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Abstract. The goal of this paper is to study the properties of zeros of some special quaternionic polynomials
with restricted coefficients, namely coefficients whose real and imaginary components satisfy suitable
inequalities. We extend the well-known Eneström-Kakeya theorem and its various generalizations from
complex to the quaternionic setting. The main tools used to derive the bounds for the zeros of these
polynomials are the maximum modulus theorem and the structure of the zero sets established in the newly
developed theory of regular functions and polynomials of a quaternionic variable.

1. Introduction

The task of determining the regions, mostly circular or annular, containing all the zeros of a polynomial
on using various methods of the geometric function theory is a problem of interest both in mathematics
and in the application areas such as physical systems. Due to this fact, various authors have studied
extensively problems involving polynomials and their properties in general, and location of their zeros (cf.
[1, 5, 12, 13, 16]). We can find a large body of research concerning an upper bound for the moduli of all
the zeros of a polynomial when its coefficients are restricted with special conditions. One of the classical
results concerning the zeros and their regional location of a restricted coefficient polynomial is known
in the literature as Eneström-Kakeya theorem [12]. This classical result is particularly important in the
study of stability of numerical methods for differential equations and, subsequently, many related results
giving extensions and generalizations to this theorem appeared in the literature. We refer the reader to the
comprehensive books of Marden [12] and Milovanović et al. [13] and the references therein for a survey of
extensions and refinements of this well known result.

Theorem A (Eneström-Kakeya Theorem). If T(z) =
∑n
ν=0 aνzν is a polynomial of degree n, where z is a complex

variable, with real coefficients satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T(z) lie in |z| ≤ 1.
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The above result is of great importance in the geometric function theory because of its numerous
applications in many areas of scientific disciplines and its extensions, generalizations and improvements in
several directions. In 1967, Joyal, Labelle and Rahman [10] extended Theorem A to the polynomials whose
coefficients are monotonic but not necessarily non-negative by proving the following result.

Theorem B. If T(z) =
∑n
ν=0 aνzν is a polynomial of degree n, where z is a complex variable, with real coefficients

satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0,

then all the zeros of T(z) lie in

|z| ≤
an − a0 + |a0|

|an|
.

The extension of Theorem A to complex coefficients was established by Govil and Rahman [9] in the
form of the following result.

Theorem C. If T(z) =
∑n
ν=0 aνzν is a polynomial of degree n with complex coefficients such that for some real β,

| arg aν − β| ≤ θ ≤
π
2
, 0 ≤ ν ≤ n,

and

|an| ≥ |an−1| ≥ · · · ≥ |a1| ≥ |a0|,

then all the zeros of T(z) lie in

|z| ≤ cosθ + sinθ + 2
sinθ
|an|

n−1∑
ν=0

|aν|.

As remarked before, the location of zeros of complex polynomials has been vastly studied with more
focus on polynomials with restricted coefficients. The Eneström-Kakeya theorem and its various exten-
sions as mentioned above are the classic and significant examples of this kind. The richness of the theory
of holomorphic functions of one complex variable, along with motivations from many areas of scientific
disciplines, aroused a natural interest in the theory of quaternion-valued functions of a quaternionic vari-
able. Provided such a richness of the complex setting, a natural question is to ask what kind of results in
the quaternionic setting can be obtained. The goal of this paper is to present extensions to the quaternionic
setting of some classical results of Eneström-Kakeya type as discussed above.

2. Preliminary knowledge

In order to introduce the framework in which we will work, let us introduce some preliminaries on
quaternions and regular functions of a quaternionic variable which will be useful in the sequel. Quaternions
are essentially a generalization of complex numbers to four dimensions (one real and three imaginary parts)
and were first studied and developed by Sir Rowan William Hamilton in 1843. This number system of
quaternions is denoted byH in honor of Hamilton. This theory of quaternions is by now very well developed
in many different directions, and we refer the reader to [17] for the basic features of quaternionic functions.
In the recent study (for example, see [3], [4]–[11]), a new theory of regularity for functions, particularly
for polynomials of a quaternionic variable was developed, and is extremely useful in replicating many
important properties of holomorphic functions. One of the basic properties of holomorphic functions of
a complex variable is the discreteness of their zero sets (except when the function vanishes identically).
Given a regular function of a quaternionic variable, all its restrictions to complex lines are holomorphic
and hence either have a discrete zero set or vanishes identically. In the preliminary steps, the structure of
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the zero sets of a quaternionic regular function and the factorization property of zeros was described. In
this regard, Gentili and Stoppato [6] gave a necessary and sufficient condition for a quaternionic regular
function to have a zero at a point in terms of the coefficients of the power series expansion of the function.
It is important to mention that this result was proved for the polynomial case since long time ago, and
can be found in the classical book of Lam [11]. Before we proceed further, we need to introduce some
preliminaries on quaternions and quaternionic polynomials. The set of quaternions denoted by H is a
non commutative division ring. It consists of elements of the form q = α + βi + γ j + δk, α, β, γ, δ ∈ R,
where the imaginary units i, j, k satisfy i2 = j2 = k2 = i jk = −1, i j = − ji = k, jk = −kj = i, ki = −ik = j.
Every element q = α + βi + γ j + δk ∈ H is composed by the real part Re(q) = α and the imaginary part
Im(q) = βi + γ j + δk. The conjugate of q is denoted by q and is defined as q = α − βi − γ j − δk and the norm
of q is |q| =

√
qq =

√
α2 + β2 + γ2 + δ2. The inverse of each non zero element q ofH is given by q−1 = |q|−2q.

For r > 0, we define the ball B(0, r) =
{
q ∈H : |q| < r

}
. By Bwe denote the open unit ball inH centred at the

origin, i.e.,

B =
{
q = α + βi + γ j + δk : α2 + β2 + γ2 + δ2 < 1

}
,

and by S the unit sphere of purely imaginary quaternions, i.e.,

S =
{
q = βi + γ j + δk : β2 + γ2 + δ2 = 1

}
.

The angle between two quaternions q1 = α1 + β1i + γ1 j + δ1k and q2 = α2 + β2i + γ2 j + δ2k is given by

∡(q1, q2) = cos−1

(
α1α2 + β1β2 + γ1γ2 + δ1δ2

|q1||q2|

)
.

We represent the indeterminate for a quaternionic polynomial as q. A quaternionic polynomial T of degree
n in the variable q, namely a polynomial with coefficients on the right and indeterminate on the left is
given by T(q) =:

∑n
ν=0 qνaν, aν ∈ H, ν = 0, 1, 2, . . . ,n. It is known that these are the only polynomials in the

quaternion-valued functions of a quaternionic variable to satisfy the regularity conditions, and therefore,
their behavior resembles very closely to that of holomorphic functions of a complex variable. In the theory
of polynomials of this kind over skew-fields, one defines a different product (we use the symbol ∗ to denote
such a product) which guarantees that the product of regular functions is regular. For polynomials, for
example, this product is defined as follows:

Two quaternionic polynomials of this kind can be multiplied according to the convolution product
(Cauchy multiplication rule): given T1(q) =

∑n
i=0 qiai and T2(q) =

∑m
j=0 q jb j, we define

(T1 ∗ T2)(q) :=
∑

i=0,1,...,n
j=0,1,...,m

qi+ jaib j.

If T1 has real coefficients, the so called ∗multiplication coincides with the usual point wise multiplication.
Notice that the ∗ product is associative and not, in general, commutative. The absence of commutativity
leads to a behavior of polynomials rather unlike their behavior in the real or complex setting. For example, a
real or complex polynomial of degree n can have at most n (real or complex) zeros counted with multiplicity.
In the quaternionic setting, the second degree polynomial q2 + 1 has an infinite number of zeros, namely;
any q ∈ S. The following result which completely describes the zero sets of a regular product of two
polynomials in terms of the zero sets of the two factors is from [8] (see also [11]).

Theorem D. Let f and 1 be given quaternionic polynomials. Then ( f ∗1)(q0) = 0 if and only if f (q0) = 0 or f (q0) , 0
implies 1

(
f (q0)−1q0 f (q0)

)
= 0.

Since the regular functions of a quaternionic variable have been introduced and intensively studied
in the past decade. In this context, Gentili and Struppa [7] introduced a maximum modulus theorem for
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regular functions, which includes convergent power series and polynomials in the form of the following
result.

Theorem E (MaximumModulus Theorem). Let B = B(0, r) be a ball inH with centre 0 and radius r > 0, and let
f : B→H be a regular function. If | f | has a relative maximum at a point a ∈ B, then f is a constant on B.

Very recently, Carney et al. [2] extended the Eneström-Kakeya theorem and its various generalizations
from complex polynomials to quaternionic polynomials by making use of Theorems D and E. Firstly, they
established the following quaternionic analogue of Theorem A.

Theorem F. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with real coefficients

satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T(q) lie in

|q| ≤ 1.

In the same paper, Carney et al. [2] also established the following quaternionic analogue of Theorem C.

Theorem G. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n with quaternionic coefficients and quaternionic

variable. Let b be a non zero quaternion and suppose ∡(aν, b) ≤ θ ≤ π/2 for some θ and for ν = 0, 1, 2, . . . ,n. Assume
that

|an| ≥ |an−1| ≥ · · · ≥ |a1| ≥ |a0|.

Then all the zeros of T(q) lie in

|q| ≤ cosθ + sinθ + 2
sinθ
|an|

n−1∑
ν=0

|aν|.

They also proved the following result similar to Theorem B but instead of polynomials with mono-
tone increasing real coefficients, it considers quaternionic polynomials with monotone increasing real and
imaginary parts and thus giving the quaternionic analogue of Theorem B.

Theorem H. If T(q) =
∑n
ν=0 qνaν, is a polynomial of degree n, where q is a quaternionic variable, with quaternionic

coefficients, where aν = αν + βνi + γν j + δνk for ν = 0, 1, 2, . . . ,n, satisfying

αn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0,

βn ≥ βn−1 ≥ · · · ≥ β1 ≥ β0,

γn ≥ γn−1 ≥ · · · ≥ γ1 ≥ γ0,

δn ≥ δn−1 ≥ · · · ≥ δ1 ≥ δ0,

then all the zeros of T(q) lie in

|q| ≤
(|α0| − α0 + αn) + (|β0| − β0 + βn) + (|γ0| − γ0 + γn) + (|δ0| − δ0 + δn)

|an|
.

In the meantime, Tripathi [18] besides proving some other results also established the following gener-
alization of Theorem F.

Theorem I. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n, where q is a quaternionic variable, with quaternionic

coefficients, where aν = αν + βνi + γν j + δνk for ν = 0, 1, 2, . . . ,n, satisfying

αn ≥ αn−1 ≥ · · · ≥ αℓ,

βn ≥ βn−1 ≥ · · · ≥ βℓ,

γn ≥ γn−1 ≥ · · · ≥ γℓ,

δn ≥ δn−1 ≥ · · · ≥ δℓ,
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for 0 ≤ ℓ ≤ n. Then all the zeros of T(q) lie in∣∣∣q∣∣∣ ≤ 1
|an|

[
|α0| + |β0| + |γ0| + |δ0| + (αn − αℓ) + (βn − βℓ) + (γn − γℓ) + (δn − δℓ) +Mℓ

]
,

where

Mℓ =

ℓ∑
ν=1

[
|αν − αν−1| + |βν − βν−1| + |γν − γν−1| + |δν − δν−1|

]
.

In the past few years, a series of papers related to regular functions of a quaternionic variable has
been published and significant advances have been achieved. In ([8]–[6]) the structure of the zeros of
polynomials was used and a topological proof of the Fundamental Theorem of Algebra was established.
We point out that the Fundamental Theorem of Algebra for regular polynomials with coefficients in H
was already proved by Niven (for reference, see [14], [15]), by using different techniques. This lead to
the complete identification of the zeros of polynomials in terms of their factorization. Thus it became an
interesting perspective to think about the regions containing some or all the zeros of a regular polynomial
of quaternionic variable. In the literature, we could not find much except the above mentioned papers
about the distribution of zeros of polynomials with quaternionic variable and quaternionic coefficients.
The main purpose of this paper is to determine the regions containing all the zeros of a regular polynomial
of quaternionic variable when the real and imaginary parts of its coefficients are restricted. We shall make
use of a recently established maximum modulus theorem (Theorem E) and the structure of the zero sets
of regular functions (Theorem D) of a quaternionic variable. The obtained results also produce various
generalizations of Theorems F, G, H and I.

3. Main results

In this section, we state our main results and their proofs are given in the next section. We begin with
the following generalizations of Theorems F, H and I.

Theorem 3.1. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with quaternionic

coefficients, where aν = αν + βνi + γν j + δνk for ν = 0, 1, 2, . . . ,n, satisfying

Rαn ≥ αn−1 ≥ · · · ≥ αℓ,

Rβn ≥ βn−1 ≥ · · · ≥ βℓ,

Rγn ≥ γn−1 ≥ · · · ≥ γℓ,

Rδn ≥ δn−1 ≥ · · · ≥ δℓ

for some R ≥ 1 and 0 ≤ ℓ ≤ n − 1. Then all the zeros of T(q) lie in

|q + R − 1| ≤
1
|an|

[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]
,

where

Mℓ =

ℓ∑
ν=1

[
|αν − αν−1| + |βν − βν−1| + |γν − γν−1| + |δν − δν−1|

]
.

Remark 3.1. Taking R = 1 in Theorem 3.1, we get Theorem I.

By assuming αν ≤ αν−1, βν ≤ βν−1, γν ≤ γν−1, δν ≤ δν−1 for 1 ≤ ν ≤ ℓ, we get the following result from
which we get the quaternionic analogue of Theorem B.
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Corollary 3.1. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with quaternionic

coefficients aν = αν + βνi + γν j + δνk for ν = 0, 1, 2, . . . ,n, satisfying

Rαn ≥ αn−1 ≥ · · · ≥ αℓ+1 ≥ αℓ ≤ αℓ−1 ≤ · · · ≤ α1 ≤ α0,

Rβn ≥ βn−1 ≥ · · · ≥ βℓ+1 ≥ βℓ ≤ βℓ−1 ≤ · · · ≤ β1 ≤ β0,

Rγn ≥ γn−1 ≥ · · · ≥ γℓ+1 ≥ γℓ ≤ γℓ−1 ≤ · · · ≤ γ1 ≤ γ0,

Rδn ≥ δn−1 ≥ · · · ≥ δℓ+1 ≥ δℓ ≤ δℓ−1 ≤ · · · ≤ δ1 ≤ δ0,

for some R ≥ 1, then all the zeros of T(q) lie in∣∣∣q + R − 1
∣∣∣ ≤ 1
|an|

[
(Rαn + |α0| + α0 − 2αℓ) + (Rβn + |β0| + β0 − 2βℓ)

+ (Rγn + |γ0| + γ0 − 2γℓ) + (Rδn + |δ0| + δ0 − 2δℓ)
]
.

Remark 3.2. If we take R = 1 and l = 0 in Corollary 3.1, we recover Theorem H.

Taking βν = γν = δν = 0 for ν = 0, 1, 2, . . . ,n, in Corollary 3.1, we get the following result. As a
consequence, we obtain the quaternionic analogue of Theorem B from this result.

Corollary 3.2. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with real coefficients

satisfying

Ran ≥ an−1 ≥ an−2 ≥ · · · ≥ aℓ+1 ≥ aℓ ≤ aℓ−1 ≤ · · · ≤ a1 ≤ a0,

for some R ≥ 1 and 0 ≤ ℓ ≤ n − 1, then all the zeros of T(q) lie in∣∣∣q + R − 1
∣∣∣ ≤ 1
|an|

[
Ran + |a0| + a0 − 2aℓ

]
.

Remark 3.3. If we take R = 1 and l = 0 in Corollary 3.2, we get the quaternionic analogue of Theorem B. If in
addition to R = 1 and ℓ = 0, we suppose a0 ≥ 0, we get Theorem F.

The next corollary is obtained by taking R = an−1/an ≥ 1 in Corollary 3.2.

Corollary 3.3. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with real coefficients

satisfying

an ≤ an−1 ≥ an−2 ≥ · · · ≥ aℓ+1 ≥ aℓ ≤ aℓ−1 ≤ · · · ≤ a1 ≤ a0,

where 0 ≤ ℓ ≤ n − 1, then all the zeros of T(q) lie in∣∣∣∣∣q + an−1

an
− 1

∣∣∣∣∣ ≤ an−1 + |a0| + a0 − 2aℓ
|an|

.

If in Corollary 3.3, we take ℓ = 0 and assume a0 > 0, we get the following result.

Corollary 3.4. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with real coefficients

satisfying

an ≤ an−1 ≥ an−2 ≥ · · · ≥ a0 > 0,

then all the zeros of T(q) lie in∣∣∣∣∣q + an−1

an
− 1

∣∣∣∣∣ ≤ an−1

an
.
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Next, we establish the following generalization of Theorem G.

Theorem 3.2. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n with quaternionic coefficients and quaternionic variable.

Let b be a non-zero quaternion and suppose ∡(aν, b) ≤ θ ≤ π/2 for some θ and for ν = ℓ, ℓ + 1, ℓ + 2, . . . ,n. Assume
that for some R ≥ 1,

R|an| ≥ |an−1| ≥ · · · ≥ |aℓ|,

for 0 ≤ ℓ ≤ n − 1, then all the zeros of T(q) lie in

|q + R − 1| ≤
1
|an|

R|an|(cosθ + sinθ) + (|a0| − |aℓ|) + 2 sinθ
n−1∑
ν=ℓ

|aν| +Nℓ

 ,
where

Nℓ =

ℓ∑
ν=1

|aν − aν−1|.

Remark 3.4. If we take R = 1 and ℓ = 0 in Theorem 3.2, we recover Theorem G.

By assuming |aν| ≤ |aν−1| for 1 ≤ ν ≤ ℓ, we get the following result from Theorem 3.2.

Corollary 3.5. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n with quaternionic coefficients and quaternionic

variable. Let b be a non-zero quaternion and suppose ∡(aν, b) ≤ θ ≤ π/2 for some θ and for ν = 0, 1, 2, . . . ,n. Assume
that for some k ≥ 1,

R|an| ≥ |an−1| ≥ · · · ≥ |aℓ| ≤ |aℓ−1| ≤ · · · ≤ |a1| ≤ |a0|,

then all the zeros of T(q) lie in

|q + R − 1| ≤
1
|an|

R|an|(cosθ + sinθ) + (|a0| − |aℓ|)(1 + cosθ) + (|a0| + |aℓ) sinθ + 2 sinθ
n−1∑
ν=ℓ

|aν|

 .
If in Corollary 3.5, we take ℓ = 0, we get the following generalization of Theorem G.

Corollary 3.6. If T(q) =
∑n
ν=0 qνaν, is a polynomial of degree n with quaternionic coefficients and quaternionic

variable. Let b be a non-zero quaternion and suppose ∡(aν, b) ≤ θ ≤ π/2 for some θ and for ν = 0, 1, 2, . . . ,n. Assume
that for some R ≥ 1,

R|an| ≥ |an−1| ≥ · · · ≥ |a0|,

then all the zeros of T(q) lie in

|q + R − 1| ≤ R(cosθ + sinθ) + 2
sinθ
|an|

n−1∑
ν=0

|aν|.

Remark 3.5. For R = 1, Corollary 3.6 reduces to Theorem G.

Finally, we shall try to relax the hypothesis of Theorem F by assuming that the real parts of the
quaternionic coefficients of the polynomial T(q) = a0 + qa1 + q2a2 + · · · + qnan are alternately monotonic. In
this connection, we prove the following result.
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Theorem 3.3. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with quaternionic

coefficients, where aν = αν + βνi + γν j + δνk for ν = 0, 1, 2, . . . ,n, satisfying

αn ≥ αn−2 ≥ · · · ≥ α3 ≥ α1 > 0 and αn−1 ≥ αn−3 ≥ · · · ≥ α2 ≥ α0 > 0

if n is odd, or

αn ≥ αn−2 ≥ · · · ≥ α2 ≥ α0 > 0 and αn−1 ≥ αn−3 ≥ · · · ≥ α3 ≥ α1 > 0

if n is even, then all the zeros of T(q) lie in∣∣∣∣∣q + an−1

an

∣∣∣∣∣ ≤ 1
|an|

αn + αn−1 + |βn| + |βn−1| + |γn| + |γn−1| + |δn| + |δn−1| + 2
n−2∑
ν=0

(
|βν| + |γν| + |δν|

) .
If we take βν = γν = δν = 0 for ν = 0, 1, 2, . . . ,n, in Theorem 3.3, we get the following result.

Corollary 3.7. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n, where q is a quaternionic variable, with real coefficients

satisfying

an ≥ an−2 ≥ · · · ≥ a3 ≥ a1 > 0 and an−1 ≥ an−3 ≥ · · · ≥ a2 ≥ a0 > 0

if n is odd, or

an ≥ an−2 ≥ · · · ≥ a2 ≥ a0 > 0 and an−1 ≥ an−3 ≥ · · · ≥ a3 ≥ a1 > 0

if n is even, then all the zeros of T(q) lie in∣∣∣∣∣q + an−1

an

∣∣∣∣∣ ≤ 1 +
an−1

an
.

4. Proofs of the main results

We need the following lemma due to Carney et al. [2] for the proof of Theorem 3.2.

Lemma 4.1. Let q1, q2 ∈ H, where q1 = α1 + β1i + γ1 j + δ1k and q2 = α2 + β2i + γ2 j + δ2k, ∡(q1, q2) = 2θ′ ≤ 2θ
and |q1| ≤ |q2|. Then

|q2 − q1| ≤ (|q2| − |q1|) cosθ + (|q2| + |q1|) sinθ.

Proof of Theorem 3.1. Consider the polynomial

T(q) ∗ (1 − q) = a0 + q(a1 − a0) + q2(a2 − a1) + · · · + qn(an − an−1) − qn+1an

= a0 + q(a1 − a0) + q2(a2 − a1) + · · · + qn(Ran − an−1) − qnRan + qnan − qn+1an

= ϕ(q) − qnRan + qnan − qn+1an,

where

ϕ(q) = a0 + q(a1 − a0) + q2(a2 − a1) + · · · + qn(Ran − an−1).

By Theorem D, T(q) ∗ (1 − q) = 0 if and only if either T(q) = 0 or T(q) , 0 implies T(q)−1qT(q) − 1 = 0, that
is T(q)−1qT(q) = 1. Thus, if T(q) , 0, this implies q = 1, so the only zero of T(q) ∗ (1 − q) are q = 1 and the
zeros of T(q).
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For |q| = 1, we have

|ϕ(q)| ≤

∣∣∣∣∣∣∣a0 +

ℓ∑
ν=1

qν(aν − aν−1) +
n−1∑
ν=ℓ+1

qν(aν − aν−1) + qn(Ran − an−1)

∣∣∣∣∣∣∣
≤ |a0| +

ℓ∑
ν=1

|qν||aν − aν−1| +

n−1∑
ν=ℓ+1

|qν||aν − aν−1| + |qn
||Ran − an−1|

= |α0 + β0i + γ0 j + δ0k| +
ℓ∑
ν=1

|(αν − αν−1) + (βν − βν−1)i + (γν − γν−1) j + (δν − δν−1)k|

+

n−1∑
ν=ℓ+1

|(αν − αν−1) + (βν − βν−1)i + (γν − γν−1) j + (δν − δν−1)k|

+ |(Rαn − αn−1) + (Rβn − βn−1)i + (Rγn − γn−1) j + (Rδn − δn−1)k|

≤ |α0| + |β0| + |γ0| + |δ0| +

ℓ∑
ν=1

(|αν − αν−1| + |βν − βν−1| + |γν − γν−1| + |δν − δν−1|)

+

n−1∑
ν=ℓ

(|αν − αν−1| + |βν − βν−1| + |γν − γν−1| + |δν − δν−1|)

+ |Rαn − αn−1| + |Rβn − βn−1| + |Rγn − γn−1| + |Rδn − δn−1|,

i.e.,

|ϕ(q)| = (Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ,

where

Mℓ =

ℓ∑
ν=1

[
|αν − αν−1| + |βν − βν−1| + |γν − γν−1| + |δν − δν−1|

]
.

Note that, we have

max
|q|=1

∣∣∣∣∣∣qn
∗ ϕ

(
1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣∣∣∣qnϕ

(
1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣∣∣∣ϕ
(

1
q

)∣∣∣∣∣∣ = max
|q|=1
|ϕ(q)|,

it is clear that qn
∗ ϕ

(
1/q

)
has the same bound on |q| = 1 as ϕ, that is∣∣∣∣∣∣qn

∗ ϕ

(
1
q

)∣∣∣∣∣∣ ≤ (Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

for |q| = 1.
Since qn

∗ ϕ
(
1/q

)
is a polynomial and so is regular in |q| ≤ 1, it follows by the Maximum Modulus

Theorem (Theorem E), that∣∣∣∣∣∣qn
∗ ϕ

(
1
q

)∣∣∣∣∣∣ =
∣∣∣∣∣∣qnϕ

(
1
q

)∣∣∣∣∣∣ ≤ (Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ)

for |q| ≤ 1.
Hence∣∣∣∣∣∣ϕ

(
1
q

)∣∣∣∣∣∣ ≤ 1
|q|n

[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]
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for |q| ≤ 1.
Replacing q by 1/q, we see that for |q| ≥ 1,

|ϕ(q)| ≤
[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]
|q|n. (1)

align For |q| ≥ 1, using (1), we get

|T(q) ∗ (1 − q)| = |ϕ(q) − qnRan + qnan − qn+1an|

≥ |q|n|an||q + R − 1| − |ϕ(q)|

≥ |q|n
{
|an||q + R − 1| −

[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ)

+ (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]}
.

Hence, if

|q + R − 1| >
1
|an|

[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]
,

then |T(q) ∗ (1 − q)| > 0, that is T(q) ∗ (1 − q) , 0.
Since the only zeros of T(q) ∗ (1 − q) are q = 1 and the zeros of T(q), therefore, T(q) , 0 for

|q + R − 1| >
1
|an|

[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]
.

In other words, all the zeros of T(q) lie in

|q + R − 1| ≤
1
|an|

[
(Rαn + |α0| − αℓ) + (Rβn + |β0| − βℓ) + (Rγn + |γ0| − γℓ) + (Rδn + |δ0| − δℓ) +Mℓ

]
,

and this completes the proof of Theorem 3.1.

Proof of Theorem 3.2. Again consider the polynomial

T(q) ∗ (1 − q) = ϕ(q) − qnRan + qnRan − qn+1an,

where

ϕ(q) = a0 + q(a1 − a0) + q2(a2 − a1) + · · · + qn(Ran − an−1).

For |q| = 1, we have

|ϕ(q)| ≤ |a0| +

ℓ∑
ν=1

|aν − aν−1| +

n−1∑
ν=ℓ+1

|aν − aν−1| + |Ran − an−1|

≤ |a0| +Nℓ +

n−1∑
ν=ℓ+1

[
(|aν| − |aν−1|) cosθ + (|aν| + |aν−1|) sinθ

]
+ (R|an| − |an−1|) cosθ + (R|an| + |an−1|) sinθ (by Lemma 4.1)

= (|a0| − |aℓ|) +Nℓ + R|an|(cosθ + sinθ) + |aℓ|(1 − cosθ − sinθ) + 2 sinθ
n−1∑
ν=ℓ

|aν|

≤ (|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=ℓ

|aν| +Nℓ,
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where Nℓ =
∑ℓ
ν=1 |aν − aν−1|.

Notice that, we have

max
|q|=1

∣∣∣∣∣∣qn
∗ ϕ

(
1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣∣∣∣qnϕ

(
1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣∣∣∣ϕ
(

1
q

)∣∣∣∣∣∣ = max
|q|=1
|ϕ(q)|,

it is clear that qn
∗ ϕ

(
1/q

)
has the same bound on |q| = 1 as ϕ, that is∣∣∣∣∣∣qn

∗ ϕ

(
1
q

)∣∣∣∣∣∣ =
∣∣∣∣∣∣qnϕ

(
1
q

)∣∣∣∣∣∣ ≤ (|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=l

|aν| +Nℓ

for |q| = 1.
Then, by the Maximum Modulus Theorem (Theorem E), we have for |q| ≤ 1,∣∣∣∣∣∣qnϕ

(
1
q

)∣∣∣∣∣∣ ≤ (|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=ℓ

|aν| +Nℓ.

Equivalently, for |q| ≥ 1,

|ϕ(q)| ≤
[
(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ

n−1∑
ν=ℓ

|aν| +Nℓ

]
|q|n. (2)

For |q| ≥ 1, we have

|T(q) ∗ (1 − q)| = |ϕ(q) − qnRan + qnan − qn+1an|

≥ |q|n|an||q + R − 1| − |ϕ(q)|

≥

|an||q + R − 1| −

(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=l

|aν| +Nℓ


 |q|n,

by (2). Hence, if

|q + R − 1| >
1
|an|

(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=l

|aν| +Nℓ

 ,
then |T(q) ∗ (1 − q)| > 0, and therefore T(q) ∗ (1 − q) , 0.

Note that R ≥ 1, and θ ∈ [0, π/2], therefore

1
|an|

(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=ℓ

|aν| +Nℓ

 ≥ R(cosθ + sinθ)

≥ cosθ + sinθ

≥ 1.

Thus,

|q + R − 1| >
1
|an|

(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=l

|aν| +Nℓ

 ,
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implies also that |q+R− 1| > 1. Since the only zeros of T(q) ∗ (1− q) are q = 1 and the zeros of T(q), therefore,
T(q) , 0 for

|q + R − 1| >
1
|an|

(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=ℓ

|aν| +Nℓ

 .
That is, all the zeros of T(q) lie in

|q + R − 1| ≤
1
|an|

(|a0| − |aℓ|) + R|an|(cosθ + sinθ) + 2 sinθ
n−1∑
ν=ℓ

|aν| +Nℓ

 ,
and this completes the proof of Theorem 3.2.

Proof of Theorem 3.3. Consider the polynomial

T(q) ∗ (1 − q2) = a0 + qa1 + q2(a2 − a0) + q3(a3 − a1) + · · · + qn−1(an−1 − an−3)

+ qn(an − an−2) − qn+1an−1 − qn+2an

= ψ(q) − qn+1an−1 − qn+2an,

where ψ(q) = a0 + qa1 + q2(a2 − a0) + · · · + qn−1(an−1 − an−3) + qn(an − an−2).
For |q| = 1, we have

|ψ(q)| =

∣∣∣∣∣∣∣a0 + qa1 +

n∑
ν=2

qν (aν − aν−2)

∣∣∣∣∣∣∣
≤ |a0| + |a1| + |a2 − a0| + |a3 − a1| + · · · + |an−1 − an−3| + |an − an−2|

≤ (α0 + |β0| + |γ0| + |δ0|) + (α1 + |β1| + |γ1| + |δ1|)
+ (α2 − α0 + |β2| + |β0| + |γ2| + |γ0| + |δ2| + |δ0|)
+ (α3 − α1 + |β3| + |β1| + |γ3| + |γ1| + |δ3| + |δ1|)
...

+ (αn−1 − αn−3 + |βn−1| + |βn−3| + |γn−1| + |γn−3| + |δn−1| + |δn−3|)
+ (αn − αn−2 + |βn| + |βn−2| + |γn| + |γn−2| + |δn| + |δn−2|)

= αn + αn−1 + |βn| + |βn−1| + |γn| + |γn−1| + |δn| + |δn−1| + 2
n−2∑
ν=0

(
|βν| + |γν| + |δν|

)
.

Proceeding similarly as in the proof of Theorem 3.1, it follows that for |q| ≥ 1,

|ψ(q)| ≤

αn + αn−1 + |βn| + |βn−1| + |γn| + |γn−1| + |δn| + |δn−1|) + 2
n−2∑
ν=0

(|βν| + |γν| + |δν|)

 |q|n. (3)

For |q| ≥ 1, by (3), we have

|T(q) ∗ (1 − q2)| = |ψ(q) − qn+1an−1 − qn+2an|

≥ |q|n
{
|q||qan + an−1| −

[
αn + αn−1 + |βn| + |βn−1|

+ |γn| + |γn−1| + |δn| + |δn−1| + 2
n−2∑
ν=0

(|βν| + |γν| + |δν|)
]}
.
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Hence, if∣∣∣∣∣q + an−1

an

∣∣∣∣∣ > 1
|an|

αn + αn−1 + |βn| + |βn−1| + |γn| + |γn−1| + |δn| + |δn−1| + 2
n−2∑
ν=0

(|βν| + |γν| + |δν|)

 ,
then |T(q) ∗ (1 − q2)| > 0, that is, T(q) ∗ (1 − q2) , 0. Since the only zeros of T(q) ∗ (1 − q2) are q2 = 1 and the
zeros of T(q), and therefore, T(q) , 0 for∣∣∣∣∣q + an−1

an

∣∣∣∣∣ > 1
|an|

αn + αn−1 + |βn| + |βn−1| + |γn| + |γn−1| + |δn| + |δn−1| + 2
n−2∑
ν=0

(|βν| + |γν| + |δν|)

 .
In other words, all the zeros of T(q) lie in∣∣∣∣∣q + an−1

an

∣∣∣∣∣ ≤ 1
|an|

αn + αn−1 + |βn| + |βn−1| + |γn| + |γn−1| + |δn| + |δn−1| + 2
n−2∑
ν=0

(|βν| + |γν| + |δν|)

 ,
which completes the proof of Theorem 3.3.

5. Conclusion

The regular functions of a quaternionic variable have been introduced and intensively studied in the
past decade. They have proven to be a fertile topic in analysis, and their rapid development has been largely
driven by its numerous applications in many areas of scientific disciplines. We point out that after the study
of the structure of zero sets and the Fundamental Theorem of Algebra for regular polynomials (which
lead to the complete identification of the zeros of polynomials in terms of their factorization), it became
interesting to establish the regions containing some or all the zeros of a regular polynomial of quaternionic
variable. In the literature, we could not find much about the distribution of zeros of polynomials with
quaternionic variable and quaternionic coefficients. Here, we obtain regions containing all the zeros of
a regular polynomial of quaternionic variable when the real and imaginary parts of its coefficients are
restricted by virtue of a maximum modulus theorem and the structure of the zero sets established in the
newly developed theory of regular functions and polynomials of a quaternionic variable.
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[10] A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros polynomials, Canad. Math. Bull. 10 (1967), 53–63.
[11] T.Y. Lam, A First Course in Noncommutative Rings, Springer, New York, 1991.
[12] M. Marden, Geometry of Polynomials, Math. Surveys, American Mathematical Society, Providence, 1966.
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