuous in the first and second arguments,
by (5) and the facts that the mapping T; is Dj-Lipschitz continuous with constant Ap, for i € {1,2} and
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j € {1,2}\{i}, we obtain

1Q1(wy, tn) = Q1(wy-1, ti-1)llh < Agllwy — wyp_1ll2 + Ag, Ity — ty-allr
< Ao, (1 +n Y)Da(T1(yn), T1(Yn-1))
+ Ag, (1 + n")Dy(Ta(x), T2(¥n-1))
< A Apy, (1 + 17Dy = Yuallz

+Ag Ay, (1+ 1Y), — 21l

Combining (8)—(12), we derive that for each n € N,

11 = xallt £ (1 = an)llxn — xp1lll + a1 '7{/1 - q101 + (1&1 + qu)/\zllxn = Xn-1llt

qm-1
al’[l

61
+ Adg, Ay, (1+ 1 yn = Yuaalla + Ao, Apy, (1 + 77w = X1k )

+ (,u1||Xn — Xp-1lh + A@2Ap,, (1 + Yy = Ynall2

+ anlle, — en-ally + Iy — ru-alls

=1 = a)llxn = xp-1llt + a1 ”{/1 —q161 + (1&1 + qu)/\lﬁ

-1
1

1
_1 _
aszT /\(CDZ/\DF2 + AQl ADTl )(]- +n 1)
01
+ azllen — en1lly + 7 — a1l

= Ai(Mlxn = xp—1ll + Tiyn = Yn-1ll + aallen, — en-all + lI7n = ra-alli,

a1t

+ (,ul +AAg, Ap,, (1 + n_l))llxn = xn-1ll1

lyn = Yn-1ll2

where for eachn € IN,

-1

a7y -1
91 (#1 + A/\Ql /\DT2 (1 +n ))/

Al(n) =l-a1+m "1\/1 - t]161 + (qlél + C’h)quﬁ] +

! " M@2Apy, + Mg Apy, (1 + 1Y)
0, '

Ii(n) =
In a similar manner, employing (5) and the assumptions, one can obtain
1Yns1 = Yull £ Ao(@)llxy — Xp-1llt + Do)y — Y1l
+ aollly = liallz + [lkn — knallz,
where for each n € IN,
T p(muAp,, + Ag,Apy, )1 + 1Y)

No(n) = 0, ,

g2~1
T
02
Q-
2

) -1
o = q\/@gm;ﬁ +q2pY5,70y — 02p0s, + 2pT205 A

, a2 -
L) =1-m+a "i/l — 0202 + (G282 + Cq2)7‘;2 + (42 + pAg,Ap,, (1 + 1Y),

1 -1
+ quleng +¢g, p72 ngz.
Let us now define a norm |[.||. on X; X X; by

G, Ol = Ml + loll,  Y(u,0) € X1 X Xo.

6606

(12)

(13)

(14)
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It is easy to see that (X; X X», ||.||l.) is @ Banach space. Then by using (13) and (14), and picking a = a1 + ay,
we obtain

N1, Yne1) = G, Yudlle = xne1 — Xanllt + 1Yus1 — Yall2
< (A1) + Ao(M)llxy = -1l + T1(1) + T2y — Ya-1ll2
+ (a1 + @2)(llen — en-llt + Ly = Li-all2)
+ Ity = ruall + llkn = Ku-1ll2
< S(m)|I(xy, yn) = (xXp-1, ynfl)”* + all(en, ) = (en-1, Li-1)ll-
FCrn, kn) = (ru-1, kn-1)lls,

(15)

where for each n € IN, 3(n) = max{A1(n) + Ax(n),I'1(n) + I'2(n)}. In the light of the facts that A;(n) — A; and
Ii(n) - I;, as n — oo, where

qi-1
a1t
AM=1—-a;+m q{/l - q101 + (q1c§1 + qu)/\z; + 911 ([.11 + A/\Ql/\DTZ ),
a1y p(midp,, +Ag,Ap,) a11] " M@2Ap,, +AgApy,)
2 = s 1—‘1 = ’
62 61
921
— q q2 asz
Io=1-ay+a 21 =202 + (&2 + qu)Afz + 0, (b2 + pAQ,ADy,),

we deduce that 3(n) — 9, as n — oo, where 9 = max{A; + Ay, I'1 + I'2}. Clearly, with the help of (7) we infer
that 9 € (0,1), and so there exists 9 € (0,1) (take § = % € (9,1)) and ny € N such that 9(n) < 3, for all
n = np. Then, for all n > ny, by (15), it follows that

G, Yis1) = Qs Yo)lle < 1, Yin) = @, Yol + ali(en, 1) = (en-1, Lt)lle

+ 1(F, ki) = (Fn—1, kn=1)lls

< I8N (n-1, Y1) = Fnz, Yu2)lle + all(en=1, 1) — (en—2, Lu=2)lle
F -1, kn-1) = (ru—2, kn-2)ll.]
+all(en, In) = (en—1, Lim)lle + 1, ki) = (-1, kn-1)Il+

= O (xn-1, Yu-1) = @n=2, Yu-2)lle + a@llen=1, lu=1) = (€n=2, Ln=2)lls
+11ens 1) = (en-t, In-0ll) + SMI(ru=1, kn-1) = (Fa2, kn2)ll:
FCrn, k) = (ru-1, kn-1)ll- (16)

IA

S é”_n0||(x1’lg+1/ yno+1) - (xl’lor yl’lo)”*
n—mnop
a0 Y SNy, boegny) = ey bl
j=1
n—np

+ Y SNy ku 1) = G Kl
j=1
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Making use of (16), for any m > n > ny, we obtain

m—1
10 Y) = Cen, Ylle < Y NG, Yisr) = Coiy )l

i=n
m—1

< Y TN, Yags1) = Congs Yl

i=n

m—1i—ng (17)
+a )Y ey, bin) — (el
i=n j=1
m—1 i—ny
+ Z SNz, Kiegj-) = (rij Kzl
i=n j=1

Since d < 1, (6) and (17) guarantee that [[(xy, Ym) — (Xu, Yu)ll. = 0, as n — oo, and so {(x,, yu)}., is a
Cauchy sequence in X; X X,. In view of the completeness of X; X Xj, there exists (x,y) € X; X X, such
that (x,, y») = (x,y), as n — oco. By (5) and in virtue of the facts that for each i € {1,2}, the mapping F; is
D;-Lipschitz continuous with constant Ap, , and the mapping T; is D;-Lipschitz continuous with constant

/\DTi for j € {1,2}\{i}, we get
i1 = thall < (14 (1 + 1) ")D1(F1(xa1), Fi () < (1+ (14 1)) Apy ¥ns1 = xalls,
0541 = Vallz < (1 4+ (1 + 1) )D2(F2(Yns1), Fa(¥a)) < (1 + (1 + 1) )by, Yns1 = Yall2,
[wns1 = wallz < 1+ (1 + 1) )Da(T1(Yns1), Tr(Wa)) < (1 + (1 +1)")Apy [Yns1 = Yullz,
lItns1 = tulli < (1 + (1 + 1) YD1 (To (1), Ta(xn)) < (1+ (A +1)")Apy, [1xns1 = xullr-
The above relations imply that the sequences {u,}, {t.};, and {v,}" , {w,}"; are also Cauchy in X; and
Xy, respectively. Thus, there are u,t € X; and v,w € X, such that u, — u, t, = t,v, - vand w, — w, as
n — oo. We now show that u € F;(x). Since for each nn > 0, u,, € F1(x,), applying (5) and considering the fact
that F is D;-Lipschitz continuous with constant /\DF1 , we have
dy(u, Fy(x)) = inf{llu — 2] : 2 € Fy(x))
< lu — wyll + di (un, F1(x))
< lu = unll + D1(F1(xy), F1(x))
<|lu = unll + Apy, llxn — xlI,
where d; is the metric induced by the norm ||.|l; in X;. The right-hand side of the above inequality tends

to zero, as n — oo. Since Fi(x) is closed, we deduce that u € Fi(x). In a similar fashion to the preceding
analysis, one can show that v € Fy(y), w € Ti(y) and t € Th(x). Owing to the facts that the mappings

R]I\)/}l’”j,Ri/};r’Al,Pi, Si,Q;i, fi and p; (i = 1,2) are continuous, it follows from (5) and (8) that

filx) = Rﬁii’,{[l)ﬂfl(x)) — AGS1(p1(x), 0) + Qu(w, 1))],
fy) = Rﬁzn; [P2(f2(y) = p(S2(u, p2(y)) + Qa(t, w))].

Now, Lemma 3.1 guarantees that (x,y,u,v,t,w) is a solution of the SGMNVI (2). This completes the
proof. [

We obtain the following corollary as a direct consequence of the above theorem immediately.

Corollary 3.11. Assume that, for eachi € {1,2}, X; is a q;-uniformly smooth Banach space with q; > 1,1; : X; X X; —
X is a t;-Lipschitz continuous mapping and P; : X; — X; is a 0;-strongly n;-accretive and g;-Lipschitz continuous
mapping. Let M : X1 — 2%X1 be a Py-n1-accretive mapping and N : Xo — 2%2 be a Py-1p-accretive mapping. Let
f X1 — Xj bea 61-strongly accretive and A g-Lipschitz continuous mapping, g : Xo — X be a 6,-strongly accretive
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and Ag-Lipschitz continuous mapping. Suppose that the mapping S : X1 X X — Xj is 6s-strongly n1-accretive and
As,-Lipschitz continuous with respect to p in the first argument and As,-Lipschitz continuous with respect to p in the
second argument, and the mapping T : Xo X Xp — Xj is Or-strongly no-accretive and At,-Lipschitz continuous with
respect to d in the second argument and Ar,-Lipschitz continuous with respect to d in the first arqument. Assume that
the mapping E : X1 — CB(X1) is D1-Lipschitz continuous with constant Ap, and the mapping F : X, — CB(X») is
D,-Lipschitz continuous with constant Ap,. If there exist two constants A, p > 0 such that

q-1 q-1
T anT Ar, A
1—a1+a1”1—q51+c)tq+ L1 9/+ZZPT1DE<1,
q-1 q-1
_ a1 _ q T, ’” a1t Ads,Apg
1 a2+a2,/1 q62+chg+ o 0" + o <1,

where

0 = 3N — gAds +qAds, gl AT + A, 7 + AN

” -1 ,4-1 -1
0" = (/pg)\g —qpor + qp)\Tng /\Z + qp)\TdTg + cqpq/\qd,
and for the case where q is an even natural number, in addition to (18), the following conditions hold:

gor <1+ cq)\;, g6 <1+ cq/\g,
-1,9-1 -1

qASs < O[T+ qAAs, 0] AL +gAAs, T + ¢ ATAL
-1,7-1 -1

qgpor < QZ/\Z + qp)\TdQZ )\g + qp)\TdTg + cqp‘?)\qd,

(o)

where ¢, is a constant guaranteed by Lemma 2.1. Then the iterative sequences {x,}", {yulr— o, {unly. and {v,}7
generated by Algorithm 3.5 converge strongly to x, y, u and v, respectively, and (x, y,u, v) is a solution of the system

@)

4. Remarks on H(,, .)-1-cocoercive mappings

In the present section, the notion of H(., .)-n-cocoercive operator and the results in related to it, introduced
and studied in [3] are investigated and analyzed, and some remarks on H(.,.)-n-cocoercive operators are
stated. We also show that one can obtain the results given in [3] using the results derived in Section 3.

Definition 4.1. [3, Definition 2.4] Let X be a g-uniformly smooth Banach space with g > 1. A multi-valued
mapping M : X — 2% is said to be n-cocoercive (or y-n-cocoercive), if there exists a constant y > 0 such that

(u—ov,J;(n0,y)) = yllu—-oll, Vx,yeXueM(i),veMy).

Obviously, for a given vector-valued mapping 11 : X X X — X, every n-cocoercive multi-valued mapping
is n-accretive, but the coverse is not in general true. The following example illustrates that for given
constant ¥ > 0 and a vector-valued mapping 1 : X X X — X, an n-accretive multi-valued mapping is not
y-n-cocoercive necessarily.

Example 4.2. Let D,(RR) be the same as in Example 2.6 and let the mappings M : D,(R) — 2P*® and
1 : Dy(R) X D,(R) — D,(IR) be defined by

[ {Eij-Ew:ij=12,...,n}, A=Ey
M(A) B { )/A + Ekk/ A+ Ekk/

and

_ ] Q  AB#Eg,
(A, B) = { 0, otherwise,
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forall A = ( ajj ),B = ( bij ) € D,(R), where Q = ( gij ) is an n X n matrix with the entries
) oaibi—ai),  i=j,
7= o, i#]

ai(i=1,2,...,n),y € R are arbitrary but fixed constants such that for eachi € {1,2,...,n},y <0< a;, 0is
the zero n X n matrix, and E; j, E are the same as in Example 2.6.

Then for any A = ( aij ),B = ( bij ) € D,(R), A # B # Ej, taking into account that y < 0 < a; for each
i€{l,2,...,n},it follows that

(M(A) = M(B), ].(n(A, B))) = (M(A) — M(B), n(A, B))
= tr(y(A = B)Q) = ) —yau(bii — 2 > 0. (19)

i=1

In the meanwhile, for each of the cases when A # B = Ei, B # A = Ejx and A = B = Ej, thanks to the fact
that n(A, B) = 0, we deduce that

(u—-v,,(n(A,B))) =0, VYueM(A),veM(B).

Consequently, M is an n-accretive mapping. Furthermore, for any A = ( ajj ),B = ( bij ) € D,(R), we
obtain

lA=BIF = (A~B,A=B) = tr((A - B)(A—B)) = }_(ai—bi)". (20)
i=1

Letting 0 = max{a; : i = 1,2, ...,n} and making use of (19) and (20), for any A = ( ajj ),B = ( bij ) € D,(R),
A # B # Ey, it yields

(M(A) — M(B), .(n(A,B))y = é_yai(bii —a;)* < —yo é(aii - bii)* = —yollA - BIP,

and so M is not u-n-cocoercive for all u > —yp.

Definition 4.3. [3, Definition 2.3] Let X be a g-uniformly smooth Banach space with ¢ > 1. Let A,B : X — X,
H:XxX— X,1n:XxX — X be the mappings and ], : X — 2% be the generalized duality mapping. Then

(i) H(A,.) is said to be u-n-cocoercive with respect to A if there exists a constant u > 0 such that
(H(Ax,u) — H(Ay, u), J,(n(x, ) > pllAx = Ayll’, Vx,y,ueX;

(ii) H(., B) is said to be y-relaxed n-cocoercive (also referred to as y-n-relaxed cocoercive, see, [3]) if there exists a
constant y > 0 such that

(H(u, Bx) — H(u, By), J;(n(x, v))) = =yIIBx = Byll’, Vx,y,u€X;

(iii) H(A,.) is said to be r1-Lipschitz continuous with respect to A if there exists a constant r1 > 0 such that
[[H(Ax,u) - HAy, u)ll < rillx = yll, VYx,y,ueX;

(iv) H(., B) is said to be r,-Lipschitz continuous with respect to B if there exists a constant r, > 0 such that

IH(u, Bx) = H(u, By)l| < rallx = yll,  Vx,y,u e X

In related to Definition 4.3, the authors [3] presented a Matlab programme and claimed that H(.,.) is
1-n-cocoercive with respect to A and 3-relaxed 1-cocoercive with respect to B.
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Example 4.4. Let X = R? with usual inner product, and let A, B : R? — R? be defined by A(x1, x2) = (x1,3x2)
and B(y1,y2) = (—y1, —y1 — y2), for all x = (x1,x2), y = (y1, y2) € R Let H(A, B), n : R?> X R* > IR? be defined
by H(Ax, By) = Ax + By and n(x, y) = x — y for all x, y € R?. The Hilbert space R? is a 2-uniformly smooth
Banach space due to the fact that it is finite dimensional. Then, for all x, y,u € R?, we obtain

(H(Ax, u) — H(Ay, u), ](n(x, ) = (Ax = Ay, x = y)
= {(x1,3x2) = (y1,3Y2), (x1 = Y1, X2 — 2))
={(x1 = y1,3(x2 = y2)), (x1 = Y1, X2 — 12))
= (1 — 1)* + 3002 — 12)°
and
|Ax — Ayl* = (Ax — Ay, Ax — Ay) = ((x1 — 11,3022 = 12)), (X1 = ¥1,3(x2 = 12)))
= (11— y1)* + 902 — 12)?
<3 = 1)* + 9002 — v2)?
= 3(H(Ax, u) — H(Ay, u), .(n(x, y))),
which implies that

(H(Ax, 1) ~ H(AY, ), 20103, 1) = 5l1Ax = Ayl

that is, H(.,.) is %-n-cocoercive with respect to A. The authors claimed that H(.,.) is %-relaxed n-cocoercive
with respect to B. A careful checking illustrates that this fact is not true in general. In fact, in the light of
Definition 4.6, H(., .) is 1-relaxed n-cocoercive with respect to B if and only if

1
(H(u, Bx) = H(u, By), ]2(n(x, y))) 2 =5 [1Bx — Byl?, Vx,yuelR%.

In view of the definitions of the mappings H,n and B, for all x = (x1,x2), y = (y1, y2), u € R?, it yields
(H(u, Bx) — H(u, By), ]2(n(x, ))) = (Bx - By, x - y)
={(y1 —x1,y1 —x1 + y2 — X2), (X1 — Y1, X2 — Y2))
=—(x1 - yl)2 —(x1 = y1)(x2 —y2) — (x2 — yz)Z
= —{(x1 = y1)* + (01 — Y1) (2 — y2) + (2 — y2)°}
and
||Bx — Byll2 = (Bx — By, Bx — By)
=1 -y, — ¥+ Y2 —x2), (Y1 — X, Y1~ X+ Y2~ X2)
=2(y1 = 11)* + 2(y1 — 21)(y2 — x2) + (Y2 — %)
< 201 — x1)* + (1 — x1)(y2 — x2) + (y2 — x2)*}
= —2(H(u, Bx) — H(u, By), ]2(n(x, y))),

whence we deduce that
1
(H(u, Bx) = H(u, By), Jo(n(x, y))) < 5 ||Bx - Byl?, Vx,yueR%.

The preceding inequality shows that contrary to the claim in [3], H(.,.) is not 1-relaxed 7)-cocoercive with
respect to B necessarily.

Proposition 4.5. Let X bea g-uniformly smooth Banach spacewithq > 1,andlet A,B : X — XandH,n: XxX — X
be the mappings. Suppose further that the mapping P : X X X — X is defined by P(x) = H(Ax, Bx), for all x € X.
Then, the following assertions hold:
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(i) If the mapping H(A, B) is p-n-cocoercive with respect to A and y-relaxed n-cocoercive with respect to B, the
mapping A is a-expansive and B is f-Lipschitz continuous, u >y and a > p, then P is (ua’ — yp7)-strongly
n-accretive and hence it is strictly n-accretive.

(ii) If H(A, B) is r1-Lipschitz continuous with respect to A and ry-Lipschitz continuous with respect to B, then P is
(r1 + r2)-Lipschitz continuous.

Proof. (i) Owing to the fact that the mapping H(A, B) is u-n-cocoercive with respect to A and y-relaxed
n-cocoercive with respect to B, the mapping A is a-expansive and B is p-Lipschitz continuous, u > y and
a > B, forall x, y € X, we obtain

(P(x) — P(y), n(x, y)) = (H(Ax, Bx) — H(Ay, By), n(x, y))
= (H(Ax, Bx) - H(Ay, Bx), n(x, y))
+(H(Ay, Bx) - H(Ay, By), n(x, y))
> ullAx — Ayll" = ylIBx — Byl|’

> palllx =yl = yplx -yl
= (ua’ = yphllx -yl

Since 4 >y, @ > f and g > 1, the preceding inequality guarantees that P is (ua? — pf7)-strongly n-accretive.
Now, the fact that P is strictly n-accretive is straightforward.

(ii) Relying on the fact that H(A, B) is r1-Lipschitz continuous and r,-Lipschitz continuous with respect
to A and B, respectively, it follows that for all x, y € X,

IP(x) = P(y)|l = |IH(Ax, Bx) — H(Ay, By)||
< |IH(Ax, Bx) — H(Ay, Bx)||
+[IH(Ay, Bx) — H(Ay, By)||
< (r +n)llx =yl

that is, P is (r; + r2)-Lipschitz continuous. This completes the proof. [J

Ahmad et al. [3] introduced and studied a class of accretive mappings the so-called H(., .)-n-cocoercive
mappings as a generalization of P-n-accretive (or (H, n)-accretive) and H(., .)-accretive mappings as follows.

Definition 4.6. [3, Definition 2.6] Let X be a q-uniformly smooth Banach space with q > 1. Let A,B : X — X,
H:XxX —> X, n:XxX — X be the mappings. Then a multi-valued mapping M : X — 2% is said to be
H(., .)-n-cocoercive with respect to the mappings A and B if M is nj-cocoercive and (H(A, B) + AM)(X) = X, for all
A>0.

From Definition 4.6 and in the light of the mentioned arguments, it follows that every H(_, .)-n-cocoercive
mapping is actually a P-n-accretive mapping. In fact, by defining the mapping P : X — X as P(x) =
H(Ax, Bx), for all x € X, and in view of the fact that every 7-cocercive mapping is n-accretive, we deduce
that the class of H(.,.)-n-cocoercive mappings coicides exactly with the class of P-n-accretive mappings and
is not new. In other words, Definition 4.6 is actually the same Definition 2.5 and is not a new one.

In order to define the proximal mapping associated with the H(., .)-n-cocoercive mappings, Ahmad et
al. [3] presented the following theorem which states conditions under which the mapping (H(A, B) + AM) ™
is single-valued for every A > 0.

Theorem 4.7. [3, Theorem 2.7] Let X be a g-uniformly smooth Banach space with g > 1. Let H(A, B) be u-
n-cocoercive with respect to A and y-relaxed n-cocoercive with respect to B, A be a-expansive, B be p-Lipschit
continuous, i >y and o > B. Let M be an H(., .)-n-cocoercive mapping with respect to A and B. Then the mapping
(H(A, B) + AM)™! is single-valued for every real constant A > 0.
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Proof. Define P : X — X by P(x) = H(Ax, Bx), for all x € X. Thanks to the assumptions and by means of
Proposition 4.5(i), we deduce that P is a strictly n-accretive mapping. Furthermore, M is a P-n-accretive
mapping. We note that all the conditions of Lemma 2.1 hold. In accordance with Lemma 2.1, the mapping
(P+ A)~t = (H(A, B) + A)! is single-valued for every A > 0. This gives the desired result. [

Based on Theorem 4.7, the authors [3] defined the proximal mapping Rifg/})*n associated with the H(., .)-
n-cocoercive mapping M as follows.

Definition 4.8. [3, Definition 2.8] Let X be a g-uniformly smooth Banach space with q > 1. Let H(A, B) be
u-n-cocoercive with respect to A and y-relaxed n-cocoercive with respect to B. Suppose that A is a-expansive, B is
B-Lipschitz continuous and u >y, & > B. Let M be an H(., .)-n-cocoercive mapping with respect to A and B. Then

the proximal mapping R}, ( I X — X is defined by
R w) = (HA, B) + AM) (), VueX.

Remark 4.9. (i) In Theorem 4.7, the necessary and sufficient conditions for the mapping (H(.,.) + AM)™
to be single-valued for every A > 0, are stated. In the light of the mentioned theorem, and by comparing
it with Definition 4.8, it should be pointed out that the 7-Lipschitz continuity condition of the mapping
n: X x X — X, mentioned in the context of Definition 2.8 of [3] is extra and must be deleted, as we have
done in Definition 4.8.

(ii) By defining P : X — X as P(x) = H(Ax, Bx), for all x € X, in virtue of the assumptions of Definition
4.8 and by using Proposition 4.5(i), P is a strictly n-accretive mapping and M is a P-n-accretive mapping.
Regarding to Definition 2.14, for any constant A > 0, the P-nj-resolvent operator RPM'”/1 : X — X associated
with P,n,M and A, for any x € X is defined as follows: ’

H(.

R () = R ) = (P + AM) ™ (u) = (H(A, B) + AM) ' (w), VueX,

that is, Definition 4.8 is actually the same Definition 2.14 and is not a new one.

In Theorem 2.9 of [3], the authors proved the Lipschitz continuity of the resolvent operator RI;;'/'I')_" and
calculated its Lipschitz constant under some appropriate conditions as follows.

Theorem 4.10. [3, Theorem 2.9] Let X be a q-uniformly smooth Banach space with q > 1. Let H(A, B) be p-n-
cocoercive with respect to A, y-relaxed n-cocoercive with respect to B, A be a-expansive, B be 3-Lipschitz continuous,
n be T-Lipschitz continuous and u > y, a > B. Let M be an H(., .)-n-cocoercive mapping with respect to A and B.

Then the resolvent operator RH( AT X - Xis -Lipschitz continuous, that is,

(ua’? vﬁq

IR ) R )) < q—_luu—vn VueX @
LM /\M - yﬁq ’ .

Proof. Let P : X — X be defined by P(x) = H(Ax, Bx), for all x € X. By utilizing the assumptions and
Proposition 4.5(i), we conclude that P is (ua? — yf7)-strongly n-accretive. Furthermore, M is a P-n-accretive
mapping. Then all the conditions of Lemma 2.16 hold. Therefore, by picking 0 = ua? — yp7, Lemma 2.16

RH()1

implies that the resolvent operator Rﬁ; X - Xis %—Lipschitz continuous, i.e., (21) holds. The

proof is finished. [J

Let X; and X, be two g-uniformly smooth Banach spaces with 4 > 1 and let A;,B; : X1 — Xj,
Ay, Byt Xo = Xp, Hi,m : X4 X Xp — X and Hp, 1 @ Xp X Xo — X, be the mappings. Recently, Ah-
mad et al. [3] considered and studied the system (4) when M and N are Hi(A;, B1)-n1-cocoercive and
Hj(A», By)-m2-cocoercive mappings, respectively. With the goal of constructing an iterative algorithm for
approximating a solution of the system (4) involving H;(A;, B;)-ni-cocoercive mappings (i = 1,2), they
presented a characterization of its solution as follows.
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Lemma 4.11. [3, Lemma 3.1] Let X; and X, be two g-uniformly smooth Banach spaces with q > 1. Let f,p, A1, B1 :
X1 - Xy, g,d,Az,Bz cXo o X5, S XixXy o X, T: X4 XXy » Xp, Hl,Th X1 x X - Xy and
Hy, m : Xo X Xp — X, be the mappings. Let, for each i € {1,2}, H;(A;, B;) be u;-n;-cocoercive with respect to A; and
yi-relaxed n;-cocoercive with respect to B;, A; be aj-expansive, B; be Bi-Lipschitz continuous, y; > y; and a; > p;.
Let E: X; — CB(Xy), F: X, = CB(X2), M : X1 — 2% and N : X, — 2% be the multi-valued mappings such
that M is an Hq(A1, B1)-n1-cocoercive mapping and N : X, — 2% s an Hy(A,, By)-12-cocoercive mapping. Then,
(x,y,u,v) € X1 X Xo X E(x) X E(y) is a solution of the system (4) (involving H;(., .)-ni-cocoercive mappings) if and
only if (x, y,u,v) satisfies

f) = RIS H (AL(FQ), Ba(f () — AS(p(x), )],
9(y) = RN P IHAA2(9()), Ba(g(w)) — pT(w, d(w))],

where A, p > 0 are two constants.

Proof. Assume that for each i € {1,2}, P; : X; — X; is defined by Pi(x) = H;(Aix, Bix), for all x € X;. The
assumptions and Proposition 4.5(i) imply that P; is a strictly n;-accretive for i = 1,2, M is a P1-nj-accretive
mapping and N is a Pp-mp-accretive mapping. Then, all the conditions of Lemma 3.2 hold, and so the
assertion follows by Lemma 3.2 immediately. [

In the light of Remark 4.9, it is worth mentioning that the 7;-Lipschitz continuity and 7,-Lipschitz
continuity conditions of the mappings 11 and 1, respectively, mentioned in the context of Lemma 3.1 of
[3] are extra and must be deleted, as we have done in the context of Lemma 4.11. In view of the proof of
Lemma 4.11, it must be remarked that contrary to the claim of the authors in [3], the characterization of
the solution for the system (4) involving H;(., .)-n;-cocoercive mappings (i = 1,2), presented in Lemma 4.11
is actually the same characterization of the solution for the system (4) involving P;-n;-accretive mappings
presented in Lemma 3.2, and is not a new one.

Utilizing Lemma 4.11, Ahmad et al. [3] suggested an iterative algorithm for solving the system (4)
involving Hj(., .)-n;-cocoercive mappings (i = 1, 2) as follows.

Algorithm 4.12. [3, Algorithm 3.3] Let X1,X5, f,9,5,T,p,d,A1,B1, Az, By, Hi,Hy, m, M2, E,F, M and N be the
same as in Lemma 4.11. For any given (xo, yo) € X1 X X2, ug € E(x9), vo € F(yo), compute the sequences {(x,, )}
{un}y and (v} by the following iterative schemes:

n=

(o]
n=0"

Xuar = (1= )%, + b, = F) + R THI (A (), Ba(F(a)) — AS(p(xa), o)), (22)
Yusr = (1= b)Y + o]y = 9(y) + RN [Ha(Aa((y), Ba(g(y))) = pT (0w, d(y))1], (23)

where t1,t; € (0,1] are two parameters and A, p > 0 are two constants, n = 0,1,2,... and we choose u,+1 € E(xy),
Un+1 € F(yn41) such that

{ [ttns1 — unll < D(E(x441), E(x4)),
041 — vull < D(F(yn+1),1:(yn))-

By a careful reading Algorithm 4.12, we found that the sequences {(x, yu)}>",, {ual,, and {v.};,
generated by Algorithm 4.12 are not well defined necessarily. In fact, for any given (xo, yo) € Xi X Xj,
uy € E(xo), vo € F(yo), the authors computed x; and y; by means of the iterative schemes (22) and (23),
respectively, and then they claimed that one can choose u; € E(x1) and v; € F(y1) such that the following
relations hold:

llur — uoll < D(E(x1), E(x0)),
llo1 — voll < D(F(y1), F(y0))-

In the light of Lemma 3.3, if X is a metric space and T : X — CB(X) is a multi-valued mapping, then for any
¢ > 0 and for any given x, y € X, u € T(x), there exists v € T(y) such that

d(u,v) < (1 + ¢)D(T(x), T(y)).

(24)

(25)
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However, for any given x, y € X, u € T(x), there may not be a point v € T(y) such that d(u, v) < D(T(x), T(y)).
In support of this fact, the following example is provided.

Example 4.13. Consider X = [*(Z) = {z = {zu};2_olsuplzsl < 00,2z, € C}, the Banach space consisting
nez.
with the supremum norm |iz|l = sup |z,|. Any element

nez

(o)
n=—oo

of all bounded complex sequences z = {z,}

) [

Z = {Znhe oo = Xn + iYn)je—oo € [°(Z) can be written as follows:

z= Z [(...,0,...,0,.7(2071 +iy2071/ 0/x20+] +iy20+1/ 0/)

o€{+1,43,...}

+ (,0, .,0,X2U + iy2(,—,0,X20+2 + iy2(,—+2,0,. . )]

_ Z []/20—1 + Yoor1 — i(X20-1 + X2041)

W25-1,20+1
2

oe{£1,£3,...}

Y2o-1 = Y2or1 — U(X2g-1 — X2041) Yoo + Yoos2 — (X205 + X2042)
+ 2 Wr5-1,20+1 2 W20,20+2

+

Yoo — Y2042 — i(x2o - x2(7+2) ’
5 w20,20+2]'

where foreach o € {+1,+3, ...}, w25-12041 = (-..,0,...,0,125-1,0,12541,0, ...), i in the (20 — 1)th and (20 + 1)th
positions and 0’s elsewhere, wéﬁ_llzﬁl =(...,0,...,0,i5-1,0, —is4+1,0,...), i and —i at the (20 — 1)th and (20 +
1)th coordinates, and all other coordinates are zero, waso542 = (...,0,...,0,125,0, 12042, 0, ...), i at the (20)th
and (20 + 2)th places, respectively, and 0’s everywhere else, and cuéﬂ(I 2 =0-.,0,...,0,i2,0,—i25+2,0,...),1
and —i at the (20)th and (20 + 2)th coordinates, respectively, and all other coordinates are zero. Therefore,
the set

’ ’ . —
B = {w20—1,20+1rwzg_l,z(ﬂ_l/w20,20+2/ Whyoeea 10 = £1, 23, .. }

spans the Banach space [(Z). Itis easy to show that the set B is linearly independent and so it is a Schauder
basis for the Banach space I*°(Z). Define the multi-valued mapping T : X — CB(X) by

ﬁup! \/7

3 ; ’ .=
T(x) _ {{ n1142 o l};.loz—oo/ w20—1,26+1’ (‘)2(7,20+2 0= i1/ i3/ e }/ X 7& er—1,2r+1/
W25-120+1, Wy oy4p 10 = 1, 3,1}, X = W2r-1,2r+1,

where £ € [-1,0) and f > 1 are arbitrary but fixed real numbers, p,q and y are arbitrary but fixed even
natural numbers, and r € {+1,+3,...} is chosen arbitrarily but fixed. Take wp,_12,+1 # x € X arbitrarily,

Y = war-12r41 and u = { o Ifa = {Wmi};":_w then in view of the fact that £ < 0, for any

S
ﬁnpl nﬂ”%/ﬁ
o € {+1,43,...}, it yields

& oo
d(a, ws-120+1) = ||{Wl}n:—m = W20-120+1ll0
= supf| f A : -1
Bt Ryt gt e VRf g — 1)1
& )
|ﬁ(2‘7+1)p1 (z(rﬂ)'mz,—(za n 1)),! - 1| ‘ne Z,Tl # 20 1, 20 + 1}
| £ -1, ifoe{2m+1meNU{0}},

po-1! (2071)’7!%/(26_1);»!
<

4
po1pr CoTHg fo 5 Ty
1 - ﬁ(za—l)Vl (26*1%!*%/(20'—1”'” lf o€ {zm + 1|m € N U {0}}'

1- ﬁ(ZnH)P! (20'*'1)17“% /(20+1)7,!’ if o€ {_(zm + 1)|m eNU {0}}/

-1, ifoe{-@2m+1)meNU{0}},
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and
& .
/ ;U,2U+2 = 1142 1:0:—00 £0,2U+2 o
d(a, ) ||{Wl} -w |
CH  — 1
g "Rt p2oy! (W!W

¢ +1l:neZ,n+ 20,20 +2}

Iﬁ(20'+2)17! Qo+2)1142 (20 +2)!
I S S
- peor! ey peoy! <z‘7>fizw'

Since & € [-1,0), we infer that

= sup(]

c

d(a, T(y)) = bg(fy) d(a,b) =inf{1- £ cu=0,+1;0 =

‘B(Z(H»‘n)p! (20+}‘)q!+V(26+y)y!

7
For the case when a = Wye 19611

’
25—1,2s+1

d(a, wrs-120+1) = {

llw — W25-1,20+1llc0s o0 *s,

’ — ’ 4
and d(ﬂ, 0)26,204_2) = ”w25_1,25+1 - a)20‘,20'+2||°°

A(a, wrs-120+1) = llwatp+2 — W25-120+41lle = 1
and

’ ||a)2t,2t+2 - a)’Zt 2t+2”°°’ 0=t 2, o=t
d(a, wh;0540) = 7’ =
4 ||a)2t,2t+2 - w26,25+2”001 oF tr 1/ oF tr

we deduce that d(a, T(y)) = inf d(a,b) = 1. Consequently, sup d(a, T(y)) = 1.
y ber(y) q Yy, sup y

a€T(x)

If b = wok—12k+1 for some k € {+1, +3, ...}, due to the fact that £ € [-1,0), it follows that

& oo
d({ml}n:_w W2k-1,2k+1)
< 00
= ”{Wl}nz—m = Wk-1,2k+1lloo
= supll—=—1,| : -1
gt Ryt pek-1yt Gt o) 1yt
< :
|5(2k+1)”! T T -1:neZn+2k-1,2k+1)
| & —1|, ifke2m+1meNU({0}},
_ ﬁ(zk—l)l’! (@2k=1)1143 /(Zk—l)?’l
B J - if ke {~2m+1 N U {0
|ﬁ(2k+1)!71 (2k+1)q!+%/(2k+1)7’1 I/ 1 € { ( m+ )|m € { }}/
1- £ if k € {2m + 1jm € N U {0}},

per-v? CVR o1yt
1- gk (2k+1;!+W/ ifk e {—(Zm + 1)|m eINU {O}},

il,ir?),...}:l.

for some s € {£1,+3,...}, then for each ¢ € {#1,+£3, ...}, we obtain

), 1 pep1 = @25-12541lleo, o=s, _[2,  o=s
1, 0 #s,

=1. Thus, d(a, T(y)) = b;?(fy)d(a, b)=1.

If a = wy o142 for some t € {£1,+3,...}, in virtue of the facts that for each o € {+1,+£3,...},

6616
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and for each o € {#1,+3,...},

llw

d(wé0_1’20+1/ w2k71,2k+1) = { llw

’

and

20-1,20+1 - ka*1,2k+l||DO/ o F k/

2k-1,2k+1 @2k-1,2k+1loo, o=k _ { 2, o=k,

1, o#k,

A(W252042, Wok-12k+1) = 10252042 = O2k—1,2k+1lle0 = 1.

In the light of these facts and considering the fact that & < 0, we conclude that

d(T(x),b) = inf d(a,b) = 1.

— 7’
In the case where b = @)inis

&

for some j € {£1, +3,...}, owing to the fact that £ € [-1,0), we get

. ’ _ . ’
d({ml}fi’:—w @)jaj42) = “{Wl}f}m — Whjpjalle

= sup{

&
— 1,
g "q!W B (z/')'m\z/W
¢

|‘B(2j+2)V! @j+2)1142 (2] + z)y!

and for each o € {#1,+3,...},

/7 ’
d(w20—1,20+1’ Wyin j+2)

and

d(w2o,26+2/w;]',2]‘+2) = {

Since & < 0, we conclude that d(T(x), b) = irTl(f) d
ael(x

|ﬁ(2j)p1 2j)11+2 (2].))/! - | =

!’
||“)20—1,2o+1 -

llwagpo+2 =

+1:neZ,n+2j2j+2)

& 1l = &
ﬁ(Zj)P! (z/wzw’

’ _
@hjnjsallee =1

lw2jajsz =@y 50l 0=j0 (2, o=]
@igjalleos T F ],

1, o*]j.

beT(y)

D(T(x), T(y)) = max { sup d(a, T(y)), sup d(T(x),b)} = 1.

acT(x)

beT(y)

Taking into account that for each o € {1, £3,...},

[[——
IR

o = W25-1,20+1l00

<

_ <
1 5(2&1)%’! (26—1)‘7!+§ /(2071)”
= _ 3
1 o+ (2<7+1W!+&/(20+1)y! >1,

>1,

and

& .
Nl = @ ol

'Bnp! n‘le

=1

ifo € 2m+ 1jm € N U {0}},
ifo € {—2m + 1)m € N U {0}},

&
_——— = >
Bt 2351

because & € [-1,0), it follows that for any v € T(y), d(u,v) = |lu — vllo > D(T(x), T(y)).

(a,b) = 1. Accordingly, sup d(T(x),b) =1, and so

6617
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It is worthwhile to stress that if T(y) is compact then such a point v does exist. In fact, if T : X — C(X),
where C(X) is the family of all the nonempty compact subsets of X, then for any given x, y € X, u € T(x), there
exists v € T(y) such that d(u,v) < D(T(x), T(y)). In virtue of the above mentioned arguments, Algorithm
4.12 is not well-defined necessarily. We now present the correct version of Algorithm 4.12, only by editing
(24) as follows.

Algorithm 4.14. Let X1,X5, f,9,p,4,5,T,A1,B1, A2, By, Hi,Hy, m, 12, E,EM and N be the same as in Lemma
4.11. For any given (xo, Yo) € X1 X X, uo € E(x0), vo € F(yo), define the sequences {(xu, yn)}; o, {tn}y o and {v, ",
in the following way:

X = (1= )%, + b, — F) + R THI (A (F(), Ba(F(xa) = AS(p(xa), o)),
Yun = (1= By + by = 9(yn) + RO [Ha(Aa(9(y)), Ba(9(y)) = pT 0w, d(y)]],

where t1,t, € (0,1] are two parameters and A, p > 0 are two constants, n = 0,1,2,... and we choose u,4+1 € E(x,),
Un+1 € F(Yn41) such that

{ 151 = taall < (1 + (1 + 1) )D(E(xns1, E(xn)),
[0ns1 = vull < (1 + (1 + 1) )DEYns1, F(Yn))-

By defining P; : X; — X; as P;(x) = Hi(A;x, Bix), for i = 1,2, and for all x € X, and in the light of the
conditions of Lemma 4.11, Proposition 4.5 implies that for i = 1,2, P; is a strictly n;-accretive mapping, and
M and N are P;-nj-accretive and P,-np-accretive mappings, respectively. Then, by letting a; = t;, fori =1, 2,
we observe that Algorithm 4.14 is actually the same Algorithm 3.5 and is not a new one.

In Theorem 3.4 of [3], the authors studied the convergence analysis of Algorithm 4.12 under some certain
conditions. Taking into account that Algorithm 4.12 is not in general well defined, and Algorithm 4.14 is
the correct version of Algorithm 4.12, we infer that the statement of [3, Theorem 3.4] is not true necessarily.
In the following its correct version is provided.

Theorem 4.15. Let X and X, be two g-uniformly smooth Banach spaces with g > 1. Let A1,B1,p : X1 — Xi,
Az, By, d Xy = Xp, Hi : X1 X Xo — Xy, Hy : Xo X Xq — X be the mappings such that Hi(A1, B1) is 11-cocoercive
with respect to Ay with constant p1 and relaxed 11-cocoercive with respect to By with constant y1, A is aq-expansive,
Bi is 1-Lipschitz continuous, aq > B1 and uy > y1; Ha(Az, Bo) is 1o-cocoercive with respect to A, with constant
2 and relaxed na-cocoercive with respect to By with constant y,, A; is ap-expansive, B, is pp-Lipschitz continuous,
ap > Boand py > yy. Assume that my + X1 X X1 — Xy is 11-Lipschitz continuous, 1, : Xo X X5 — X is To-Lipschitz
continuous, f : X1 — Xj is strongly accretive with constant 61 and A g-Lipschitz continuous and g : Xo — X is
strongly accretive with constant 6, and A,-Lipschitz continuous. Let S : X1 X Xo — X be strongly ni-accretive with
respect to p with constant As and As,-Lipschitz continuous with respect to p in the first arqument and As,-Lipschitz
continuous in the second argument. Suppose that T : X1 X Xo — Xj is strongly m-accretive with constant 6t with
respect to d and At,-Lipschitz continuous with respect to d in the second arqument, and Ar,-Lipschitz continuous
in the first argument. Let E : X1 — CB(X1) be D-Lipschitz continuous with constant Ap, and F : X, — CB(Xj)
be D-Lipschitz continuous with constant Ap,. Let H1(A1, B1) be r1-Lipschitz continuous with respect to Ay and
ry-Lipschitz continuous with respect to B, and Hy(Az, By) be r3-Lipschitz continuous with respect to A, and r4-
Lipschitz continuous with respect to By. Suppose that M : X1 — 2% js Hy(Aq, B1)-n1-cocoercive and N : X, — 2X2
is Hy(Az, B2)-ma-cocoercive. If there exist positive constants p and A such that

q-1 q

tlTl t2T2_lpAT1 Ap;
1—t +H{1-q6 + cq)\; +— 70+ 7 <1 (26)
pay = y1py fatty = V2P,

tyrl ! ttl ' AAg, A
1=ty + 31— g0 + Al + —2— 0" + —L 22 g 27)

20 — v wmal —yip]
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where

0 = (/(rl + 20T = gA0s + qAMs, (1 + 1) AT T+ gAs, T+ egAgAl,

0" = (/(r3 +1a)IA] = qpor + qpAr,(rs + ray AY ! +gpAr,T) '+ ¢gpIA],

where in the case when q is an even natural number, in addition to (26) and (27), the following conditions hold:

go1 <1+ CqA;, 402 <1+ A, (28)
gADs < (11 +72) A% + qAAs, (r1 + rz)q-lAj:l + A, + ¢GAIAL, (29)
gpor < (r3 + m)"AZ +gpAr,(rs + 1’4)q_1/\g_1 + qp/\TdTg_l + cqpq/\qd, (30)

[

where c; is a constant guaranteed by Lemma 2.1. Then, the iterative sequences {x,}," o, {yuly— o, {un},y and {va})
generated by Algorithm 4.14 converge strongly to x, y, u and v, respectively, and (x, y, u, v) is a solution of the system
(4) (involving H;(., .)-ni-cocoercive mappings (i = 1,2)).

Proof. Let us define P; : X; — X; as Pi(x) = Hi(Aix, Bix), for each i € {1,2} and x € X;. From the assumptions
and Proposition 4.5, it follows that for each i € {1,2}, the mapping P; is (uia! — yi!)-strongly n;-accretive,
Py is (r1 + rp)-Lipschitz continuous and P; is (r3 + r4)-Lipschitz continuous. Furthermore, M and N are
Pq-mi-accretive and P,-1p-accretive mappings, respectively. Taking o1 =1 + 1, 0o =13+ 14, 0; = yia? - y,-ﬁ?
and a; = t;, for each i € {1,2}, we note that all the conditions of Corollary 3.11 hold. Now, the statement
follows by utilizing the statement of Corollary 3.11 immediately. [

It should be pointed out that if g is an even natural number, then the positive constants p and A, in
addition to (5), must be also satisfied (28)—(30), as we have added the mentioned conditions to the conditions
of Theorem 4.15. At the same time, there are some mistakes in (3.4) of [3]. In fact, in (3.4) of [3], A, Aj and

77 must be replaced by A%, /\g and Tz_l, respectively, as we have done in (26) and (27).
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