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Abstract. This paper investigates a class of nonlinear p-Laplacian Hadamard fractional differential systems
with coupled nonlocal Riemann-Stieltjes integral boundary conditions. First, we obtain the corresponding
Green’s function for the considered boundary value problems and some of its properties. Then, by using
the Guo-Krasnosel’skii fixed point theorem, some sufficient conditions for existence and nonexistence of
positive solutions for the addressed systems are obtained under the different intervals of the parameters p
and v. As applications, some examples are presented to show the effectiveness of the main results.

1. Introduction

In this paper, we consider the system of nonlinear Hadamard fractional differential equations with
pi-Laplacian and p,-Laplacian operators

DM Pp (PPx(1) = pfilt, x(0), YD), D@, (2P Y1) = vholt, x(), y(1), t € (L,e)

(1.1)
subject to the following coupled nonlocal Riemann-Stieltjes integral boundary conditions
2 .0; '
ox(1) = 8x(1) =--- = 6" 2x(1) =0, 2"x(e) = ZJ hi(t) 2"y (t) dH;(t),
i=1 1
[ aK;(t 12
y(1) = &y(1) =~ = "2yY(1) = 0, Z™y(e) = ZJ k()27 x(t) Z( ), 1.2)
j=1 1

7Px(1) = PP'x(e) = 8(pp (27 x(1) = 0, 2Py(1) = ZP2y(e) = 6(pp,(2™y(1))) = O,

where ¢ = (td/dt)! for | € N*, 2* denotes the Hadamard fractional derivative of the order k for k = a,,, B,
7/0/71;---/)/511/7]0/7]1/- . 'IT]qz! Oy € (2r3]/ ,Bm € (nm - 1/”7}1]/ ”mﬂm € IN/ N = 3/ 0< V1 < V2 << yih < Yo <
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Bi—1,0021,0<m << <1, <no<Pa=1,7021,pm>1¢p(5) =IsP2s, (p;nlx =@, Vpm+1/rm =1,
m=1,2, u,v >0, the nonlinear functions f,, € C([0, 1] Xx R* X R, R") (R* = [0, +00),m = 1,2). h;, k; € C(1,¢)
are nonnegative and 0;, 9; € (1,¢), the integrals L@ "hi(H) 2™ y(t)dH;(t)/t and fff ki(t)27ix(t)dK;(t)/t from (1.2)
are Riemann-Stieltjes integrals with H; and K; functions of bounded variation, where H;, K; : [1,e] — R are
nondecreasing functions fori =1,...,qpand j = 1,...,q;, there exist iy € {1,2,...,92} and jo € {1,2,...,q1}
such that Hj (e) > H;,(1) and Kj,(e) > K, (1).

Over the last couple of decades, more and more researchers show solicitude for the development of
fractional calculus since it has shown its importance in many fields, not only pure and applied mathematics
but also physics, control theory, chemistry, economics, etc, we can refer the reader to see [1, 5, 13, 17,
21, 29, 32, 33, 38, 41, 45, 64]. There exist many papers dealing with the fractional differential equation
boundary value problems for different kinds of multi-point/integral boundary conditions. Based on fixed
point theorem of the mixed-monotone operator, the upper-lower solution methods, the priori estimate
method with a maximal principle, the Banach contraction mapping principle and the Guo-Krasnose’skii
fixed point theorem, the authors ([15, 16, 60, 62, 63], [2, 3, 11, 58], [10, 14], [4, 6, 50, 65]) investigated
extensively the existence and uniqueness theorems of solutions/positive solutions for boundary value
problems of nonlinear fractional differential equations with kinds of boundary conditions, respectively. A
great deal of systems of fractional differential equations involving various multi-point or Riemann-Stieltjes
integral boundary conditions have been also studied in [8, 9, 20, 22, 23, 25-27, 35, 37, 46, 49, 56, 57].
For example, By using some fixed point theorems, Henderson and Luca [24], Henderson et al. [28] and
Luca [36] obtained the existence, nonexistence and multiplicity of positive solutions for Riemann-Liouville
fractional differential equations with uncoupled and coupled multipoint boundary conditions, respectively.
By using the Guo-Krasnosel’skii fixed point theorem, Hao and Wang [18] and Hao et al. [19] gave the
existence of positive solutions for the system of semipositone singular fractional differential equations
with parameters and nonlocal integral/multi-point boundary conditions, respectively. Tudorache and
Luca [42-44] considered the existence and nonexistence of positive solutions for a system of Riemann-
Liouville fractional differential equations involving uncoupled and coupled nonlocal Riemann-Stieltjes
integral boundary conditions without and with p-Laplacian operators, respectively.

In particular, Hadamard type fractional differential equations have attracted more and more people’s
attentions. A large number of boundary value problems for Hadamard type fractional differential equations
with various boundary value conditions have been deliberate widely, the reader can see [12, 30, 34, 47, 52—
54,59, 61]. By means of Leray-Schauder alternative and Banach'’s contraction principle, Ahmad and Ntouyas
[7] presented the existence and uniqueness of solutions for a coupled system of Hadamard type fractional
differential equations involving integral boundary conditions. Yang [51] and Jiang et al. [31] considered the
system of nonlinear Hadamard fractional differential equations with coupled integral boundary conditions,
respectively. By combining the monotone iterative technique with Avery-Henderson fixed point theorem,
Xu et al. [48] studied the existence of positive solutions for a class of Hadamard fractional-order three-
point boundary value problems with p-Laplacian operator. By applying the Guo-Krasnosel’skii fixed point
theorem, the author [55] investigated eigenvalue problems for a class of nonlinear Hadamard fractional
differential equations with p-laplacian operator and three-point boundary conditions. Based on the standard
fixed point theorems, Rao et al. [39, 40] researched the existence of multiple positive solutions for a system
of Hadamard fractional differential equations with p-Laplacian operators, respectively.

From the previous literature review, there exist some references on Hadamard fractional differential
equations with coupled nonlocal boundary conditions, however, no work has been done to study the eigen-
value problems for positive solutions for nonlinear p-Laplacian Hadamard fractional differential systems
with coupled nonlocal Riemann-Stieltjes integral boundary conditions. Motivated by the mentioned papers
above, the main purpose of this paper is to investigate the existence and nonexistence of positive solutions
for the addressed system (1.1)-(1.2). The main results of this paper can be seen as a supplement to the
existing literature. First, we present the Green'’s functions of the considered systems and their properties
in Section 2. Second, the different intervals of the parameters u and v for existence and nonexistence of
positive solutions for the addressed systems are obtained based on Guo-Krasnosel’skii fixed point theorem
in Section 3. Then, some examples are give to show the availability of the main results in Section 4. At last,
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some conclusions are drawn in Section 5.

2. Preliminaries

For the convenience of the reader, we firstly present some basic concepts of Hadamard type fractional
calculus to facilitate analysis of problem (1.1).

Definition 2.1. [33] The Hadamard fractional integral of order g for a function g : [1, ) — R is defined as

1 Nl ds
rg) = i | (o8] 0%, >0 1)

provided the integral exists, I'(7) denotes the Gamma function I'(g) = | g ® t1le7tdt, and log(") = log,(*).

Definition 2.2. [33] The Hadamard derivative of fractional order g for a function g : [1, 00) — R is defined

as
d\"[f(,  ty"t o ds
(tﬂ) L (log ;) g(s)?, n-1l<g<mn, (2.2)

Dig(t) =

1
I'(n—q)
where 1 = [g] + 1, [q] denotes the integer part of the real number 4.

Let @, (ZP1x(t)) = u(t) and @,,(ZFy(t)) = v(t). Then system (1.1) can be transformed into the following
three problems:

2u(t) = ufit, x(t), y(t)), te(le), u(l)=ul)=0oul)=0, (2.3)
9%0(t) = vfz(t,x(t), y®), te(@l,e), v()=uv()=0ov1)=0, (2.4)

and

PP x(t) = pr(u(t), 2Py(t) = ¢n,(0t), te(Le),

2 06;
() =01 = =5 ) =0, 70 = Y [ ooy L,
=1 (2.5)
SN dK;(t
oy(1) = %y(1) =+ = 6" 2y(1) =0, Zy(e)= ) L kj(t)@V/'x(t)—Z( )
=1

It follows from the reference [30, Lemma 1] that problems (2.3) and (2.4) have the unique solutions
u € C[1,e] and v € C[1, e], respectively

¢ ds
U =~ | o (95365, 509), YD, 26
¢ ds
000 = =7 || Guv 1,965,509, YD, )
where the Green’s functions of problems (2.3) and (2.4) have the following forms
1 [ (logt)~}(1-logs)*! —(log(t/s))™!, 1<s<t<e _
Guxlt:5) = 75 { (log )~1(1 - log 51, I<t<s<e, 00T @5)

Let A = T(B1)I'(B2)/(T(B1 — yo)[ (B2 — 1m0)) — A1A2, where

¥ ) by, T(82) 6oty o AHi(H)
m—;nmyﬂany Zr J“O””hOt .9
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Lemma 2.3. Let A # 0. The system (2.5) has an integral representation

10 == | Mt 90, @) E - [ Nt 900,

. PR s (2.10)
¥ = = | Malt 90006 T~ | Natt I, (DT
where
i1 S S' ](t)
Mi(t,s) =Gg, p,—y,(t, s) + —(logt 1 Z ki(t)Gpy—y; p1-y(t, 8)—— (2.11a)
j=1
b [V 9 dH; (t)
Ma(t,5) =G o (t,5) + 5-(log ) Z ()G o (£5) (2.11b)
i=1
T fot j dK; (t)
Ni(t,s) =TG- o) (log t) ;J'l ki(©)Gpy—y; p1-y(t, 8)—— (2.11¢)
TR s v [* dH; (t)
Ne9) =3, o Y [RZC—-— (211d)
Proof. Based on the reference [64], the solution of problem (2.5) can be written the following form
1 A ds
x(t) =c11(log ) ci2(log HPI2 4t gy, (log tyfr= + Tﬁ) J (log g) Pr, (M(S))?,
1
! ; ot o (2.12)
O e (108 " + cnllog -+ o log ) + s | g L) o)
where ¢11,¢12, .-+, C1ny, 21,62, - - -, Cany, € R. From 6x(1) = &x(1) = -+ = §~2x(1) = 0 and 6y(1) = 6’y(1) =
-+ = 0"72y(1) = 0, we have iy, = Ciy—1) = -+ = ¢p = 0 (i = 1,2). Thus, (2.12) can be represented as
t pr1-1
1) =en(ogh® ™+ o [ (1o 2) pnwen,
L(B1) 1 s s
L ot s (2.13)
= p2-1 Z -2
0 =enl0g ™ + s | (log 1) e
From the above obtained functions x and y (2.13), we can obtain
(ﬁ ) e 1 t £\t ds
DV x(t) =c tﬁl }/1‘{‘—‘[‘(0 ) r\U(S))—, = AV CIEERY ’
Dy(t) =c M(10 oty L Jt (10 5)52_"_1 )™, 1= |
T PR e T - i \%85) Pl A= e
By applying equation (2.14) to the boundary conditions Z7°x(e) = L@ "hi() DM y(t)dH;(t)/t and 20 y(e) =
711 "k i(H27ix(t)dK;(t)/t from (2.5), we get the equations with respect to c11 and ¢o as follows:
Ty} J dH(H) 1 J ]
= hi(tH)om t——— 1 —logs)fr7o-t us—
== Z (2" (1) Gy ), 0~ 1o P (5)°
(2.15)

T'(B2 — 10) () 1 S ds
SR AN ZJ KPR - s [ 0= tog )
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Substituting (2.15) into (2.14), we obtain

_ 92 —_ pr1—ro—1
Pt =(log )" ™ [ 1y [y 0 [0 os T %(u(s»%]

Gr-7) & TG
vy hest) T oo
Sl R ”’))< gt)ﬁr%-lif o7y, @16)
Py (t) =(log £ [F((?:n))ij ki(H2V1x(t) Z(t)‘ E’ (1 —rl(;;gi)‘i;_)"(’_l(p,z(v(s))%]
* T L 105 2) " gt ®
—Lecﬁzm,ﬁzY,O(t,s)(p,z(v(s))% r((Zz ’70)( gt)ﬁz_”"_lgfjkj(t)gy"x dKZ(t). (2.16b)

Multiplying by k;(t) and h;(t) on both sides of (2.16), integrating with respect to t from 1 to 9; and 0; and
summing the obtained results with respect to j and i from 1 to g, and g, respectively, we write

AT L ds dK (1)
;’ L ! * __; J k(t)L Gﬁl—?’f'ﬁl—yo(tfs)%(M(S))? ;
[Z r(l31 J (log 7 ga) (t)][z J 7y Hti(t)J/ (2.17a)

i=1
q2

02 . |
ZJ W70 == r O [ G oo 0,99 0N T

t

=1 i=1
I'(B2 — 10) boonity, (p AHi(E)
(Z F(ﬁz-’?),[ BT O ]

Solving the equations (2.17), we can have the following results

L(B2 — o) / k() T(B) ds 4K, (1)
TG ZJ 07O =~ 3, - yO)ZJ 60 | G ot 90 () S

gy ,()]
ZJ ki(H 27ix(t) . (2.17b)

=1

t

92 06; Il
- A4 [Z L hi(t)J Gﬁzm,ﬁzwo(trs)(Prz(U(S))%H—l(t)), (2.18a)

i=1
L= y0) | dH O ____TF) ’ ds dHi(t)
T ZL e _UO)ZJ 1O | Gongimnt 90N 2L
q1 9; e d (t)
— 4 [; L kf(t)L Gﬁl—yfrﬁl—?/o(t/S)(Prl(”(s)); Z ] (2.18b)

Substituting (2.18) and (2.15) into (2.13), we get

1 p\pit ds
_ p1—1 p1—yo—1 - i
(0 =~ (log '~ )Ja logs) ™ (p,l(u(s)) " )J (1 gs) P () S
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[ e ds dK(t
— (AZ [Z L kj(f) L Gﬁ1 =YiBr1=ro (t,s)pn, (M(s))?s Z( )]

j=1
EERACONER oI L) P
AT —10) ; L I’lz(t)J Gpo-nipa-no(t, 5)(Pr2(U(5)) ](log t)
- L Milt, )¢ (u(s))d_s - L Nl s)(p,.z(v(s));, (2.19a)
d t pa-1 d
y(t) = = (log t)*! ; ) J (1-log s)ﬁz"’(’_lqorz(v(s))?S + %,B) L (log é) (Prz(U(s))?s
92 0; P
B [Al [Z;. L hi(t) L G- pa—no (£, S)Pr, (0(s ))@H—(t)]
I'(B1) ' Ki(t) .
_Al’(ﬁlﬁl 0) ZJ ki (t)J Gpi—yjpr—yo (£, ), (us ))— } J(logt)ﬁz !
= J' Mz(t, S)(PrZ(v(S))? - J Nl (tr S)ﬁom (M(S))?, (219b)
1 1

This completes the proof of the lemma. [J

It follows from (2.6), (2.7) and (2.10) that we observe the following lemma.

Lemma 2.4. Let A # 0. The the unique solution (x,y) € C[1, e]* of system (1.1)-(1.2) is given by

1) =™ [ 116,90 | Gun 5, 0510 0,y %) &

+ 21 L Na(t, s)pr, (J Gy, (S, T) fo(T, x(7), y('c))—) d?, te[l,el], (2.20a)
v =" | Mt ), ( || Gt 050 ym)—) &

[ N9, (L (5, D (5, 2(0), ym)—)é fellel (2.20b)

Lemma 2.5. [52] The function Gy (t,s) defined by (2.8) has the following properties: (I) Gy, (t,s) is continuous
function on (t,s) € [1,e]* and Gy, (t,s) > 0 for t,s € (1,€); (I) T(x)oc(Hpx(s) < Gex(t,s) < (k — 1)pi(s) for
t,s € [1,e]; () T(x)0c(Hpx(s) < Gt s) < (k — Dox(t) for t,s € [1,e], where p.(t) = (logt)* (1 — log t)/T(x)
and p(t) = (1 —log t)* ! log t/T(x) for x € (2,3] and t € [1,e].

Lemma 2.6. Let k > 1. Then x* <1 — (1 —x)* for x € [0,1].
Proof. For x >1and x € [0, 1], then
¥F<l-(1-x)ex*+1-x"<1. (2.21)

Let g(x) = x* + (1 — x)*. Then g(x) is a continuous function on [0, 1] for x > 1. Along the absolute maximum
and minimum values of a continuous function on a closed interval, then the absolute maximum of g(x) is 1
atx =0, 1, that is g(x) < 1. This completes the proof of the lemma. [

Lemma 2.7. Fori =1,...,q2and j = 1,...,q1, the functions Gg, g,—y,(t,9), Gp,p-1o(t,8), Gp—y;p1-1,(t, 8) and
Gpy—ni pa—10(t, 8) given by (2.11) have the properties:
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(A1) The function Gg, g,—y,(t,s) is continuous on [1,e%; Gg, p,—y,(t,8) > 0 for all (t,s) € [1,e]*; Gg,p,—y(t,s) > 0
for all (t,s) € (1,€)% (log P19, (s) < Gp,p—(,S) < Dy (s) for all (t,s) € [1,e]?, where G, (s) = (1 —
logs)f7071(1 = (1 — logs)7°) /T (B1).

(A2) The function Gg,g,—n,(t,s) is continuous on [1,el*; Gg, g, (t,5) > 0 for all (t,s) € [1,e]*; Gg, g,y (t,5) > 0
for all (t,s) € (1,e)%; (logt)P"14, (s) < Gg, py—n,(t,8) < ¥, (5) for all (t,5) € [1,e]?, where G (s) = (1 —
log s)P2~0~1(1 — (1 — log s)™)/T(B2).

(A3) Thefunction Gg,—y, g,—y,(t, 5) is continuous on [1,e]% Ggy-y, p1-yo(t, 8) = Oforall (t,s) € [1,e]% Gpr—y -yl S) >
0 for all (t,s) € (1,€)% (log 177714, (s) < Gp,—y,p—y0(t,8) < (log 177171 (1 = log )P 707! for all (t,s) €
[1,e]?, where %, (s) = (1 —logs)P 771 (1 = (1 - logs)"*™71)/T(B1 — 7).

(A4) Thefunction Gg,—y, g,—n, (t, s) is continuous on [1, e]*; Gg,—p, p,—n, (£, 5) = Oforall (t,s) € [1,e]*; Gg,—n, ps-n,(t, ) >
0 for all (t,s) € (1,e)%; (log t)f21714, (s) < Gp,—p,po—no(t,5) < (log yf>~171(1 — log s)f2~0~1 for all (t,s) €
[1,e]?, where 4,,(s) = (1 —logs)P>"0~1(1 — (1 — log s)~") /T (B2 — 1;).

Proof. (A1) It's quite obvious that the function Gg, g, (£, s) is continuous on [1,e]?. For 1 <s <t <e, then

G pryo(t,8) ==—[(log ) "'(1 — log s)P 77! — (log t — log s)P' ']

F(ﬁ )

= r(ﬁl) (log Hh @ - log s)frrol (1 - logs/log 1]

>L(log HP(1 - logs)P 707! — (1 - log s)P '] = (log "1, (s), (2.22)
I'(p1)

and

d

EGﬁpﬁq—yo(t, s) = TG )at[(log Hf~1(1 - logs)P 70! — (log t — logs)f*™']

[(log )f172(1 — log )P 7™ — (log t — log s)f1 2]

:zfr(ﬁ1 —1)
1
>— pi1-2(1 — p1-2 _ - p1-2
T(Gr = 1)[(log HP172(1 - log s) (logt —logs)"'™]
1
=—— [(logt—logtlogs)’ 2 —(logt—logs)2]>0, 2.23
tl"(ﬁl—l)[(g gtlogs) (log gs)" 1 (2.23)
which implies that Gg, g, -, (t, 5) is increasing with respect to t € [1,¢] for 1 < s <t < e. Hence, we can obtain
(log 11714, (5) < Gp, p1—yo(t,S) < Gpy proyo(€,5) = %, (s) for all (£,5) € [1,e]* and 1 <s <t <e.
For 1 <t <s <e, then we can get
Gy pryo(t,5) > =——(log ' '[(1 — log ) 77! — (1 - log s)P' '] = (log )" 19, (s), (2.24)

(ﬁ)

and

%Gﬁlrﬁl_)/o(t/ ) I‘(B ) [(log t)ﬁl 1(1 - IOg S)ﬁl —Yo— 1] (IOg t)ﬁl—Z(l _ 10g S)ﬁl—)/o—l >0, (2.25)

_
(g1~ 1)

which implies that Gg, g, (t, s) is increasing with respect to t € [1,¢] for 1 < t < s < e. Combining with
Lemma 2.6, then we have

G, pi—yo(t,S) <G, pi—y, (S, 9) = (logs)f1~1(1 - logs)fr=70~1

r(ﬁ)
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——(logs)"(1 —logs)f" 7! < ——(1 —logs)* 7711 - (1 —logs)®) = %,,(s)  (2.26)

I"(ﬁ ) F(ﬁ )
for all (t,s) € [1,e]* and 1 < < e. Hence, we can obtain (log £)f17%,, (s) < Gg, g1—yo(t, ) < G, p1-y0(5,9) <
G, pi-y0(€,8) = 9, (s) for all (t s) € [1 el?and 1 < < e. It follows from (2.22)-(2.26) that all conclusions of

(A1) hold. Along the proof of (A1), we can also obtain (A2)-(A4). This completes the proof of thelemma. [J
Based on Lemmas 2.3 and 2.7, the properties for the functions M,, and N,, (m = 1, 2) are established.
Lemma 2.8. Let A > 0. the functions M,(t,s) and Ny,(t,s) (m = 1,2) given by (2.11) have the properties:
(B1) The function M(t,s) is continuous nonnegative on [1,e]*; (logt)Pr1.a4(s) < Mi(t,s) < #(s) for all
(t,5) € [1, €], where A1 (s) = Gy, (s) + (M2/A) 271:1 J"ff ki(DGp,—y, 1 (£, 8)AK;(£) /.

(B2) The function My(t,s) is continuous nonnegative on [1,e]*; (logt)P>1aa(s) < Ma(t,s) < Ms(s) for all
(t,5) € [1, €], where Ms(s) = G, (s) + (A1/A) Z?il ff "hi(t)Ggy—n, oo (8, S)AH; (1) /.

(B3) The function Ni(t,s) is continuous nonnegative on [l el’; (log P21 A41(s) = Ni(t,s) < () for all (t,s) €
[1, ], where A1(s) = (T(B1)/(AT(B1 — y0)) )Z fll ki(©)Gpy—y; p1-y, (t, 8)AK;(E) /1.

(B4) The function Ny(t,s) is continuous nonnegative on [1,e]?; (log )11 A5(s) = Na(t,s) < A4(s) for all (t,s) €
[1, e]?, where A3(s) = (T(B2)/(AT(B2 — 1)) T2, [7' hilt) Gy oo (b, )AH:(B) /1.

Here let X = C[l,e]. Then X and Z = X X X are two Banach spaces with the supremum norm
[lx|| = SUP ey ] [x(t)] and the norm ||(x, y)llz = Ilx|| + ||x||, respectively. Define the cones Y7 = {x € X|x(t) >
(log )P Y|x||, Vt € [1,e]} € X and V> = {y € X|y(t) > (log )P H|yll, Yt € [1,e]} € X, then Y = Y; x Y, C Z.

We define the operator <7 (x, y)(t) = (A (x, y)(t), “A(x, y)(t)) from Z to Z, where o7 (x, y)(t), w4 (x, y)(f) :
Z — X are given by

A (x, y)(b) =" L Mi(t,s)pr, (L Gay,ar (5, 1) f1(1, (1), y(T))d?T) ”i_s
+ 271 Jj Na(t, s)py, (J'e Gay,m, (5, T) fa(T, x(7), y(T))d—T) é, te[l,e], (2.27a)
ah(x, y)(t) =v"> L Ma(t, )¢y, (L (3, T) fa(T, X(7), y(f))_) ds

+ ‘uyl_l Je Ny (t/ S)(Pl’l (Je Gal,al (S/ T)fl (T/ x(T)/ y(T))_T) _S’ te [1’ E]. (227b)
1 1 T S

Then the pair (x, y) is a fixed point of the operator .7 if and only if (x, y) is a solution of system (1.1)-(1.2).
Lemma 2.9. Under the assumptions of system (1.1)-(1.2), then o7 : Y — Y is a completely continuous operator.

Proof. For (x,y) € Y, by using Lemma 2.8, we can get
(4 e d d
65,00 <4 [[ 6609, (]| G5 00300, w0 ) 2
#5790 || Grnts D00, )T %, e e (2.282)
1 1 T)s
e e d d
h(x,y)() < J M6 (L Ganas (5, D fo(T, x(1), y(’f))%) =

+pn ! j M) (J Gavr (5 Df (1, (), y(r))d—T) T, teme (2.28b)
1 1 T S
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that is,

e e d d
LA (x, Il <p™ ™ L M), (L Gayar (5, VAT, X(T), y(T))?T) N

s L S5 (J Gapen (5, 0)fo(5, x(2), ym)d—T) as (2.29)
e (x, y)l| <v'2 ! L Ao(S)Pr, (L (S, T) (T, x(7), (1)) — )ds
+ L M) Pr, (L Gay e (5, 7) f1 (T, X(T), y(T))?T) ?S (2.29b)

On the other hand, For (x, y) € Y, by using Lemma 2.8, we can obtain

A (x,y)(t) =p" " (log t)f L A(3)Pr, (L Gy (5, T) fi(T, x(7T), y(*c))—) +1v"2 Ylog )i

< L e (L Gayen (5, 7)fo5, X(2), ym)d{) T > Gog P Mehtx l te el (2300

ah(x, y)(t) v (log ! L A (S)Pr, (L Gaz,x (5, D fo(T, X(7), y(T))df)g + " (log £y
[ 600 (] G5 050 10, W) EE) £ 3 gt i 1€ 1,01 2300

Hence, <7/ (x,y) = (“A(x,y), (%, y)) € Y for (x,y) € Y, thatis, /(YY) C Y. Based on the continuity of the
functions f,, Gq,,a, Mm(t,s) and Ny, (t,s) (m = 1,2) and the Ascoli-Arzela theorem, it is easy to see that &/
and . are completely continuous operators. Furthermore, we can prove that & is a completely continuous
operator. This completes the proof of the lemma. O

3. Main results

For [01,0,] C [1,e] with 1 < 01 < 05 < ¢, we define the extreme limits as follows:

m(t, ; m(t,
o = limsup max ——— Sult, % Y) , o = liminf f (. y) (3.1a)
xy20x+y—0+ telLel Pp,, (X + V) xy>0,x+y—0* te[o1,02] Pp,, @, (X + 1) y)’
m(t, ; n(t,
o = limsup max Jnl 2 ) Frneo = liminf Inlt%y) =1,2, (3.1b)
x,y>0,x+y—00 te[Le] @p, (x + y) xy2>0,x+y—co tefoy,07] qopm(x + y)
and we give the following denotations
¢ ds , 7 o2 ds
My, = . M ()P, (am - 1)Pam(T)_ P My, = M (8)Pr,, (0, () Pr,, [(am)pa, (T) P
e e ds , 02 02 ds
w=| Ao L (@ = Dpo S )E, 9= A (| T @) T

where g,(s), px(s) and #(s), Hu(s) are defined in Lemmas 2.5 and 2.8, respectively, k = a,, m = 1,2.
First, for ‘{§an, 1100 € (0,00) (m = 1,2), there exist a,, Wy, € [0,1] and by, 701 € (0, 1) (m, n = 1,2) such that
Aip+ a2, =1,b1, + b2, =1 (n=1,2), w1 + w2 =1 and 11 + mp = 1. We introduce the following constants

1 w1011 ) (w2a12 )} 1 { (w1a21 ) ( [0 5)) )}
U; =—— max » Ppy |, Wy =—— max{ @y, | —=7 1], ¢», —~ ¢, 3.2a
Ty {(p’” (cclim; P ccoN 2TE e ca1 r ceaM (8.22)

Too
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1 mbn b1z , 1 T1ba T2bn
21 = io min {(Ppl ( gﬁl )/ (Pm ( ml )} ’ LZ = ;0 {(sz ( mz )/(sz ( m’z_z )} ’ (32b)
’ w) o 5, =g mnfon () on (55
g = 2}5 min {qa,,l (EUll ), Ppy (%1 )} / L= - = min {(pp2 %)’ ©p, TR (3:20)

where ¢1 = (logo1)f17!, ¢, = (log 1)t and ¢ = min{cy, ¢}

Theorem 3.1. Let A > 0, [01,02] C [1,e] with 1 < 01 < 02 < e. there exist ay,, w,, € [0,1] and b,,,, 7, € (0,1)
(m,n=1,2)such that a1, + az, =1, b1, + by, =1 (n=1,2), w1 +wy =land m; + 1 = 1.

C1) If &, ioo € (0,00) and W,, < &, (m = 1,2), then system (1.1)-(1.2) has at least one positive solution
(x(t),yt), t € [1,e],for each u € Uy, L) and v € (Uy, 7).
(C2) If 81 = 0, &y B 100, [ €(0,00) and U, < L), then system (1.1)-(1.2) has at least one positive solution

200

(x(p), y(t)), t € [1,e], for each u € Uy, 00) and v € Uy, L).

(C3) If &5 = 0, &y, 100,8200 € (0,00) and Wy < L7, then system (1.1)-(1.2) has at least one positive solution
(x(t), y(1)), t € [1,e], for each p € Uy, L)) and v € (112, o).

(C4) If 35, = = 0and Tylw, ﬁém € (0, ), then system (1.1)-(1.2) has at least one positive solution (x(t), y(t)),
tel,e], for each u € Uy, 00) and v € (Uy, o0).
(C5) If &, 85 € O, oo) and at least one of &' i o 15 00, then system (1.1)-(1.2) has at least one positive solution

Joo”

(x(t), y(t)) t € [1,e], for each u € (0, ) and v e (0, Uy).
(Co) If &5, = 0, &y, € (0, 00) and at least one of & i o 15 00, then system (1.1)-(1.2) has at least one positive

Too”

solutzon (x(t), y(t)) t € [1,e], for each p € (0, o) and ve(0,L)).

(C7) If &5, = 0, &), € (0,00) and at least one of z‘glm, C{s’éw is oo, then system (1.1)-(1.2) has at least one positive
solutzon (x(t), y(t)) t € [1,e], for each u € (0, L) and v € (0, o).

(C8) If &, = &5 = 0 and at least one of ‘&100, | is oo, then system (1.1)-(1.2) has at least one positive solution

(x(t), y(t)), t € [1,e], for each u € (0, o) and v € (0, ).

Proof. Here we will prove only the cases (C1) and (C6) since the proofs of other cases are similar.
Case (C1). We have &, &0 € (0,00) and U, < £, (m = 1,2). For pu € (Uy, £1) and v € Uy, &), there
exist a small number ¢ > 0 such that &, > ¢ (m = 1,2) and

! max {(p ( w1011 ) [ (a)zﬂlz )} <p< —1 min {(p (—T(lbll) @ (—nzb12 )} (3.3a)
i—e P \ca )P ceo Fio+e SAVEIIN AR SR W I ) '
1 w1a21 ) ( W22 )} 1 . { (7111?21) (ﬂzbzz )}
max  Ppy <v< mins @, | =1, ¢p. | =—1¢ - 3.3b
gzm _ {(PPZ (Cglmé (Pp nggﬁé ;0 +¢ (PP mz (PP glnz ( )

According to the definitions of §; , (m = 1,2), we observe that there exists R; > 0 such that
fult,x, ) < (&0 + E)Pp,(x+y) forallt e [le]andx,y >0, x+y <Ry, m=1,2. (3.4)

Now we define the set O = {(x,y) € Z,lI(x, Yllz < Ri}. Let (x,y) € Y N IQy, namely (x,y) € Y with
l(x, YIlz = Ry or ||x]| + [lyll = Ry1. Then x(t) + y(t) < Ry for t € [1,¢]. From Lemmas 2.5 and 2.8, we obtain

A (x, y)(t) <p ! L A1 (5)Pr, (J (1 = Dpa, (1) fu(1, X(7), y(T))—) &

e

* Vrz_l J'l %(S)(prz (J'l (0(2 - 1)Paz (T)fZ(T’ JC(T), y(T))?T) d?
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. d
<Hﬁ—1 L //1(5)(Pr1 (J (1 = 1)Pa1(T)( ot é)(pPl (x(7) + y(T)) ) SS
+ vt L H5() s, (L (2 = D)oy (1)(B3o + )y (¥(7) + y“))l) 5

<H’1_1(Pr1( io + S)J M (5)Py, (J (1 = Dpa, (T)(Pm (Ibelt + ||]/”)_) E‘i_s

‘ d
Vel (5 + e)J N5(8)@r, (L (a2 = 1)pa, (T)p, (lIxll + ||y||)?) ?5
=[r, (W&o + )M + @, W(F5 + I, Yz < 7ullx, Yz, Vte[lel, (3.52)
ot 00 <0 [L 00 ] (02~ D 020 y(mdl) s

ds
s

- ,u’l‘lj ME)Pr, (J (@1 = Dpa, (D) fa(T, x(1), y(1))— )
1 1

e e d
<l L S, (L (@2 = 1D)pay(D(F3p + )Py (x(7) + y(T»—T) =

S

e 4 d
+un j M SPn, (J (@1 = Dpa, (D(Fg + &)y (x(0) + W))—) =
1 1 °
e e d
<Vr2_1(Prz(S'sio + é)J <//l2(5)(Prz (L (042 1)p“2(’[)(pp2(”x“ + ”y“) ) Ss
e d
+ 1 (8 + g)J M(S)Pr, (J (a1 = 1)pa, (T)pp, (IIx]] + IIyII)?T) ?s
=[@r, V(T3 + )M + @, (T + NN, Yz < Tl iz, Vte[lel (3.5b)
Hence, it follows from (3.5) that we deduce
1 (5, )iz =l (x, )l + 115, y)l = sup | (x, y)(O] + sup L (x, (@)
te[l,e] te[Le]
<l iz + 7l iz = I iz forall () € Y N0, (36)

According to the definitions of &, (m = 1,2), we observe that there exists R’, > 0 such that
fu(t,x, ) = (C&fn — &)@y, (x+y) forallt € [oy,00]and x,y >0, x+y >R}, m=1,2. (3.7)

We introduce theset Qs = {(x, y) € Z, |I(x, y)llz < Ro} with R, = max({2R;, R} /c}. Then for (x, y) € YNIQy,
we have by using Lemma 2.8

x(t) + y(b) > mm {(10g BP 1l + r[nin {(log ty> Yyl = (log a1)" " llxl + (log a1)™> Iyl
—C1IIXI| + Gollyll = clitx, Wiz = cRe > R, for Vi € [01,02]. (3.8)
Therefore, it follows from (3.3),(3.7),(3.8) and Lemmas 2.5 and 2.8 that we obtain

A (x,y)(o1) Zu! L (log o) tr(s)¢r, (J (1) 0a, (8)pay (1) fo(T, X(7), (T))_) @
+v2t L (log 01)P L A5(8) ¢, (J [(a2)0a, ()pay (1) f2(T, x(7), Y(7)) — ) is

e J (log o' i(s)g (J T O (B~ () + v (T))d%) 0

01
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ds
s

v [ dogan 90 || 1@ 00 (0 - 300+ ) ) £

01

. o 2 dr\d
>g1u’1-1qoﬁ(z*s;w—e>j (5P (00 ), (j r(al)pmu)@m(qux,y>||z>—T)—S

o1
02

. ds
+qW*@A%m—@J

J%(S)(Prz(gaz(s))({)rz (J 2 r(“Z)paz (T)(PPZ(C”(x ]/)”Z)?) -

o1 S

=lcc1r, (U(F o = DM + cr190, V(Fae — NI, W)z > @1ll(x, Y)llz, (3.9a)

Hhx, y)(or) v+ L (log o) atx(S)p, (j D (042)003 () (0) a1, X(2), ym)—) ds

01

¢ d
+ ! L (log o1)P2 ' A (s) e, (J T(a1) 0a (8)pay (T 1 (T, X(7), y(T))—) =

ds
s

>V”_1J 2(10g o)) (5)er, (J T (@2) 00 () Pary (T (o0 = )P, (X(T) + y(1)— )

o1

! J (log o) (), ( J T (01)00y(5)Pay ((F — )y (x(0) + y@»—T) ds

01 S

] 0> a2 d
e =) | #9000 || T Ol i ) S

ds

+ 2" (e — S)J M (8)r, (0 (), (J [(@1)pa, (Dpp, (cll(x, y)llz)—) -

=lcc19n, ((Fhoo — MG + cC19, (U(F o — NI, Yz > @2ll(x, W)z (3.9b)

Hence, it follows from (3.9) that we deduce

l? (x, Wil z =lleA (x, Yl + lla(x, Yl = HA(x, y)(o1) + 2hH(x, y)(o1)
>w1ll(x, Yllz + w2ll(x, Yz = I(x, Yz forall (x,y) € Y N Iy. (3.10)

It follows from (3.6), (3.10), Lemma 2.9 and Guo-Krasnosel’skii fixed point theorem that ./ has a fixed
point (x,1) € ¥ N (Qy \ Q1) with R; < [I(x, Y)llz < Ra, x(t) > (log )P ~!|x|| and y(t) > (log t)*>~!||y|| for all
te[1,e]. If x|l > 0 and |lyll > O, then x(t) > 0 and y(f) > 0 for all ¢ € (1, ¢], respectively. Therefore, system
(1.1)-(1.2) has at least one positive solution (x(t), y(t)), t € [1,e].

Case (C6). We consider the conditions &3, = 0, &3, € (0, ) and ‘8;"100 = 0. For p € (0,0) and v € (0, &),
we choose by, € (¢, (v&5,)N2/71,1) and b}, € (@, (v35,)Ma2/m2,1) such that b] + b, =1 (n = 1,2) with
b, €(0,1) (m,n =1,2). Let ¢ > 0 be such that

1 1 . by, b,
EQp, (m) < U <E min {(pp1 ( m, ),(pp1 ( T , (3.11a)
1 by, Tobs,
< , . a1
el () (32 o

Based on the definitions of &; , (m = 1,2), we observe that there exists R; > 0 such that

At x,y) < epp(x+y)and folt,x,y) < (T3 + )pp,(x +y) forallte[le], x,y >0, x+y <R, (3.12)

We define the set (1 = {(x,y) € Z,lI(x, y)llz < Ri}. Along the proof of case (C1), for any (x,y) € Y NIQy,
then we conclude by applying (3.11) and Lemma 2.8

(%, y)() <[pr, (ue)M + ¢r, (V(F + PRI, Wiz < Tlltx, Yz, VEe(lel, (3.13a)

(%, Y)() <[pr, V(T3 + €)M + @ (ue)Iull(x, Yz < T2llCx, Yz, Vi1, e]. (3.13b)
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Hence, it follows from (3.13) that we deduce
Il (x, Pz =l (x, Yl + L, I < (T + )l yliz = lIx, y)liz forall (x, y) € Y N I. (3.14)

Based on the definitions of § , we observe that there exists R’ > 0 such that

1o’
flt,x,y) > @p(x+y)/e forallt € [o1,00]and x,y >0, x +y > R). (3.15)

We introduce the set QO = {(x, y) € Z, l|(x, y)llz < Rz} with R, = max{2R;, R)/c}. Along the proof of case
(C1), then for (x, y) € Y N dQy, we have x(t) + y(t) > cillx|l + c2llyll = cll(x, )llz = Rz > R, for Vt € [01,02].
Furthermore, by using the inequality (3.15) and Lemmas 2.5 and 2.8, we obtain

¢ d
A (x, y)(o1) >u" ! Jl(logm)ﬁl‘l///l(S)(pn (J I (@1)0a, (8)pa, (1) fi(T, X(7), y(T))—)—S

+v L (log 1)~ A5(s)¢r, (J T'(2) 00, (8)Pay (7) fa(T, X(7), y(T))—T) -

S J log ) (S)p, (J ()0 (e, (119 () + ym)—) ds

e pn (1/e) J AN(S)Pr, (0 (9))r, (J I(a1)pa, (Tp, (cli(x, y)llz)?) ds—s
=cc1r, (u/ M, Yz > I(x, Yz, | (3.16)
which implies
7 (x, Yz =l (x, Il + L2 (x, Yl = @A (x, y)(o1) > lI(x, y)liz forall (x,y) € Y NIy, (3.17)

It follows from (3.14), (3.17) and Case (C6) that system (1.1)-(1.2) has at least one positive solution (x(t), y(t)),
€ [1, e]. Hence, all conclusions of the theorem are obtained. [

Second, for gmo, o € (0,00) (m = 1,2), there exist a,,;,, v, € [0,1] and by, 70, € (0,1) (m,n = 1,2) such
thatay, +a», =1, by, + bzn =1(n=1,2), w1 +w; =1and m; + mx = 1. We introduce the following constants

e _ 1 max {(p ( @11 ) @ (a)zau )} 10, - max {(p (_w1a21 ) () ( G222 )} (3.18a)
Fo P\ ) TP ey ) f 7 & P cay) TP ey ) |7 '

~ 1 . m1b11 Tob1p =~ 1 . by Tiob

. — 1 —

- - {on (S o (552)} - @ = o (52 ) o (2} 000

=, s s =, s s
L 35 mm{(pm(ﬁ),(pm(m—j)}, 2= C&s mm{(ppz( l)'%z(ﬁr;z)}' (3.18¢)

Theorem 3.2. Let A > 0, [01,02] C [1,e] with 1 < 01 < 02 < e. there exist ay,, w,, € [0,1] and by, 71, € (0,1)
(m,n=1,2)such that a1, + azy, =1, b1, + by =1 (n=1,2), w1 +wy =land m; + 1, = 1.

D) IfF & € (0,00) and 0, < 8, (m = 1,2), then system (1.1)-(1.2) has at least one positive solution
mo” Om Y p
(x(H), y(), t € [1,¢], for each p € (W, €1) and v € (Uy, L),

D2) If ¥, =0, &y, 20, éo € (0, oo~) and fIZ < E’2,~theﬁ system (1.1)-(1.2) has at least one positive solution
(x(t), y(t)), t € [1,¢e], for each u € (111, oo) and v € (112, 2;)

(D3) If & =0, F.., 30' 20 € (0, oo~) a;id fIl < 5&, ihen system (1.1)-(1.2) has at least one positive solution
(x(t), y(t)), t € [1,¢€], for each u € (111,53’1) and v € (112, oo).
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(D4) If &, =& 0 and 310, ?920 (0, 00), then system (1.1)-(1.2) has at least one positive solution (x(t), y(t)),

= 85 =

t€[1,e], foreach u € (111, )and Ve (112, )

(D5) If & 8o € (0,00) and at least one of 8’10, o is 0o, then system (1.1)-(1.2) has at least one positive solution

(x(®), y(1), t € [1,¢], for each pu € (O, 111) andv € (0, 112)

(De) If &, =0, 85 € (0,00) and at least one of 8’10, o 15 00, then system (1.1)-(1.2) has at least one positive
solution (x(t), y(t)), t € [1,e], for each u € (0, o0) and VE (0 53')

(D7) If &5, =0, &, € (0,00) and at least one of {930, 8;0 is oo, then system (1.1)-(1.2) has at least one positive
solution (x(t), y(t)), t € [1,e], for each u € (O, Ei) and v € (0, o).

(D8) If &}, = &5 = 0and at least one of ‘&30, 330 is oo, then system (1.1)-(1.2) has at least one positive solution
(x(t), y(t)), t € [1,e], for each u € (0, 00) and v € (0, o).

Proof. Here we will prove only the cases (D1) and (D6) since the proofs of other cases are similar.
Case (D1). We have 3{m0, T € (0,00) and lI < L (m=1,2). For u € (lll,Ll) andv € (Hz, Lz) there
exist a small number ¢ > 0 such that g'ino >e(m=1,2)and

1 w1411 A1 1 . b1 Tob1n
, —_— <p< — | , 1
,10 —¢ max {(Ppl (gglgjti ) ’(ppl (ngm{l )} H C&sm +e min {(ppl ( intl ) (lopl ( ml )} (3 9a)

1 w1021 ) ( WA )} 1 . { (ﬂ1b21) (ﬂzbzg )}
‘ maxs @y, | —= |, Pn, <V o min{ @, | |, O | o5 | ¢ - 3.19b
o~ € { ’ (cclmz P2\ oo, S T € 2\ N, 2y, ( )

According to the definitions of 8{”0 (m =1,2), we observe that there exists R3 > 0 such that

fult, X, ) > (‘&ino — s)(ppm (x+y) forallt € [oy,02]and x, ¥y >0, x+ y <R3, m=1,2. (3.20)

Now we define the set Q3 = {(x,y) € Z,|l(x, ¥)llz < Ra}. Let (x,y) € Y N3, namely (x,y) € Y with
l(x, Y)llz = R or |Ix|| + [lyll = Rz. Similar to the proof of case (C1), then x(t) + y(f) < Ry for Vt € [1,¢] and
x(t) + y(t) = cll(x, )llz for Vt € [01,02]. By using (3.19), (3.20) and Lemmas 2.5 and 2.8, we can deduce

¢ d
A (x, y)or) >p" Jl(logm)ﬂl‘l//ﬁ(S)(pn (J I (@1)0a, (8)pa, (1) (7, X(7), y(T))—)—S

e jf(log P A, (j T(02) 00, (5)pa (1) fo(T, 1(0), y(D) ) ds

02 02 d
>H“‘1J (log o1)f* "L a4 (s) gy, (J T (1) 00, (8) P (T)(Fg e)qopl(x(f)w(ﬂ)—)—s

02 02 . d
v [ ogan g || T 0 (0 - 9050 + w) ) 2
. 02 02 d
a1 o0 A6 O (|| TP el 2 ) £
72 ds

el (F - e)j )P (00, (J T(02)pas (D cll(x, y)HZ)—) ds
—lec1n (U — M + cargm (& — N Vllz > Wil iz, (3.21a)

s, (o) v | (logon o), (L [(02) 00y ()P () fo 5, X(2), ym)d{) %
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+7 | Qoo 1 A, (L T(a1)a, ()P, (0 fi (4, 3(2), ‘/(T”dl) 0

02 02 d
>+ [ (log o ), (J (0200, (5)p, (0) By - e)qom(x(r)w(r»—);

01

01
02

02 o2 d d
+unt J (log 1)1 A (5)er, (J T(1)0a, (8)Pay (T)(Frg = €)ppy (x(7) + y(T))7) ?S
ds
S

>g2vfz-1(pr2(i§;0—e>J2///2<s>(p,2<@az<s>><p,z (J T (@2)pay (D@ (6, Dl 2) )

4 0 0 d
+g2w*1(pn(z‘s;0—s>J A )r, (00, ), (j T(@1 90y (D (cllx, y)llz)—)—s

01

=lcc1r, (W(Fag — €)M + car9r, ((Fp — DR, W)z > @2l(x, Y)llz- (3.21b)

Hence, it follows from (3.21) that we deduce

Il (x, )iz > FA(x, y)o1) + 4 (x, Y)(01) 2 (w1 + @)X, Yz = [I(x, )iz forall (x,y) € ¥ N Q3. (3.22)

LetFy, : [1,e]xXR* — R* be defined by F,(t, u) = max0<x+y<u fu(t,x,y)forallt € [1,e]landu € R*,m =1, 2.
Then f(t,x,y) < Fu(t,u) forallt € [1l,e]and x,y > 0, x + y < u, m = 1,2. Then, the function 7, (t, *) are
nondecreasing with respecttot € [1, e] satisfying the condition lim sup,,_, . maxief1,¢)(Fu(t, u)/ @p,, (1)) =
m =1,2. Furthermore, for ¢ > 0, there exists R} > 0 such that for all € [1,e] and u > R, we have

Tm(t M) ?m(t/ M) +

< lim sup max
I R )

}1100’

€= Frioo + € 2 Foult, 1) < (Fjpoo + )p, (), m=1,2. (3.23)

We consider the set Qy = {(x, y) € Y, [l(x, y)llz < Ry} with Ry = max{2Rs, R}}. According to the definition
of ¥ (m = 1,2), for (x, y) € Y N JQy, we can observe

St x(0), y() < Fu(t, 10 PNIZ) < (Frueo + E)p,, ((x, Yllz) for allt e [1,e], m=1,2. (3.24)
By applying the inequality (3.24) and Lemmas 2.5 and 2.8, then we deduce the following results

#5900 < [0 [ 02~ Do 0 it 300, 90 ) £

4l J'1 M5(5)pr, (J (a2 — 1)pay(7) fo(T, x(7), y(T))—) ds

e € d
<F‘rl_1 L A (8)Pry (Jl(al = Dpay (D& + E)p (I, }/)“Z)?) ?S

et | o, (J (22 = Dpa (O F3 + NP1, y)”z)dl) 0
1 1 o
[, (T, + DB + P (F, + Oz < Tllelz VEe[Lel,  (325a)

e, ) < L AP (L (a2 = 1)pa, (1) f2(T, x(7), ]/(T))d%) i_s

e L H S (L (@1 — Dpan () fo(5,2(0), y(v:))di) s

(4 € d
<! L M), (sz = P (D)o + NP, ””Z)_) B

e ¢ d
+un L M (S)pr, (L (@1 = 1)pa, (D (oo + E)p (II(x, y)||z)?T) ?S
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=[@r, V(Freo + M2 + @y, (W(F], + I Yz < TRl Yz, VEE[Lel. (3.25b)
Hence, it follows from (3.25) that we deduce
< (x, Pz =l (x, Yl + [l x, I < (T + )l iz = lItx, y)liz forall (x, y) € Y N IQy. (3.26)

It follows from (3.22), (3.26), Lemma 2.9 and Guo-Krasnosel’skii fixed point theorem that </ has a fixed
point (x,1) € ¥ N (Qy \ Q3) with Rs < [I(x, Y)llz < Ry, x(t) > (log )P ~lx|| and y(t) > (log t)*>~!||y|| for all
te[1,e]. If [[x]| > 0 and |ly|| > O, then x(t) > 0 and y(f) > O for all t € (1, ¢], respectively. Therefore, system
(1.1)-(1.2) has at least one positive solution (x(t), y(t)), t € [1,e].

Case (D6). We consider the conditions & = 0, &, € (0, ) and 330 =oo. Forp € (0,0)and v € (O,Eé),
we choose b}, € (¢, (v¥5,,)N2/m1,1) and b}, € (¢, (v, )M2/72,1) such that b] +b;, =1 (n = 1,2) with
b, €(0,1) (m,n =1,2). Let ¢ > 0 be such that

1 1 . b, b,
' < <_ 7 7 .
EQp, (Clemi) U - min {(pp1 ( T, ) Pp, ( ERl (3.27a)
1 (mby) (b, i}
< 7 . °
v ;DO + & mn {(sz ( mz ) (sz ( ﬂnz (3 2 )

Based on the definitions of & ., we observe that there exists Rz > 0 such that

0
At x,y) > @p(x+y)/e forallt € [01,00]and x,y > 0, x + y < Rs. (3.28)

We introduce the set Q3 = {(x,y) € Z,ll(x, y)llz < Rs}. Along the proof of case (C1), then for (x,y) €

Y N dQ;, we have x(t) + y(t) = c1llxll + callyll = cli(x, y)llz for Vt € [01, 02]. Furthermore, we give
ne [ B ¢ dt) ds
e, )00 27" | Qog o) 46y, (| T Gpa Ofitex(@, ()T | T

ds

e j (log o1 " A5(3)pr (j D106, (5)e () fo(T, X(1), yu))d—T) as
1 1 T S

02 o2 d d
> J (log o)~ 4 (5)¢pr, (J L@ O o 0 + 3 (T))?T) g

” dr\ d
M) Pr (00, (5)pr, (J T (1) pay (Dpp, (CllCx, y>||z>§) 2

o1 S

> g (1/¢) J
=cc19n (/)M NI(x, Wiz > I(x, iz, (3.29)
which implies

Il (x, Pz =l (x, Yl + [l (x, I = FA(x, y)(o1) = [I(x, yliz forall (x,y) € Y N Q. (3.30)

Along the proof of case (D1), the function 7, (m = 1,2) defined in case (D1) satisfies the conditions

lim sup max UL 0 and limsup max Fall,v) _ . (3.31)
oo tellel @p, (14) oo tellel @p,(1t)
From (3.31), for € > 0, there exists R} > 0 such that for all t € [1,¢] and u > R, we have
Filt,u) . Fa(t, u)
—«l +e=e=>F(tu)<e¢ u), 3.32
o () S HmSUpIAX -y TETE 1t u) < egp,, (u) (3.32a)
521 i supmax 299 L Z g e o Falt ) < (B + O)pp (1) (3.32b)

Pra (u) u—oco  tellel Pp, (u)
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We consider the set Q4 = {(x,y) € Y, [I(x, y)llz < Ry} with Ry = max{2Rs, R]}. According to the definition of
Fm (m =1,2), for (x, y) € Y N JQy4, we can observe

Silt,x(®), y(£) <F1(, ll(x, y)liz
falt, x(8), y(B) <F2(t, Nl(x, Yz

By applying the inequality (3.33) and Lemmas 2.5 and 2.8, then we deduce the following results

(%, y)(t)
(%, y)(t)

Hence, it follows from (3.34) that we deduce

epp,(I(x, Yliz) for allt e[l,e], (3.33a)
(Freo + OPp.(ll(x, Yliz) for allt € [1,e], (3.33b)

NN

)
)

< [@r, (ue)My + @r,(V(Fieo + )X Yz < Tllx, Wiz, Yte[le], (3.34a)
< <

[
[, V(&2 + W2 + @1, (uE)li(x, Yz < T2, Yllz,  VEE[Le]. (3.34b)

7 (x, Pz =l (x, I+ L2 (x, Il < (e + )t iz =11 yliz forall (v, y) € Y N dQy. (3.35)

It follows from (3.30), (3.35) and case (D6) that system (1.1)-(1.2) has at least one positive solution (x(t), y(t)),
t € [1,e]. Hence, all conclusions of the theorem are obtained. [J

Next, by using the proof by contradiction, we present some sufficient conditions for nonexistence of
positive solution of addressed system (1.1)-(1.2) under the different intervals of y and v.

Theorem 3.3. Let A >0, [01,00] C[1,e]with1l <01 <0y <e.

(E1) If there exist two positive constants Ay, such that fu(t,x,y) < Aupp,(x +y) for Vt € [1,e] and x,y > 0,
m = 1,2, then there exist two positive constants Ly and vy such that system (1.1)-(1.2) has no positive solution
for every p € (0, po) and v € (0, vp).

(E2) If there exist a positive constant ©y such that fi(t,x,y) > O1@,, (x + y) for Vt € [01,02] and x,y > 0, then
there exist a positive constant i such that system (1.1)-(1.2) has no positive solution for every u € (u, o) and
v € (0, 00).

(E3) If there exist a positive constant ®, such that fo(t,x,y) > Oy, (x + y) for Vt € [01,02] and x,y > 0, then
there exist a positive constant vy such that system (1.1)-(1.2) has no positive solution for every u € (0, o0) and
v € (v, ).

(E4) If there exist two positive constants Oy, such that f,,(t,x,y) > On@y, (x +y) for ¥t € [01,02] and x,y > 0,
m = 1,2, then there exist two positive constants ug and v;, such that system (1.1)-(1.2) has no positive solution
for every p € (ug, 00) and v € (vj, ).

(E5) If &, &rweo € [0, 00) (m =1,2), then there exist two positive constants uy and vy such that system (1.1)-(1.2)

mQ’ Pm
has no positive solution for every u € (0, uo) and v € (0, vp).

(E6) If &, &, € (0,00], fi(t,x,y) > 0 for Yt € [01,02] and x,y > 0 with x + y > 0, then there exist a positive

constant g such that system (1.1)-(1.2) has no positive solution for every u € (u(, o) and v € (0, o).

(E7) If &, T, € (0,001, folt,x,y) > O for Vt € [01,02] and x,y > 0 with x +y > 0, then there exist a positive

constant g such that system (1.1)-(1.2) has no positive solution for every u € (0, 00) and v € (v}, o).

(E8) If &, Finoo € (0,00, fult,x,y) > 0 for ¥t € [01,02] and x,y > 0 with x + y > 0, m = 1,2, then there exist

m0’
two positive constants p and vi, such that system (1.1)-(1.2) has no positive solution for every p € (ug, o) and
v € (v, ).

Proof. Case (E1) Let p9 and vg be defined by

- 1 min b by and vy = 1 min mba b (3.36)
[‘10 A1 (Ppl glnl ’ (Ppl ml 0 A2 (ppz mz / (ppz EIRZ 7 .
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where by, 0, € (0,1) (m,n = 1,2) such that by, + by, =1 (n = 1,2) and 7t; + 1, = 1. In other word, we will
prove that system (1.1)-(1.2) has no positive solution for every u € (0, up) and v € (0, vp).

For u € (0, po) and v € (0, vp), we assume that system (1.1)-(1.2) has a positive solution (x(t), y(t)), t € [1,e].
From Lemmas 2.5 and 2.8, we deduce

x(t) = o (x,y)(b) <p! L S, ( J (@1 — D, (D A1y, (6(0) + y(T))—) ds

e e d
+ Vrz_l Jl </V2(S)(Pr2 (Jl (052 1)pa2 (T)AZ(PPz (x(T) + ]/(T))_) ?S

<4y pr (M) L MO)p, (L (@1 = 1)pay (O, (Il + Iy _T) 0

) [| 560 [ @2 D+ i ) £
(o ¢ nsoRals iz < il Yl 4 <l (.37
¢ d
1) = ol )0 <7 [ a6 [ 02 Dpra@ag o0+ v B ) £
e e d
w7 [ i [ @ = Dpu @1, 000+ s ) £
¢ d
%(Az)J A(S)Pr, (L (@2 = 1)pa, (D), (IIxll + IIyII)f) ;S
i 0 [ i ([ @1 D g 0+ 1902 )
1 1 T S
=1 (oA + g, (oA I Wiz < Tl Pllz, Ve €L el 3:37b)
Hence, it follows from (3.37) that we obtain
162, )z =N ol + N, )l < s )l + el )l = e )l for i € [1, ], 3.38)

which is a contradiction. Hence, system (1.1)-(1.2) has no positive solution for every p € (0, up) and
v € (0,vp).
Case (E2) Let y be defined by

uy = min{g,, (1/cci)), @, (1/(ccad))} /01 (3.39)

In other word, we will prove that system (1.1)-(1.2) has no positive solution for every u € (u;, ) and
v € (0, 00). For u € (ug, o) and v € (0, o), we assume that system (1.1)-(1.2) has a positive solution (x(¢), y(t)),
€ [1,e]. If ¢y M > 29, then pj = (1/O1) @y, (1/(cc1M])). From Lemmas 2.5 and 2.8, we observe

{4 e d d
x(o1) = A (x, y)(o1) Zu" L (log 01)P "L 4(5)pr, (L T(@1) 04, (8) e (T) (T, x(1), y(ﬂ){) f

02

>c1(uf)" e (©1) J

o1

=cc19n (@) lI(x, Yliz = 1I(x, Yz, (3.40)

which implies [|(x, y)llz = llea(x, y)ll + A x I = lleAalx, vl > l(x, y)llz, which is a contradiction. If
1M < N7, then uj = (1/01) ¢y, (1/(cc2))). From Lemmas 2.5 and 2.8, we observe

6P, 005, (J ) pe (D (€, y>nz>d{) &

o1

y(o1) = o (x, y)(o1) " L (log 1)~ A (s)g, (L T(01)00, () ey (7) fi (T, X(7), y<T>>d7T) %
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>H”‘1J (log o1)2 L A (s) gy, (J 2F(al)@m(s)pal(f)(@lfpm(x(ﬂ+.’/ T))— -

S
72 dt\ds
f/t/l(s)(Pfl (Qal (S))qoh (J F(“l)pm (T)qopl (C”(x ]/)”Z)?) ?

01

>ty (@0[

o1

=cc20r (@)Y I(x, Yliz = llCx, Yz, (3.41)

which implies [|(x, Y)llz = [l (x, Y)I| + [l (x, Y = [l (x, Y > I(x, y)llz, which is a contradiction. Hence,
system (1.1)-(1.2) has no positive solution for every u € (u;, o) and v € (0, ).
Case (E3) Let vj be defined by

vg = min (g, (1/(cc2Dy)), s (1/(ccrs))} /©:. (3.42)

In other word, we will prove that system (1.1)-(1.2) has no positive solution for every u € (0,00) and
v € (vj, ). Similar to the proof of case (E2), we can easily obtain that the conclusion of case (E3) holds.
Case (E4) Let pj and vj be defined by

e i (28 g (222} ang = L i (2] g (222
ECH P\ ) TP coady 07 @ P cay ) P\ ey ) :

where a,,;,, w,,, € [0,1] (im,n = 1,2) such thatay, +a, =1 (n = 1,2) and w; + w, = 1. In other word, we will

prove that system (1.1)-(1.2) has no positive solution for every u € (0, ug) and v € (0,v). For u € (0, uf) and

v € (0,vy), we assume that system (1.1)-(1.2) has a positive solution (x(t), y(t)), t € [1,e]. From Lemmas 2.5
and 2.8, we have

02 02 d

(o0 = st o) 1™ [ Gog 0P i | Taan (0010 50 + w2 ) £
02 02 d

w7 [ oga g | T 00 (0020000 + e %) &

) 02 d

1) (@0 || 16O (|| Tanpn il i 2 ) £

01
02

) (@) J

01

‘/I/Z(S)q)rz (Qaz(s))(p"z (J 2 r(az)Paz (T)(sz((,'”(x, y)”Z)?) ds_s

o1

=[cc1pn (O1)M + cc19, (O N(X, Yz = wnll(x, Yz, (3.44a)

o2 d
y(o1) = A(x, y)(o1) >V’2_1J (log 01)* ™' 2(s)¢r, (J [(02) 00, (8) o, (T)@2pp, (x(7) + y(T))—) =

71 S

e Lz(log MG, (J ()00 (9 (D1 (x(0) + 3 (T))_T) H

01

o 02 02 dS
20002 | 0000 | T el T )
02 02 d
R AC Y] S E ) (J TP (D) (i, ]/)llz)—) "
=[ccopr, (ve©2) M, + cCripy, (@M TNI(x, Y)liz > wall(x, Y)llz- (3.44b)
Hence, it follows from (3.44) that we obtain
ICx, Yz =l (e, I+l x, I > willCx, yliz + w2l iz = 11 yliz, (3.45)

which is a contradiction. Hence, system (1.1)-(1.2) has no positive solution for every u € (ug, o) and
v € (v, o).
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Case (E5) Based on the proofs of Theorems 3.1 and 3.2, from the conditions &;, & € [0,00) (m =1,2),
we can obtain easily that there exist two positive constants A, such that f,(t,x,y) < Augp,(x + y) for
vVt € [1,e] and x,y > 0, m = 1,2, then the assumptions of case (E1) hold. Furthermore, we have the
conclusion of case (E1).

Case (E6) Based on the proofs of Theorems 3.1 and 3.2, from the conditions %io' gm € (0,00], fi(t,x,y) >0
for Vt € [01,02] and x,y > 0 with x + y > 0, we can obtain easily that there exist a positive constant ©,
such that fi(t,x,y) > O19,,(x + y) for ¥t € [01,02] and x,y > 0, then the assumptions of case (E2) hold.
Furthermore, we have the conclusion of case (E2).

Case (E7) Based on the proofs of Theorems 3.1 and 3.2, from the conditions i}éo, fyéoo € (0,00], folt,x,y) > 0
for Vt € [01,02] and x,y > 0 with x + y > 0, we can obtain easily that there exist a positive constant @,
such that f,(t,x,y) > ©2p,,(x + y) for Vt € [01,02] and x,y > 0, then the assumptions of case (E3) hold.
Furthermore, we have the conclusion of case (E3).

Case (E8) Based on the proofs of Theorems 3.1 and 3.2, from the conditions i}mo, 0 €(0,00], fiu(t, x,y) >
0 for Vt € [01,02] and x,y > 0 with x + y > 0, m = 1,2, we can obtain easily that there exist two positive
constants A, such that f,,(t,x, y) < Au@p, (x +y) for ¥t € [1,e] and x, y > 0, m = 1,2, then the assumptions of
case (E4) hold. Furthermore, we have the conclusion of case (E4). This completes the proofs of theorem. [

4. Some examples
Consider the nonlinear Hadamard fractional differential systems with p-Laplacian operators
P (733(0) = philt, X0, yO), P (@7 y(®) = vhE X, Y1), teLe) (4.1)

with the following coupled nonlocal Riemann-Stieltjes integral boundary conditions

2/3

+ J t(log )5 27 y(t)
1

Ve
ox(1) = x(1) = 0, 7'x(e) = J log t 73 y(t) dHtl(t)
1

3/4

ou(1) = (D) = 81 =0, Zyle) = | - 3tlog} 7ix(
23x(1) = 2%x(e) = 8y (23 x(1))) =0, ZP2y(1) = 7% y(e) = 5(%(@% y(1)) =

wherep1 = 4,11 =4/3,p2 =3, 1 = 3/2, Hi(t) = 7t for all t € [1,e], Ho(t) = {0, € [1, Ve);2,t € [Ve,el},
Ki(t) = {1,t € [1, Ve);4,t € [Ve,el}, Ay = (T(B)/T (B — 1) ff (log )11 =1ky (HdKq (1) /t = IT(§)/(4T(¥2)) ~
4.3360, Ay = (I'(B2)/T(B2—11) )f (logt)ﬁz MLy (8)(dHa (8)/5)+(T(B2) /T (B2~ T]Z))f (log tyf2="" 2, (1) (dHo(t) /1) =

T0(5)/QFT(2)+IT(E)/T () ~ 9.1556, A = T(B1)T(B2)/(T(B1~yo)T (B2=10))— M1 Az = TET(5)/(T(ET(Z)) -
A1A2 ~ 16. 3266 > 0 and

dHa(t)
t 7

dKl(t) 4.2)

1 [ (logt)2(1-1logs)? — (log(t/s)?, 1<s<t<e, 5
ay,ar\br 3 3 == 4.
Caanllr5) = r3) { (logt)? (1 —logs)?, 1<t<s<e, 172 5
1 | (log t) (1-1logs): — (log(t/s))3, 1<s<t<e, 8
ts)=—— ; =2, 4.3b
azaa(l, ) = g { (log )3 (1 —logs)3, 1<t<s<e, %273 (4.3b)
(log )i (1 —logs)s — (log(t/s)):, 1<s<t<e, 7 5
— t 5 5 ==, ==, 4
Copinlyo) = % { (logt) (1 - logs)?, I<t<s<e, P77 V03 (39
(log t) (1 —logs)s — (log(t/s))5, 1<s<t<e, 14 7
ot 1 ==, ny=%, (43d
Craprnolt,9) = g { (logH* (1 - logs)s, I<t<s<e P23 M=y @3
(logt) (1 —logs)é — (log(t/s))s, 1<s<t<e, 5 2
Gﬁl‘?”hlﬁ—}’o(tls) z7 { (log t) (1 —IOgS)%, 1<t<s <e, Yo _3’ 71 _3/ (436)
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1 ( (logh)(1—1logs)s — (log(t/s))s, 1<s<t<e, 7 3
-m,Ba—1no\t,S) = ==, =—, 4.3f
Gﬁz P2 lo(t s) (Q { (logt)%(l—logs)%, 1<t<s<e, o > m 5 ( )
1 (logt) 5 (1-logs)s — (log(t/s))s, 1<s<t<e, 7 11
=T, =T, t/ =5 =—. (43
Cpromprm () = r(lg){ (logH) ¥ (1 — logs)¢, l<t<s<e M7z M=% (438

From (4.3), then we have g,, () = (log#)?(1 - logt)/T(3), pay (t) = (1 —log1)? logt/T(3), 0u,(t) = (log )3 (1 -
10g £)/T(2), pa, (t) = (1 — log )3 log t/T(8), %, (s) = (1 = logs)¢ (1 — (1 — logs)3)/T(Z), %y, (s) = (1 - logs)s(1 —
(1-log s)2)/ F(%). Furthermore, from (4.3) and Lemma 2.8, we can deduce

=+ 2L [ () - togor ~(3-toss)" 11 f’ (442)
AN | (1) a-1oge, Ve <
() = Gy (5) + 25111?(11_9) ((%)( ~logs)t ——(1210gs+19)( 1ogs) ]
6
L (1%7 ) a-toget-(i-10ge)", 1es< (4.4b)
AT(¢) (%) 1- logs)6 Ve<s<e,
7y (1) 2 5 5
() = 3T(12_1)(2)1_7 (%)161 (1—logs)z —(%—logs) , 1<s< e, (4.40)
AT(HI(E) (%) (1-logs)s, Ve<s<e,
210 (%) 1\¢ L1 1 g
M5 (s) zm [(E) (1-1logs)s —E(1210g3+19)(§ —logs) ]
L AGG) ZT(M)(%)% (%) (1-1og9! — (1-logs)", 1<5< V&, (4.4d)
AF( )F( (%) 1- logs)e \/E <s<e. .

Here let 0y = Ve and 0, = V&3, then [{, Vé3| c [Le], c1 = (1/4)°?, ¢ = (1/4)"F and ¢ = (1/4)1",
It follows from (4.4) that 9i; = 0.084950, M, ~ 0.033247, I, =~ 0.017544, N, ~ 0.059091, 31]3'1 ~ 0.027963,
MY, ~ 0.009042, 9| ~ 0.005792 and N ~ 0.011025. Let ay, = byn = wy = My = 1/2 (m,n = 1,2). Then
max{qy, (w1a11/(cc1M))), @y, (212/(c62 M)} ~ max{9.8215x10'%,1.4147x10'8} = 1.4147x10", min{p,, (m1b11
/), @y (Tab1a /M) ~ min{25.4877,2.8936 X 10} = 25.4877, maxi{y, (w121 /(c1R})), @py (0212 / (<o)} ~
max{1.3694x10'°,5.1709x 1011} = 5-1709X1011,min{(sz(Tllbzl /%2),(pp2(7'(2b22/9ﬁz) ~ min{17.8994,56.5425} =
17.8994.

Example 4.1. Consider the Hadamard fractional differential systems (4.1) with
filtx,y) = (t+ 1) (x* + y4), falt,x,y) = (2 —-1log t)f(e("’ry)2 —1) forallte[l,e]and x,y > 0, (4.5)
where 7i, £ > 0. From (3.1) and (4.5), we can know that &, =0, & = oo, &, = 2/, &, = .

(F1) Letmy = mp = 1/2. From case (C6) of Theorem 3.1, system (4.1)-(4.2) with (4.5) has at least one positive
solution (x(t), y(t)), t € [1,e], for each u € (0, 00) and v € (0, £}), where £} = 1/(‘{850(2‘.1]22)3).

(F2) From (4.5), we deduce that f(t,x,y) > @(x + y)* for all t € [\/_ \/_] and x,y > 0 with ©®, = (5/4)".
From case (E3) of Theorem 3.3, system (4.1)-(4.2) with (4.5) has no positive solution for every u € (0, o)
and v € (v}, ), where v} = 1/(@2(cc19)?) with ¢ = (1/4)%? and ¢ = (1/4)"/3.
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Example 4.2. Consider the Hadamard fractional differential systems (4.1) with

2% 10803 + )2 + (x + y)*)(2 + sin(x® + y ))

filt,x,y) =(logt + 1) 721y (4.6a)

_ (8 X 101 (x? + y2)® + (x + y)*)(3 + tan(x? + yz))
fo(t,x,y) =(2 - log ) T+ + 77 (4.6b)
forall t € [1,e] and x,y > 0. From (3.1) and (4.6), we can know that &, = 4, &_ = 1.2x 10", §, = 2,
F ., =2x10", F5) =6, &, =64x10"2, F, =3, F =8x10", 2(pp1(x+y) filt,x,y) < 1.2><1019(pp1(x+y)

B3pp, (x + 1) < fz(t x y) < 6.4x 102, (x + y)

(G1) From case (C1) of Theorem 3.1, system (4.1)-(4.2) with (4.6) has at least one positive solution (x(t), y(t)),
t € [1,e], for each u € (0.707350, 6.371925) and v € (0.646363,2.983233).

(G2) From case (E1) of Theorem 3.3, system (4.1)-(4.2) with (4.6) has no positive solution for every u €
(0,2.123975 x 10718) and v € (0,2.796781 x 10712).

(G3) From case (E4) of Theorem 3.3, system (4.1)-(4.2) with (4.6) has no positive solution for every u €
(7.073500 x 10'7, 00) and v € (1.723633 x 10'!, c0).

Example 4.3. Consider the Hadamard fractional differential systems (4.1) with

(2 + PP + (x + 1)>)Bx 10° + tan(x® + 1))

fi(t,x,y) =(logt + 1) 172X 1007 7 79) , (4.7a)
B (2 + 2% + (x + y)?)(2 x 10° + sin(x? + y?))
f2(tl X, y) _(2 - 1 ) 1 + 2 % 103(3(2 + yz) 4 (47b)

for allt €[1,e]and x, y > 0. From (3.1) and (4.7), we can know that &, = 6x 103, § =3 x10°+1x107,
0 =3x10%, & =5x10"° &, = 4x10°, F, —3><102+1><10 5, Fp =2%x10°, F . =5x107%,
5x107%q,, (x + y) < fit,x,y) < 6 X 1013(‘0,,1 (x+y), 5x 1074y, (x + y) < folt, %, y) <4 X 10°@p, (x + ).

(H1) From case (D1) of Theorem 3.2, system (4.1)-(4.2) with (4.7) has at least one positive solution (x(t), y(t)),
t € [1,e], for each u € (4.715667 x 10%,3.058524 x 10°) and v € (2.585450 x 10°,3.579880 x 10%).

(H2) From case (E1) of Theorem 3.3, system (4.1)-(4.2) with (4.7) has no positive solution for every u €
(0,4.247950 x 10'%) and v € (0,4.474850 x 10°).

(H3) From case (E4) of Theorem 3.3, system (4.1)-(4.2) with (4.7) has no positive solution for every u €
(2.829400 x 10?3, c0) and v € (1.0341800 x 10%5, c0).

5. Conclusions

In this paper, a class of nonlinear p-Laplacian Hadamard fractional differential systems with coupled
nonlocal Riemann-Stieltjes integral boundary conditions have been investigated. First, we established the
Green’s functions of the considered systems and their properties. Then, by means of Guo-Krasnosel’skii
fixed point theorem, some sufficient conditions for existence and nonexistence of positive solutions for the
addressed systems have been obtained under the different intervals of the parameters y and v. Finally,
some examples have been presented to show the effectiveness of the main results. Based on main results
in this paper, nonlinear p-Laplacian/generalized p-Laplacian/variable Laplacian Hadamard/y-Hilfer frac-
tional differential systems with other coupled nonlocal Riemann-Stieltjes integral/multi-points boundary
conditions will be one of our future research topics.
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