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Abstract. Let I be an ideal on N. A mapping f : X → Y is called an I-covering mapping provided a
sequence {yn}n∈N is I-converging to a point y in Y, there is a sequence {xn}n∈N converging to a point x in X
such that x ∈ f −1(y) and each xn ∈ f −1(yn). In this paper we study the spaces with certain I-cs-networks and
investigate the characterization of the images of metric spaces under certain I-covering mappings, which
prompts us to discover I-cs f -networks. The following main results are obtained:

(1) A space X has an I-cs f -network if and only if X is a continuous and I-covering image of a metric
space.

(2) A space X is an I-cs f -countable space if and only if X is a continuous I-covering and boundary
s-image of a metric space.

(3) A space X has a point-countable I-cs-network if and only if X is a continuous I-covering and
s-image of a metric space.

1. Introduction

We know that mappings are an important tool to study spaces, and they play a pivotal role in discussing
various images of metric spaces [2, 17]. Sequence-covering mappings are a special kind of mappings [22].
For example, every metric space is preserved by a continuous, sequence-covering and closed mapping
[12, Corollary 3.5.12]. Through sequence-covering mappings, we can establish the relationship between
convergence sequences in topological spaces, and further reveal some topological properties based on
convergent sequences [12].

Convergence of sequences in a topological space is a basic and important concept in mathematics [8, 17].
In addition to the usual convergence of sequences, statistical convergence [4, 7, 21, 23], ideal convergence
[5, 6, 24, 26] and G-convergence [3, 14, 18] have attracted extensive attention. In particular, ideals are a very
useful notion in topology, analysis and set theory, and have been studied for along time. In [13, 27], it was
studied that certain topological spaces are defined by ideal convergence.

Through various mappings, we have obtained rich results of ideal convergence. We know that every
topological space is a continuous and sequence-covering image of a metric space.

Problem 1.1. What topological spaces are characterized by continuous and I-covering images of metric spaces?
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In this paper we study the spaces with certain I-cs-networks. In particular, the study of Problem 1.1
prompts us to introduce the spaces with I-cs f -networks and I-cs f -countable spaces, and establish the
relationship between these spaces and the images of metric spaces under certain I-covering mappings.
These studies deepen our understanding for ideal topological spaces and mappings, present a version
using the notion of ideals and provide a new research path for revealing the mutual relationship of spaces
and mappings.

2. Preliminaries

In this section, recall some basic concepts related to this paper. The readers may refer to [8, 17] for
notation and terminology not explicitly given here.

By N we denote the set of positive integers. Let A be the family of all subsets of the set N. An ideal
I ⊆ A is a hereditary family of subsets of N which is stable under finite unions, i.e., the following are
satisfied: if B ⊂ A ∈ I, then B ∈ I; if A,B ∈ I, then A ∪ B ∈ I. An ideal I is said to be non-trivial, if I , ∅
andN < I. A non-trivial ideal I is called admissible if I ⊇ {{n} : n ∈ N}. The family of all finite subsets of
N is denoted by I f in. Then I f in is the smallest non-trivial ideal contained in each admissible ideal. The
following, if no otherwise specified, we consider I is always an admissible ideal on the setN.

The concept of I-convergence is a generalization of the usual convergence in topological spaces. Let X
be a topological space and τX denote the topology for the space X. A sequence {xn}n∈N in X is said to be
I-eventually in a subset P ⊆ X if the set {n ∈N : xn < P} ∈ I [27, Definition 3.15]. A sequence {xn}n∈N in X is
said to be I-convergent to a point x ∈ X provided {xn}n∈N is I-eventually in every neighborhood of x in X,
which is denoted by xn

I

−→ x, and the point x is called the I-limit point of the sequence {xn}n∈N. A subset P
of X is said to be I-closed if for each sequence {xn}n∈N ⊆ P with xn

I

−→ x ∈ X, the I-limit point x ∈ P. A subset
P of X is said to be I-open if the complement set X \ P is I-closed.

Let I be an ideal onN. Let f : X→ Y be a mapping. f is called preserving I-convergence provided xn
I

−→

x ∈ X, then f (xn) I

−→ f (x) ∈ Y [11, Theorem 3]. It is easy to check that every continuous mapping preserves
I-convergence [27, Theorem 4.2]. One of the mappings corresponding to preserving I-convergence is an
I-covering mapping.

Definition 2.1. Let I be an ideal on N. A mapping f : X → Y is called I-covering provided a sequence
yn

I

−→ y in Y, there is a sequence xn
I

−→ x in X satisfying x ∈ f−1(y) and each xn ∈ f−1(yn) [27, Definition 5.1].

The concept of networks has played a key role in the study of topological spaces. A family P of subsets
of a topological space X is called a network at a point x ∈ X if x ∈

⋂
P and whenever x ∈ U with U open in

X, then P ⊆ U for some P ∈ P [17, Definition 1.5.9].

Definition 2.2. Let I be an ideal on N, and P a family of subsets of a topological space X. P is called an
I-cs-network at a point x ∈ X if whenever {xn}n∈N is a sequence I-converging to x ∈ U with U open in X
then {x} ∪ {xn : n ∈ N \ I} ⊆ P ⊆ U for some I ∈ I and P ∈ P. P is called an I-cs-network for X if P is an
I-cs-network at each point x ∈ X [25, Definition 4.1]. Each I f in-cs-network is called a cs-network [10, p. 106].

It is easy to check that the statement “{xn : n ∈ N \ I} ⊆ P for some I ∈ I” is equivalent to the statement
“{n ∈N : xn < P} ∈ I” in Definition 2.2, i.e., the sequence {xn}n∈N is I-eventually in the set P.

Definition 2.3. Suppose that P is a family of subsets of a T1-space X such that, for each x ∈ X, there is a
countable subfamily of P which is a network at x in X. Let P = {Pα : α ∈ Λ}, which is no repetition by
indexes in the enumeration. Λ is endowed with the discrete topology. Put

M = {α = (αi) ∈ Λω : {Pαi }i∈N forms a network at some point xα in X}.

M is endowed with the subspace topology of the product space Λω, and a function f : M→ X is defined by
f (α) = xα for every α ∈M. Then ( f ,M,X,P) is called Ponomarev’s system [16, p. 296].
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It is known M is a metric space and the function f : M → X is continuous and surjective [16, p. 296].
Ponomarev’s system is one of the important methods to construct metric spaces and certain mappings on
the metric spaces, and it is also a basic tool to discuss the images of metric spaces under certain mappings
[12, 17].

3. On spaces with I -cs f -networks

Finding the intrinsic properties of the images of metric spaces under certain mappings are one of the
basic topics in the study of topological spaces. In this section we characterized the images of metric spaces
under continuous and I-covering mappings. Next, we introduce a special countable network based on the
I-cs-networks.

Definition 3.1. Let I be an ideal on N, and P a family of subsets of a topological space X. P is called
an I-csf-network at a point x ∈ X if whenever {xn}n∈N is a sequence I-converging to x ∈ X, then there is a
countable subfamily P′ of P satisfying provided x ∈ U with U open in X then {x} ∪ {xn : n ∈N \ I} ⊆ P ⊆ U
for some I ∈ I and P ∈ P′. P is called an I-csf-network for X ifP =

⋃
x∈X Px and eachPx is an I-cs f -network

at x in X.

Each I f in-cs f -network is called a cs f -network [9, Definition 2.5]. It is known that every I-cs-network is
preserved by a continuous I-covering mapping [25, Theorem 4.3].

Lemma 3.2. Every I-cs f -network is preserved by a continuous I-covering mapping.

Proof. Let f : X → Y be a continuous I-covering mapping and P be an I-cs f -network for the topological
space X. Put P =

⋃
x∈X Px in which each Px is an I-cs f -network at x in X. Now, put Q =

⋃
y∈Y Qy, where

each Qy = { f (P) : P ∈ Px, x ∈ f−1(y)}. Then Q = f (P). Suppose that {yn}n∈N is a sequence in Y, which is
I-convergent to a point y ∈ Y. Since f is an I-covering mapping, there exists a sequence {xn}n∈N in X with
xn

I

−→ x ∈ f−1(y) such that each xn ∈ f−1(yn). Since Px is an I-cs f -network at x in X, there is a countable
subfamily P′ of Px satisfying the condition in Definition 3.1. Put Q′ = f (P′). Then Q′ is a countable
subfamily of Qy. If y ∈ U with U open in Y, then x ∈ f−1(U) and f−1(U) is open in X. There are I ∈ I and
P ∈ P′ such that {x} ∪ {xn : n ∈N \ I} ⊆ P ⊆ f−1(U), and thus f (P) ∈ Q′ and {y} ∪ {yn : n ∈N \ I} ⊆ f (P) ⊆ U.
This means that the family Q is an I-cs f -network for Y.

Perhaps, I-covering mappings are one of the most appropriate mappings to adapt to I-convergence in
the relationship between spaces and mappings. However, a finite-to-one, continuous and closed mapping
on a metric space is not necessarily an I-covering mapping [12, Example 3.5.17(1)]. The following result
provides a technical lemma for deciding I-covering mappings, in which its description is similar to the
form of the usual convergence of sequences, but the proof is much more complex.

Lemma 3.3. LetI be an ideal onN. And let f : X→ Y be a surjective mapping and {yi}i∈N a sequenceI-converging
to some point f (x) in Y. If {Bn}n∈N is a decreasing network at x in X and the sequence {yi}i∈N is I-eventually in f (Bn)
for each n ∈N, then there is a sequence {xi}i∈N I-converging to the point x in X with each xi ∈ f−1(yi).

Proof. For each n ∈N, let In = {i ∈N : yi < f (Bn)} and Fn =N \ In. Then In ∈ I, because the sequence {yi}i∈N
is I-eventually in f (Bn); and i ∈ In (i.e., i < Fn) if and only if yi < f (Bn). Since {Bn}n∈N is decreasing in X, it
follows that In ⊆ In+1 and Fn+1 ⊆ Fn for each n ∈N.

Claim. For each k ∈N, there exists nk ∈N such that if xi < Bk then yi < f (Bnk ).
(a) Suppose that there is some n′ > n such that Fn′ ⊂ Fn for each n ∈ N. Take a sequence {nk}k∈N in N

such that each nk < nk+1 and Fnk+1 ⊂ Fnk . Then Fn0 =
⋃

k∈N(Fnk \ Fnk+1 ) ∪
⋂

k∈N Fnk . For each i ∈ N, if i ∈ Fnk ,
then yi ∈ f (Bnk ), thus f−1(yi) ∩ Bnk , ∅. We can pick

xi ∈


f−1(yi), i ∈ In0 ,
f−1(yi) ∩ Bnk , i ∈ Fnk \ Fnk+1 , k ∈N,
{x}, i ∈

⋂
k∈N Fnk .
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Let xi < Bk. Then xi , x. If i ∈ In0 , then yi < f (Bn0 ) ⊇ f (Bnk ), and yi < f (Bnk ). If i ∈ Fn0 , there is k′ ∈N such
that i ∈ Fnk′ \ Fnk′+1 , thus xi ∈ Bnk′ \ Bk ⊆ Bk′ \ Bk, and k′ < k, because {Bn}n∈N is decreasing. It follows from
i < Fnk′+1 that yi < f (Bnk′+1 ) ⊇ f (Bnk ), thus yi < f (Bnk ).

(b) Suppose that there is some n0 ∈N such that Fn = Fn0 for each n > n0. Let nk = n0 + k for each k ∈N.
Since I is admissible, the set Fn0 is infinite. Put Fn0 = {mk ∈ N : k ∈ N}. If i = mk, then i ∈ Fn0 = Fnk , thus
yi ∈ f (Bnk ), hence f−1(yi) ∩ Bnk , ∅. We can pick

xi ∈

{
f−1(yi), i ∈ In0 ,
f−1(yi) ∩ Bnk , i = mk, k ∈N.

If xi < Bk, then xi < Bnk , thus i < Fn0 = Fnk , hence yi < f (Bnk ).
Next, we will show that xi

I

−→ x in X. Let U be a neighborhood of x in X. There exists k ∈ N such
that x ∈ Bk ⊆ U. Therefore {i ∈ N : xi < U} ⊆ {i ∈ N : xi < Bk} ⊆ {i ∈ N : yi < f (Bnk )} = Ink ∈ I, hence
{i ∈N : xi < U} ∈ I, and further xi

I

−→ x in X.

By Lemma 3.3, the following corollary is obvious.

Corollary 3.4. Every open and surjective mapping on a first-countable space is an I-covering mapping for each ideal
I onN.

The following is the main result in this paper, in which the space X is not assumed to satisfy any
separation axiom.

Theorem 3.5. Let I be an ideal on N. A space X has an I-cs f -network if and only if X is a continuous and
I-covering image of a metric space.

Proof. Sufficiency. Suppose that there exist a metric space M and a continuous and I-covering mapping
f : M → X. Since each point of M has a countable local base, by Lemma 3.2, the space X has an I-cs f -
network.

Necessity. Suppose that a space X has an I-cs f -network. We will construct a metric space M and the
required mapping f on M in the following steps.

Claim 1. There are a metric space Y and a T2-subspace Z ⊆ X × Y such that the restriction mapping
π1|Z : Z→ X is continuous and surjective, where π1 : X × Y→ X is the projective mapping.

Let Y be the product space
∏

n∈N Yn, where each space Yn is the set X endowed with the discrete topology.
Then Y is a metric space. For each x ∈ X, put

Yx = {(yn) ∈ Y : yn = x except for finite n ∈N}.

Then the family {Yx : x ∈ X} is disjoint. Put

Z =
⋃
{{x} × Yx : x ∈ X}.

It is obvious that the restriction mapping π1|Z : Z → X is continuous and surjective. Since the family
{Yx : x ∈ X} is disjoint, the restriction mapping π2|Z : Z→ Y is continuous and injective, and Z is a T2-space.

Let P be an I-cs f -network for the space X, and Q be a point-countable base for the metric space Y. Put
R = (P × Q)|Z = {(P × Q) ∩ Z : P ∈ P,Q ∈ Q}, and denote R = {Rα : α ∈ Λ}. Let (1,M,Z,R) be Ponomarev’s
system in Definition 2.3. Then the mapping 1 : M→ Z is continuous and surjective.

For each α = (αn) ∈M and k ∈N, put

Bk = {(βn) ∈M : βn = αn for each n ≤ k}.

Claim 2. 1(Bk) =
⋂

n≤k Rαn .
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Suppose that a point β = (βn) ∈ Bk. Then

1(β) ∈
⋂
n∈N

Rβn ⊆

⋂
n≤k

Rβn =
⋂
n≤k

Rαn ,

hence 1(Bk) ⊆
⋂

n≤k Rαn . On the other hand, assume that a point z ∈
⋂

n≤k Rαn . Since 1 is surjective, there
exists γ = (γn) ∈ M with 1(γ) = z, i.e., the subfamily {Rγn }n∈N of R is a network at z in Z. For each n ∈ N,
define βn ∈ Λ such that βn = αn if n ≤ k and βn = γn−(k+1) if n > k. Then the family {Rβn }n∈N is also a network
at z in Z. Put β = (βn) ∈ Λω. Then β ∈ Bk and z = 1(β) ∈ 1(Bk), and further

⋂
n≤k Rαn ⊆ 1(Bk). Therefore,

1(Bk) =
⋂

n≤k Rαn .
Claim 3. 1 is an I-covering mapping.
Let {zm}m∈N be a sequence I-converging to z in Z. Put z = (x, y) and each zm = (xm, ym). Since the

projective mappings π1 and π2 are continuous, they preserve I-convergence. Then xm
I

−→ x in X, and
ym

I

−→ y in Y. Let Px = {Px,i}i∈N ⊆ P be a countable network at x in X such that the sequence {xm}m∈N is
I-eventually in each Px,i, and letQy = {Qy, j} j∈N ⊆ Q be a countable local base at y in Y, in which the sequence
{ym}m∈N is I-eventually in each Qy, j, because the set Qy, j is open in Y. Since {(Px,i × Qy, j) ∩ Z : i, j ∈ N} is a
network at z in Z, there is α = (αn) ∈ M such that 1(α) = z and {Rαn : n ∈ N} = {(Px,i × Qy, j) ∩ Z : i, j ∈ N}.
Denote Rαn = (Px,iαn

×Qy, jαn
) ∩ Z for each n ∈N.

For the above α = (αn) ∈M and each k ∈N, by Claim 2,

{m ∈N : zm < 1(Bk)} =
⋃
n≤k

{m ∈N : zm < Rαn }

=
⋃
n≤k

({m ∈N : xm < Px,iαn
} ∪ {m ∈N : ym < Qy, jαn

}) ∈ I

This implies that the sequence {zm}m∈N is I-eventually in 1(Bk). It is obvious that the family {Bk}k∈N is a
decreasing local base at α in M. In the view of Lemma 3.3, 1 is an I-covering mapping.

Finally, put f = π1|Z ◦ 1 : M → X. Then f is continuous and surjective. Let {xm}m∈N be a sequence in X
with xm

I

−→ x. Put y = (yn) ∈ Y with yn = x for each n ∈ N. Then y ∈ Yx, thus (x, y) ∈ Z. For each m ∈ N,
define vm = (vm,n) ∈ Y as vm,n = x if n ≤ m and vm,n = xm if n > m; then vm ∈ Yxm , thus (xm, vm) ∈ Z. It is
easy to see that the sequence {vm}m∈N converges to the point y in Y. Let O be a neighborhood of the point
(x, y) in Z. Take an open subset U in X and an open subset V in Y such that (x, y) ∈ (U × V) ∩ Z ⊆ O. Then
{m ∈ N : (xm, vm) < O} ⊆ {m ∈ N : (xm, vm) < (U × V) ∩ Z} = {m ∈ N : xm < U} ∪ {m ∈ N : vm < V} ∈ I. Thus
the sequence {(xm, vm)}m∈N is I-convergent to (x, y) in Z. By Claim 3, there exists a sequence {zm}m∈N in M,
which satisfies zm

I

−→ z ∈ 1−1((x, y)) ⊆ f−1(x) and each zm ∈ 1
−1((xm, vm)) ⊆ f−1(xm). Thus, f is an I-covering

mapping.

At the end of this section, we give an application of the proving method in Theorem 3.5. A family P of
subsets of a set X is called point-countable if each point of X belongs to at least countable elements of the
family P. A mapping f : X→ Y is an s-mapping if f−1(y) is a separable subset of X for each y ∈ Y.

Corollary 3.6. Let I be an ideal on the setN. Then a T1-space X has a point-countable I-cs-network if and only if
X is the image of a metric space under a continuous I-covering and s-mapping.

Proof. Let X be a T1-space with a point-countable I-cs-network R. Let (1,M,X,R) be Ponomarev’s system.
It follows from Claims 2 and 3 in the proof of Theorem 3.5 that the mapping 1 : M→ X is a continuous and
I-covering mapping. Put R = {Rα : α ∈ Λ}. If x ∈ X, then

1−1(x) = {(αn) ∈M : {Rαn }n∈N forms a network at the point x ∈ X}
⊆ {α ∈ Λ : x ∈ Rα}ω

thus 1−1(x) is a separable subset of M. Hence, 1 is an s-mapping.
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On the other hand, let f : M→ X be a continuous I-covering and s-mapping, where M is a metric space.
Let B be a point-countable base for M. By Lemma 3.2, it is easy to check that the family { f (B) : B ∈ B} is an
I-cs-network for X. Since every point-countable family of open subsets of a separable space is countable,
the family { f (B) : B ∈ B} is point-countable. Thus, X has a point-countable I-cs-network.

4. I -cs f -countable spaces

A general space than a space with a point-countableI-cs-network is the followingI-cs f -countable space.
A space X is called an I-cs f -countable space if, X has a countable I-cs-network at each point in X. Each
I f in-csf -countable space is called a cs f -countable space [15, p. 181]. It is obvious that every first-countable
space is I-cs f -countable, and every I-cs f -countable space has an I-cs f -network.

A mapping f : X→ Y is called a boundary s-mapping if ∂ f−1(y) is a separable subset of X for each y ∈ Y.

Theorem 4.1. Let I be an ideal on the setN. Then a T1-space X is an I-cs f -countable space if and only if X is the
image of a metric space under a continuous I-covering and boundary s-mapping.

Proof. Necessity. Suppose that X is anI-cs f -countable T1-space. For each x ∈ X, let Xx be the set X endowed
with the following topology: a neighborhood base of x in Xx is taken as the neighborhood base of x in the
original topology of X; every point of Xx \ {x} is an isolated point. Put Y =

⊕
x∈X Xx. Define a function

h : Y→ X by the natural function, i.e., h|Xx = idX for each x ∈ X.
Claim 1. Y has a point-countable I-cs-network.
For each x ∈ X, let Px be a countable I-cs-network at x in X. For each y ∈ Y, there exists a unique x ∈ X

such that y ∈ Xx. If y = x, let Fy = Px; if y , x, let Fy = {{y}}. Put F =
⋃

y∈Y Fy. It is easy to see that F is a
point-countable I-cs-network for Y.

Claim 2. h is a continuous and I-covering mapping satisfying ∂h−1(x) ⊆ {x} for each x ∈ X.
Obviously, h is continuous. Let {xn}n∈N be a sequence I-converging to a point x in X. Then the sequence

{xn}n∈N is also I-converging to x in Xx. It is obvious that x ∈ h−1(x) ∩ Xx ⊆ Y and each h(xn) = xn. Thus h is
an I-covering mapping. For each x ∈ X and y ∈ X \ {x}, since X is a T1-space, the set h−1(x) ∩ Xy = {x} is
closed and open in Y, and so ∂h−1(x) ⊆ {x}.

Since Y is a T1-space with a point-countable I-cs-network, by Corollary 3.6, there are a metric space M
and a continuous I-covering and s-mapping 1 : M→ Y.

Claim 3. f = h ◦ 1 : M→ X is a continuous I-covering and boundary s-mapping.
It is clear that f is a continuous and I-covering mapping. For each x ∈ X, since 1−1([h−1(x)]◦) is open in

M,

∂ f−1(x) = ∂(1−1(h−1(x)))

= 1−1(h−1(x)) \ [1−1(h−1(x))]◦

⊆ 1−1(h−1(x)) \ 1−1([h−1(x)]◦) = 1−1(∂h−1(x)).

By Claim 2, the set ∂ f−1(x) is separable in M. So f is a boundary s-mapping.
Sufficiency. Suppose that there are a metric space M and a continuous I-covering boundary s-mapping

f : M → X. Let B be a point-countable base for M. If x ∈ X and {x} is not open in X, then ∂ f−1(x) , ∅, and
pick mx ∈ ∂ f−1(x). Put

Px = { f (B) : B ∈ B and B ∩ ∂ f−1(x) , ∅}.

Since the set ∂ f−1(x) is separable, the family Px is countable. Let {xi}i∈N be a sequence in X, I-converging
to the point x and x ∈ U ∈ τX. If there is I ∈ I such that xi = x for each i ∈ N \ I, we take B ∈ B with
mx ∈ B ⊆ f−1(U), then f (B) ∈ Px and {x} ∪ {xi : i ∈ N \ I} = {x} ⊆ f (B) ⊆ U. If there is no I ∈ I such
that xi = x for each i ∈ N \ I, since f is I-covering, there is a sequence {yi}i∈N in M, I-converging to a
point y ∈ f−1(x) with each yi ∈ f−1(xi). Then y ∈ ∂ f−1(x). Otherwise, y ∈ [ f−1(x)]◦, thus there is J ∈ I
such that {yi : i ∈ N \ J} ⊆ [ f−1(x)]◦, so xi = x for each i ∈ N \ J, which is a contradiction. This means
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that y ∈ ∂ f−1(x). Then y ∈ f−1(x) ⊆ f−1(U) ∈ τM, and there exists B ∈ B such that y ∈ B ⊆ f−1(U). As a
consequence, y ∈ B ∩ ∂ f−1(x) and there is I ∈ I such that {yi : i ∈ N \ I} ⊆ B. It follows that f (B) ∈ Px and
{x} ∪ {xi : i ∈N \ I} ⊆ f (B) ⊆ U. Therefore, Px is a countable I-cs-network at x in X.

Theorem 4.2. Every I-cs f -countable space is a cs f -countable space.

Proof. Let X be an I-cs f -countable space. For each x ∈ X, let Px be a countable I-cs-network at x in X. Put
Fx = {

⋃
P
′
x : P′x ⊆ Px and |P′x| < ω}. Then Fx is countable. We will show that Fx is a cs-network at x in X.

Suppose that a sequence {xn}n∈N converges to the point x ∈ V with V open in X. Put {F ∈ Fx : F ⊆ V} = {Fi}i∈N.
Then there exists k ∈ N such that the sequence {xn}n∈N is eventually in

⋃
i⩽k Fi. Otherwise, there exists a

subsequence {xnk }k∈N of the sequence {xn}n∈N such that each xnk ∈ X \
⋃

i⩽k Fi. Since the subsequence {xnk }k∈N
converges to x and Px is an I-cs-network at x, there are I ∈ I and P ∈ Px such that {xnk : k ∈N \ I} ⊆ P ⊆ V.
By P ∈ Fx, we have P = Fm for some m ∈ N. Since N \ I is infinite, there is k0 ∈ N \ I with k0 ≥ m, thus
xnk0
< Fm = P, which is a contradiction. Therefore, X is a cs f -countable space.

5. Several applications

In this section, we discuss the preliminary applications of the main theorems and put forward several
related questions.

Let I be an ideal on the set N. A subset P of a topological space X is said to be an Isn-open set of X
provided each sequence in X, I-converging to a point x ∈ P, is I-eventually in P [13, p. 1982]. We have that
open subsets =⇒ Isn-open subsets =⇒ I-open subsets =⇒ sequentially open subsets in a topological space
[13, Lemma 2.1]. Here, I f in-open subsets are called sequentially open.

Definition 5.1. Let I be an ideal onN. A topological space X is called an I-FU-space provided A ⊆ X and
x ∈ A there is a sequence {xn}n∈N in A with xn

I

−→ x in X [20, p. 90]; X is called an I-sequential space if each
I-open subset of X is open [19, Definition 2.3]; X is called an I-neighborhood space if each I-open subset of
X is Isn-open [13, Definition 3.1].

AnI f in-FU-space is called a Fréchet-Urysohn space [17, Definition 1.2.7]; anI f in-sequential space is called
a sequential space [17, Definition 1.6.15]; every topological space is an I f in-neighborhood space [13, Example
3.11]. It is easy to check that first-countable spaces =⇒ Fréchet-Urysohn spaces =⇒ I-FU-spaces =⇒ I-
sequential spaces =⇒ I-neighborhood spaces [13, Lemma 3.4]; and Fréchet-Urysohn spaces =⇒ sequential
spaces =⇒ I-sequential spaces [13, Lemma 2.5].

Corollary 5.2. Let I be an ideal onN. Then each space of I-cs f -networks is an I-neighborhood space.

Proof. Let X be a space with anI-cs f -network. By Theorem 3.5, there are a metric space M and a continuous
and I-covering mapping f : M → X. Let U be an I-open set in X. Then f−1(U) is I-open in M. In fact,
let {zn}n∈N be a sequence in M \ f−1(U) with zn

I

−→ z ∈M. Since f is continuous, f preserves I-convergence.
Thus, we have f (zn) I

−→ f (z). Since the set X\U isI-closed in X and each f (zn) ∈ X\U, therefore f (z) ∈ X\U,
i.e., z ∈M \ f−1(U). Hence M \ f−1(U) is I-closed in X, i.e., the set f−1(U) is I-open in M, thus f−1(U) is open
in M, because M is a metric space.

Next, we show that U is an Isn-open subset of X. Let {xn}n∈N be a sequence in X with xn
I

−→ x ∈ U. Since
f is I-covering, there exists a sequence {zn}n∈N in M satisfying zn

I

−→ z ∈ f−1(x) and each zn ∈ f−1(xn). By
zn

I

−→ z ∈ f−1(U), we have that {n ∈ N : xn < U} = {n ∈ N : zn < f−1(U)} ∈ I, therefore the sequence {xn}n∈N
is I-eventually in U. This implies the set U is an Isn-open subset of X. Thus, X is an I-neighborhood
space.

Let f : X → Y be a mapping. f is called quotient provided f is surjective and a subset U of Y is open if
and only if f−1(U) is open in X [17, Definition 2.1.1]; f is called pseudo-open provided y ∈ Y and f−1(y) ⊆ U
with U open in X, then f (U) is a neighborhood of y in Y [1, Definition 1]. It is known that every continuous
and pseudo-open mapping is quotient.
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Corollary 5.3. Let I be an ideal onN. The following are equivalent for a space X.
(1) X is a sequential space of I-cs f -networks.
(2) X is an I-sequential space of I-cs f -networks.
(3) X is an I-covering and quotient image of a metric space.

Proof. Since every sequential space is preserved by a quotient mapping [17, Proposition 2.3.1], by Theorem
3.5, we have that (3) ⇒ (1). It is obvious that (1) ⇒ (2). Next, we show that (2) ⇒ (3). Let X be an
I-sequential space of I-cs f -networks. By Theorem 3.5, there are a metric space M and a continuous and
I-covering mapping f : M → X. Suppose that U ⊆ X and f−1(U) is open in M. If a sequence xn

I

−→ x ∈ U
in X, then there is a sequence zn

I

−→ z ∈ f−1(x) in M with each zn ∈ f−1(xn). Since z ∈ f−1(U), the set
{n ∈ N : xn < U} = {n ∈ N : zn < f−1(U)} ∈ I, i.e., U is I-open in the I-sequential space X, thus U is open.
Therefore, f is a quotient mapping.

Similarly, we have the following corollary. In its proof, the following results are used: (a) every Fréchet-
Urysohn space is preserved by a continuous and pseudo-open mapping [17, Proposition 2.3.1]; (b) every
I-covering mapping onto an I-FU-space is pseudo-open [27, Theorem 6.7].

Corollary 5.4. Let I be an ideal onN. The following are equivalent for a space X.
(1) X is a Fréchet-Urysohn space of I-cs f -networks.
(2) X is an I-FU-space of I-cs f -networks.
(3) X is a continuous, I-covering and pseudo-open image of a metric space.

Statistical convergence is a special ideal convergence [27]. Corollaries 5.3 and 5.4 partially answer the
following questions, which were posed by Z.B. Tang and F.C. Lin in [23, Questions 2.1 and 3.1]:

(1) How to characterize s-sequential spaces (i.e., statistical sequential spaces) as the images of metric
spaces under some continuous mappings?

(2) How to characterize statistical FU-spaces as the images of metric spaces under some continuous
mappings?

Example 5.5. Every space has a cs f -network. But, there are an ideal I on N and an I-FU-space X which
has no I-cs f -network.

Proof. First, we show that every space has a cs f -network. Let X be a topological space and x ∈ X. If {xn}n∈N
is a sequence with xn → x in X. Put Px = {{x} ∪ {xn : n ≥ k} : k ∈ N}. Then Px is countable. If x ∈ U with U
open in X, then there exist I ∈ I f in and k ∈N such that {x} ∪ {xn : n ∈N \ I} = {x} ∪ {xn : n ≥ k} ⊆ U. Thus, X
has a cs f -network.

Let I be a maximal ideal onN. Σ(I) is the setN ∪ {∞},∞ <N, equipped with the following topology:
(a) each point n ∈ N is isolated; (b) each open neighborhood U of ∞ is of the form (N \ I) ∪ {∞}, for each
I ∈ I.

By [13, Example 3.17], the spaceΣ(I) is anI-FU-space having no non-trivial convergent sequence. Since
the point∞ is non-isolated, Σ(I) is not a sequential space. By Corollary 5.3, Σ(I) has no I-cs f -network.

Let X be a non-sequential space. For example, take X = [0, ω1] with the usual ordered topology. Then
X is a non-I f in-sequential space having an I f in-cs f -network by Example 5.5.

Problem 5.6. Is there a Fréchet-Urysohn space having no I-cs f -network?

It is known that metrizability is preserved by continuous, closed and sequence-covering mapping [12,
Corollary 3.5.12]. V. Renukadevi and B. Prakash defined the statistically sequence-covering map as follows
[21]: a mapping f : X → Y is a statistically sequence-covering map if whenever a sequence {yn}n∈N converges
to a point y in Y, there is a sequence {xn}n∈N statistically converging to a point x in X with each xn ∈ f−1(yn)
and x ∈ f−1(y). It is proved that every continuous, closed and statistically sequence-covering image of a
metric space is metrizable [21, Corollary 3.4].
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Problem 5.7. Is metrizability preserved by continuous, closed and I-covering mappings?

It is known that a topological space is a sequentially connected space if and only if it is a continuous
sequence-covering image of a connected metric space [17, Theorem 2.3.17].

Problem 5.8. How to characterize the spaces as the continuous I-covering images of connected metric spaces?
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