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Abstract. Roth (Bull. Aust. Math. Soc. 95, 495-499 (2017)) gave a result for DDVV inequality submanifolds
of warped product manifolds. Then Murathan et al. (J. Geom. (2018) 109:30) obtained the Wintgen-like
inequality for statistical submanifolds of statistical warped product manifolds. Recently, Gorunus et al.
(Inter. Elec. J. Geom. 12(1), 43-56 (2019)) established the generalized Wintgen inequality for Legendrian
submanifolds in almost Kenmotsu statistical manifolds. Thus, in the present manuscript, we find the
generalized Wintgen inequality for a Legendrian submanifold in the standard warped product manifolds
(β-Kenmotsu manifold).

1. Introduction

The concept of warped products plays crucial roles in mathematical physics, especially in general rela-
tivity. For example, different models of space-time in general relativity can be expressed in terms of warped
geometry such as the Robertson-Walker space-time, the Friedman cosmological models and the standard
static space-time; and on the other hand, the Einstein field equations and modified field equations have
so many exact solutions as the warped products. In this reason, the study of warped products is the most
inventive topic in differential geometry. R.L. Bishop and O’Neill give the idea of warped product manifolds
in order to construct examples of Riemannian manifolds of negative curvature in [2].

Let (N1, 1N1 ) and (N2, 1N2 ) be two Riemannian manifolds and f > 0 be a smooth function on N1. Consider
the product f1 : N1 × N2 −→ N1 and f2 : N1 × N2 −→ N2. Then the warped product N = N1 × f N2 is the
product manifold N1 ×N2 equipped with the Riemannian structure such that

1(E,F) = 1N1 ( f1∗E, f1∗F) + f 2(u)1N2 ( f2∗E, f2∗F), (1)

for any E,F ∈ Γ(T(u,v)N), u ∈ N1 and v ∈ N2, where ∗ is the symbol for the tangent maps, and we have
1 =<,>= 1N1 + f 21N2 . The function f is called the warping function of the warped product.
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Let χ(N1) and χ(N2) be the set of all vector fields on N1 ×N2 which is the horizontal lift of a vector field on
N1 and the vector lift of a vector field on N2, respectively. Thus, it can be seen that f1∗(χ(N1)) = Γ(TN1) and
f2∗(χ(N2)) = Γ(TN2).

Lemma 1.1. [2] Let N = N1 × f N2 be a warped product manifold. For any X,Y ∈ χ(N1) and U,V ∈ χ(N2), we have

1. ∇XY ∈ χ(N1),
2. ∇UX = ∇XU = (X ln f )U,
3. ∇UV = ∇N2

U V− < U,V > ∇ ln f ,

where ∇ and ∇N2 denotes the Levi-Civita connections on N and N2, and ∇ ln f is the gradient of ln f .

For the survey on warped product submanifolds and their geometric obstructions in different structures,
see [5].

P. Wintgen [21] proposed a nice relationship between the Gauss curvature (intrinsic), the normal curvature
(extrinsic) and squared mean curvature (extrinsic) of any surface in a 4-dimensional Euclidean space and
also discussed the necessary and sufficient conditions for which the equality case holds. Later or, I.V.
Guadalupe and L. Rodriguez extended Wintgen’s inequality to surfaces of arbitrary codimension in real
space forms R2+m(c), m ≥ 2. Then, B.-Y. Chen extended this inequality to surfaces in a 4-dimensional
pseudo-Euclidean space E4

2 with a neutral metric.

De Smet, et al. [6] have conjectured generalized Wintgen inequality for any submanifold in real space forms
Rm(c):

ρnor ≤ ||H||
2
− ρ⊥ + c,

where ρnor denotes the normalized scalar curvature of the submanifold M, called an intrinsic invariant of
M, ρ⊥ denotes the normalized normal scalar curvature of M and H is the mean curvature vector of M.
Here ρ⊥ and H are called extrinsic invariants of M. This conjecture is known as DDVV conjecture or also
known as the generalized Wintgen inequality. Many authors have expanded the foregoing inequality to
the situation of ambient spaces other than real space forms in many geometrical features. The generalized
Wintgen inequality for submanifolds in Riemannian space forms was proved by Z. Lu in [11] and J. Ge
and Z.Z. Tang in [7], independently. Afterwards, I. Mihai refined a generalized Wintgen inequality for
Lagrangian submanifolds in complex space forms [12] and as well as Legendrian submanifolds in Sasakian
space forms [15]. In addition, A.N. Siddiqui et al. [19] examined the generalized Wintgen inequality
for totally real submanifolds in LCS-manifolds. Recently, H. Alodan et al. [1] intensively investigated
the generalized Wintgen inequality for quaternionic CR-submanifolds of quaternionic Kähler manifolds of
constant quaternionic sectional curvature. In fact, many remarkable articles were published in the recent
years and several inequalities of this type have been obtained for other classes of submanifolds in several
ambient spaces, for details see [4, 18, 20].

In this paper, first we are going to prove that the standard warped product manifold N = I × f N is a
β-Kenmotsu manifold, if (N, 1N,∇N, J) is a Kähler manifold, where β = f ′(z)

f (z) . Then the Riemannian curvature

tensor of N can also be obtained by taking help from [10] and [8]. Now, the main purpose of this paper is to
extend the classical DDVV inequality proved by Roth in [17] to a Legendrian submanifold in N = I× f N(c),
where N(c) is a complex space form, a new study to the developments in Wintgen inequality and Wintgen
ideal submanifolds done mainly in the last 15 years.

2. Preliminaries

In this section, we give some basic definitions and notations for the next sections.
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Let N be a complex m-dimensional Kähler manifold, that is, N is endowed with an almost complex structure
J and with a J-Hermitian metric 1, we have

J2 = −I, 1(JE, JF) = 1(E,F), ∇J = 0,

where ∇ is the Levi-Civita connection of 1 and the covariant derivative of the complex structure J is defined
as [22]

(∇E J)F = ∇E JF − J∇EF,

for any E,F ∈ Γ(TN). It follows that J is integrable. Here Γ(TN) denotes the Lie algebra of vector fields and
on N.

If the ambient manifold N is of constant holomorphic sectional curvature c, then N is called a complex space
form and is denoted by N(c). Thus, the Riemannian curvature tensor R of N(c) is given as [22]

R(E,F,G,H) =
c
4

[
1(F,G)1(E,H) − 1(E,G)1(F,H) + 1(JF,G)1(JE,H) − 1(JE,G)1(JF,H)

+21(E, JF)1(JG,H)
]
, (2)

for any E,F,G,H ∈ Γ(TN).

A complete simply-connected complex space form N(c) is holomorphically isometric to the complex Eu-
clidean m-space Cm, the complex projective m-space CPm(4c), or the complex hyperbolic m-space CHm(4c),
according to c = 0, c > 0 or c < 0, respectively.

It is well known from literature that a (2m + 1)-dimensional manifold N endowed with almost contact
structure (ϕ, ξ, η, 1) is called an almost contact metric manifold when satisfies the following properties
[3, 22]

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0, (3)
1(ϕE, ϕF) = 1(E,F) − η(E)η(F), and η(E) = 1(E, ξ), (4)

for any E,F ∈ Γ(TN), where ϕ, 1, ξ and η are called (1, 1)-tensor fields, a structure vector field and dual
1-form, respectively.

An almost contact metric manifold (N, 1, ϕ, η, ξ) is said to be β-Kenmotsu manifold if the following condi-
tions hold [9]:

(∇Eϕ)F = −β{η(F)ϕE + 1(E, ϕF)ξ}, ∇Eξ = −β{−E + η(E)ξ},

for any E,F ∈ Γ(TN). Here β is a differentiable function on N.

Remark 2.1. A β-Kenmotsu manifold is called Kenmotsu manifold, if β = 1 and it is called homothetic Kenmotsu
manifold, if β = constant.

A differentiable map

ψ : M −→ N

of a differentiable manifold M into another differentiable manifold N is called an immersion if the differential

dψ : TM −→ TN
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is injective. Now, let M be an n-dimensional Riemannian manifold isometrically immersed in a Riemannian
manifold N of dimension m. The Riemannian metric on M and N is denoted by the same symbol 1.
Let Γ(TM) and Γ(T⊥M) denote the Lie algebra of vector fields and set of all normal vector fields on M
respectively. The operator of covariant differentiation with respect to the Levi-Civita connection on M and
N is denoted by ∇ and ∇, respectively. The Gauss and Weingarten formulae are respectively given as [22]

∇EF = ∇EF + h(E,F), (5)

and

∇EN = −AN (E) + ∇⊥EN , (6)

for any E,F ∈ Γ(TM) and N ∈ Γ(T⊥M). Here h is the second fundamental form, A is the shape operator of
M and ∇⊥ is the operator of covariant differentiation with respect to the linear connection induced in the
normal bundle T⊥M of M.

The second fundamental form and the shape operator are related by the following equation [22]:

1(h(E,F),N) = 1(AN (E),F), (7)

for any E,F ∈ Γ(TM) andN ∈ Γ(T⊥M).

Denote by R and R the curvature tensor of N and M, respectively. Then the equation of Gauss is given by
[22]

R(E,F,G,H) = R(E,F,G,H) − 1(Ah(F,G)E,H) (8)
+1(Ah(E,G)F,H),

for any E,F,G,H ∈ Γ(TM). Here

R(E,F,G,H) = 1(R(E,F)G,H)

and

R(E,F,G,H) = 1(R(E,F)G,H).

The Ricci equation is given by [22]

R(E,F,N ,N ′) = R⊥(E,F,N ,N ′) − 1([AN ,AN ′ ]E,F), (9)

for any N ,N ′ ∈ Γ(T⊥M). Here R⊥ is the normal curvature tensor with respect to ∇⊥ and [AN ,AN ′ ] =
ANAN ′ − AN ′AN .

Let x ∈M and {e1, . . . , en} be an orthonormal basis of TxM and {en+1, . . . , em} be an orthonormal basis of T⊥x M.
The mean curvature vectorH of the submanifold M at x is given by the following relation [22]:

H(x) =
1
n

n∑
i=1

h(ei, ei).

Also, we set

ha
i j = 1(h(ei, e j), ea), i, j ∈ {1, . . . ,n}, a ∈ {n + 1, . . . ,m},

and

∥h∥2 =
n∑

i, j=1

1(h(ei, e j), h(ei, e j)).
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The mean curvature vector is said to be parallel in the normal bundle, if

∇
⊥
H = 0

holds identically.

Let M be an n-dimensional submanifold of an (2m + 1)-dimensional almost contact metric manifold
(N, 1, ϕ, η, ξ). If ϕ(TxM) ⊂ T⊥x M, then M is called C-totally real. But if n = m, then a C-totally real
submanifold becomes Legendrian submanifold. Thus, it is easy to say that Legendrian submanifold is a
C-totally real submanifold with the smallest possible codimension (see [22]).

3. Standard Warped Products

In the following, we consider an open interval I in R with metric

1I = dz2

and a 2m-dimensional almost Hermitian manifold N. We deal with the standard warped product manifold
N = I × f N with warping function f > 0, endowed with the Riemannian metric

1 =<,>= 1I + f 21N.

Theorem 3.1. Let (N = I× f N,∇, <, >) be the standard warped product manifold. Then N is a β-Kenmotsu manifold,
if (N, 1N,∇N, J) is a Kähler manifold, where β = f ′(z)

f (z) and ∇N denotes the Levi-Civita connection on N.

Proof. First we define an almost contact metric structure on N. So, we denote the structure vector field on
N by

ξ =
∂
∂z
,

for z ∈ I. Also, an arbitrary vector field on N by

U = E − η(E)ξ ∈ χ(N), dz = η.

With the help of tensor field J, a new tensor field ϕ of type (1, 1) is defined on N as

ϕE = JU,

for any E ∈ Γ(TN). So, we can get the following:

ϕξ = ϕ(ξ + 0) = J0 = 0,
η(ϕE) = < ϕE, ξ >= f 21N(JU, ξ) = 0,
ϕ2E = −E + η(E)ξ,

< ϕE,F > = − < X, ϕF >,
< ϕE, ϕF > = < E,F > −η(E)η(F),

for any E,F ∈ Γ(TN). Hence, (N, <, >, ϕ, ξ, η) is an almost contact metric manifold.

Moreover, by using Lemma 1.1, it is easy to prove that
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(∇Eϕ)F = (∇N
E J)F +

(
−

f ′(z)
f (z)

){
< E, ϕF > ξ + η(F)ϕE

}
=
(
−

f ′(z)
f (z)

){
< E, ϕF > ξ + η(F)ϕE

}
= −β

{
< E, ϕF > ξ + η(F)ϕE

}
and

∇Eξ =
(
−

f ′(z)
f (z)

)
(−E + η(E)ξ) = −β(−E + η(E)ξ).

We recall methods as in [10] and by using equation (2) to derive the Riemannian curvature tensor S of
β-Kenmotsu manifold (N = I × f N(c), <, >, ϕ, ξ, η), where N(c) is a complex space form.

S(E,F,G,H) =
( c

4 f 2 −

( f ′

f

)2)
(< F,G >< E,H > − < E,G >< F,H >)

−

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
(< F,G >< E, ∂ >< ∂,H >

− < E,G >< F, ∂ >< ∂,H > + < F, ∂ >< G, ∂ >< E,H >

− < E, ∂ >< G, ∂ >< F,H >) +
( c

4 f 2

)
(< E, ϕG >< ϕF,H >

− < F, ϕG >< ϕE,H > +2 < E, ϕF >< ϕG,H >, (10)

for any E,F,G,H ∈ Γ(TN). Here f ′ = d f
dz , f ′′ = d2 f

dz2 and the unit tangent vector field on I by ∂ = ∂
∂z , for z ∈ I.

By using (10) and (8), we can rewrite the Riemannian curvature tensor R of M as

R(E,F,G,H) =
( c

4 f 2 −

( f ′

f

)2)
(< F,G >< E,H > − < E,G >< F,H >)

−

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
(< F,G >< E, ∂ >< ∂,H >

− < E,G >< F, ∂ >< ∂,H > + < F, ∂ >< G, ∂ >< E,H >

− < E, ∂ >< G, ∂ >< F,H >) +
( c

4 f 2

)
(< E, ϕG >< ϕF,H >

− < F, ϕG >< ϕE,H > +2 < E, ϕF >< ϕG,H >

+1(Ah(E,G)F,H) − 1(Ah(F,G)E,H), (11)

for any E,F,G,H ∈ Γ(TM).

4. Generalized Wintgen Inequality for Legendrian Submanifolds

In this section, we obtain the generalized Wintgen inequality for an n-dimensional Legendrian subman-
ifold in a (2n + 1)-dimensional standard warped product manifold (N = I × f N(c),∇, <, >), where N(c) is a
complex space form. Before going to proceed further, first we give the following propositions and lemmas
which are useful in obtaining the said inequality.
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Suppose a local orthonormal tangent frame be {e1, . . . , en} of TxM and a local orthonormal normal frame be
{en+1 = ϕe1, . . . , e2n, e2n+1 = ξ} of T⊥x N in N, x ∈ N. The normalized scalar curvature ρnor of M is given by

ρnor =
2

n(n − 1)

∑
1≤i< j≤n

1(R(ei, e j)e j, ei)

=
1

n(n − 1)

∑
i, j

1(R(ei, e j)e j, ei). (12)

We denote the tangent part of ∂ ∈ χ(I) by T ∈ Γ(TM), given by

T =
n∑

i=1

< ∂, ei > ei.

On using (11) and (12), we have

Proposition 4.1. Let M be an n-dimensional Legendrian submanifold in the standard warped product manifold
N = I × f N(c), then the normalized scalar curvature of M is the following:

ρnor =
c

4 f 2 −

( f ′

f

)2
−

2
n

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
||T||2 +

1
n(n − 1)

[n2
||H||

2
− ||h||2].

If we fix τ = h −H1 the traceless part of the second fundamental form, then we get

||τ||2 = ||h||2 − n||H||2.

Thus, Proposition 4.1 reduces to

Corollary 4.2. Let M be an n-dimensional Legendrian submanifold in the standard warped product manifold N =
I × f N(c), then the normalized scalar curvature of M is the following:

ρnor =
c

4 f 2 −

( f ′

f

)2
−

2
n

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
||T||2 −

||τ||2

n(n − 1)
+ ||H||2.

The normalized normal scalar curvature of M is given by

ρ⊥ =
2

n(n − 1)

{ ∑
1≤a<b≤n

∑
1≤i< j≤n

< R⊥(ei, e j)en+a, en+b >
2
}1/2

, (13)

where R⊥ is the normal connection of M.

Proposition 4.3. Let M be an n-dimensional Legendrian submanifold in the standard warped product manifold
N = I × f N(c), then we have

ρ⊥ ≤

√
2

2n(n − 1)

{ c2

16 f 4 n2(n − 1)2 +

n∑
a,b=1

||[Aa,Ab]||2
}1/2

.

Proof. With the help of (9) and (13), we directly compute the following:

ρ⊥ =
1

n(n − 1)

{ ∑
1≤a<b≤n

∑
1≤i< j≤n

[
1([Aen+a ,Aen+b ]ei, e j) +

c
4 f 2 (−δiaδ jb + δibδ ja)

]2}1/2

≤

√
2

n(n − 1)

{ ∑
1≤a<b≤n

∑
1≤i< j≤n

[
1([Aen+a ,Aen+b ]ei, e j)2 +

c2

16 f 4 (δiaδ jb − δibδ ja)2
]}1/2

≤

√
2

n(n − 1)

{ c2

64 f 4 n2(n − 1)2 +
1
4

n∑
a,b=1

n∑
i, j=1

1([Aa,Ab]ei, e j)2
}1/2

,
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where we have used the algebraic inequality (P +Q)2
≤ 2(P2 +Q2), for P,Q ∈ R.

On simplifying the last inequality, we get the desired inequality.

For any a ∈ {1, . . . ,n}, the operator Ba : TxM→ TxM is defined as

< BaE,F >=< τ(E,F),Na > . (14)

Clearly, we have the relations

Ba = Aa− < H ,Na > Id

and

[Aa,Ab] = [Ba,Bb], (15)

for b ∈ {1, . . . ,n}. Thus, we have

Corollary 4.4. Let M be an n-dimensional Legendrian submanifold in the standard warped product manifold N =
I × f N(c), then we have

ρ⊥ ≤

√
2

2n(n − 1)

{ c2

16 f 4 n2(n − 1)2 +

n∑
a,b=1

||[Ba,Bb]||2
}1/2

.

The following result, derived by Lu for the symmetric and trace-free operators in [11], is the most important
ingredient in the proof of our desired DDVV inequality:

Theorem 4.5. Let M be an n-dimensional Riemannian submanifold of n + m-dimensional Riemannian space form
N(c). For every set {B1, . . . ,Bm} of symmetric (m ×m)-matrices with trace zero the following inequality holds:

m∑
r,s=1

||Br,Bs||
2
≤

( m∑
r=1

||Br||
2
)2
.

By using Corollaries 4.2, 4.4 and Theorem 4.5, we derive the main inequality of this section:

Theorem 4.6. Let M be an n-dimensional Legendrian submanifold in a (2n + 1)-dimensional standard warped
product manifold N = I × f N(c), then we have

√

2ρ⊥ + ρnor ≤
|c| + c
4 f 2 −

( f ′

f

)2
−

2
n

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
||T||2 + ||H||2.

Proof. From Corollary 4.4, Theorem 4.5 and relation (14), it follows that

ρ⊥ ≤
1

√
2n(n − 1)

{ c2

16 f 4 n2(n − 1)2 +

n∑
a,b=1

||[Ba,Bb]||2
}1/2

≤

√
2|c|

8 f 2 +
1

√
2n(n − 1)

n∑
a,b=1

||Ba||
2

≤

√
2|c|

8 f 2 +
1

√
2n(n − 1)

||τ||2. (16)

On combining (16) with the following relation:

ρnor =
c

4 f 2 −

( f ′

f

)2
−

2
n

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
||T||2 −

||τ||2

n(n − 1)
+ ||H||2,
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we arrive at

ρ⊥ +
1
√

2
ρnor ≤

√
2|c|

8 f 2 +
1
√

2

( c
4 f 2 −

( f ′

f

)2)
+

1
√

2
||H||

2
−

2
√

2n

( c
4 f 2 −

( f ′

f

)2
+

f ′′

f

)
||T||2.

Thus, we get the desired inequality.

Warped product plays a crucial role not only for Kenmotsu manifold, but for a cosymplectic manifold as
well. A Kenmotsu manifold can be locally expressed as the warped product of a Kähler manifold and a
line. In this reason, we set I = R and f (z) = ez, so β = f ′

f = 1 and we have the following consequence:

Corollary 4.7. Let M be an n-dimensional Legendrian submanifold in Kenmotsu manifold N = R ×ez C, then we
have

||H||
2
≥

√

2ρ⊥ + ρnor + 1.

When f = constant(, 0), then β = 0. Thus, we have

Corollary 4.8. Let M be an n-dimensional Legendrian submanifold in a (2n+ 1)-dimensional cosymplectic manifold
N = R ×N(c), then we have

√

2ρ⊥ + ρnor ≤
|c| + c

4
−

( c
2n

)
||T||2 + ||H||2.

5. Conclusion

It is well-known that intrinsic and extrinsic invariants are very powerful tools to study submanifolds of
Riemannian manifolds. The most fascinating problem in the general theory of Riemannian submanifolds
is

Problem A. ”To establish some simple relationships between the main intrinsic invariants and the main
extrinsic invariants of a submanifold.”

Obviously, such simple and nice relationships can be provided by certain types of inequalities. In the
present paper, we have mainly considered an isometric immersion of Riemannian manifold into the stan-
dard warped product manifold N = I× f N(c), where N(c) is a complex space form and constant holomorphic
sectional curvature c, with arbitrary codimension. A solution to the Problem A is obtained by using the
fundamental equations for Riemannian submanifolds to establish a sharp relationship between the normal-
ized normal scalar curvature (defined from the normal curvature tensor), normalized scalar curvature and
mean curvature. The results proved here motivate further studies to modify or find similar relationships
for many kinds of invariants (of similar nature) for Riemannian submanifolds in different kinds of warped
product manifold, for example N = I × f N(c), where N(c) is the simply connected real space form with
constant curvature c (see [17]) and other ambient spaces (see [4]).
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