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Abstract. In this manuscript, we continue to study the hypersoft topological space (for short, HSTS) by
presenting hypersoft (HS) separation axioms, called HS Ti-spaces for i = 0, 1, 2, 3, 4. The notions of HS
regular and HS normal spaces are explained in detail. We discuss the connections between them and
present numerous examples to help clarify the interconnections between the different types of these spaces.
We point out that HS Ti-axioms imply HS Ti−1 for i = 1, 2, 3, and with the help of an example we show that
HS T4-space need not be HS T3-space. We also clarify that the property that an HS space being HS Ti-spaces
(i = 0, 1, 2, 3) is HS hereditary. Finally, we provide a diagram to illustrate the relationships between our
proposed axioms.

1. Introduction

Most of our traditional tools for formal modeling, reasoning, and computation are clear, consistent, and
precise. However, there are many complex problems in economics, engineering, the environment, social
sciences, medicine, and other fields that require data that is not necessarily pure. Due to the many forms of
uncertainty involved in these situations, we cannot use traditional approaches to resolve them. As a result,
Molodtsov [12] pioneered soft set theory as a mathematical tool for dealing with uncertainty. Work on soft
set theory and its applications has progressed rapidly in recent years (see, for example, [3, 6, 8–10, 19, 24]).

Shabir and Naz [21] introduced the concept of soft topological spaces in 2011 by defining soft sets over
an initial universe set with a fixed set of parameters. Many authors have examined the notions of soft
topology in the same way that they have been investigated in classical topology from the beginning of soft
topology. The introduction of multiple varieties of soft axioms in terms of ordinary points [11, 21] and soft
points [5, 23] is deriven by the various types of membership and non-membership relations in soft settings.
The author of [4] corrected some reported conclusions about the soft separation axioms.

Smarandache [22] devised a novel approach to dealing with uncertainty. By modifying the function to
a multiple decision function, the soft sets were generalized to HS sets. He also introduced fuzzy HS sets,
intuitionistic fuzzy HS sets, neutrosophic HS sets, and plithogenic HS sets as extensions of the HS sets.
Based on the HS sets and their extension, many researchers have developed various operators, properties,
and applications [1, 2, 18, 20].
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Recently, Musa and Asaad [13] applied HS sets to initiate the concept of HSTS. They defined basic
HSTS concepts such as HS closure, HS interior operators, and HS connected spaces [14]. Musa and Asaad
[15], investigated the concept of bipolar HS sets according to the role of bipolarity that was introduced by
Dubois and Prade [7]. Some definitions, properties and operations on bipolar HS sets were studied in [15].
Topological structures across bipolar HS sets were first investigated by Musa and Asaad [16]. They defined
the bipolar HSTS in a universal set along with a discussion of the connectivity of the bipolar HS [17].

The following is a list of the sections that make up the current paper: Section 2 is the preliminaries, which
include definitions and properties of HS sets and hypersoft topology (HST). In section 3, we introduce the
concept of HS separation axioms, namely HS Ti-spaces (i = 0, 1, 2, 3, 4). We show how they are related and
describe some of their characteristics. In Section 4, we introduce the notions of HS regular and HS normal
spaces. In Section 5, we draw conclusions and suggest some research topics for the future.

2. Preliminaries

The necessary concepts and results related to the HS sets and HST are presented in this section. Letℜ
be an initial universe, 2ℜ the power set ofℜ, and σi ∩ σ j = ϕ for i , j. Let λi, γi ⊆ σi for i = 1, 2, ...,n.

Definition 2.1. ([22]) A pair (π, σ1 × σ2 × ...× σn) is called an HS set overℜ, where π is a mapping given by
π : σ1 × σ2 × ... × σn → 2ℜ.

We use the notations Σ, Λ, and Γ for σ1 × σ2 × ...× σn, λ1 × λ2 × ...× λn, andγ1 × γ2 × ...× γn, respectively.
Let Λ, Γ ⊆ Σ. Moreover, we identify HS set (π,Σ) as (π,Σ) = {(ℓ, π(ℓ)) : ℓ ∈ Σ}.

Definition 2.2. ([18]) We called (π,Λ) is an HS subset of (θ,Γ) if Λ ⊆ Γ, and π(ℓ) ⊆ θ(ℓ) for all ℓ ∈ Λ. We
write (π,Λ) ⊑̃ (θ,Γ).

An HS set (π,Λ) is said to be an HS superset of (θ,Γ), if (θ,Γ) is an HS subset of (π,Λ). We write (π,Λ)
⊒̃ (θ,Γ).

Definition 2.3. ([18]) Two HS sets (π,Λ) and (θ,Γ) are said to be HS equal if (π,Λ) is an HS subset of (θ,Γ)
and (θ,Γ) is an HS subset of (π,Λ).

Definition 2.4. ([18]) The complement of an HS set (π,Λ), denoted by (π,Λ)c, is defined by (πc,Λ) where
πc : Λ→ 2ℜ is a mapping given by πc(ℓ) =ℜ \ π(ℓ) for all ℓ ∈ Λ.

Definition 2.5. ([20]) We called an HS set (π,Λ) a relative null HS set, denoted by (ϕ̃,Λ), if π(ℓ) = ϕ for all
ℓ ∈ Λ.

The null HS set overℜ is denoted by (ϕ̃,Σ).

Definition 2.6. ([20]) We called an HS set (π,Λ) a relative whole HS set, denoted by (ℜ̃,Λ), if π(ℓ) =ℜ for
all ℓ ∈ Λ.

The whole HS set overℜ is denoted by (ℜ̃,Σ).

Definition 2.7. ([18]) The difference of HS set (π,Λ) and HS set (θ,Γ) is an HS set (ω,∆), denoted by (π,Λ)
\ (θ,Γ) = (ω,∆), where ∆ = Λ ∩ Γ and ω(ℓ) = π(ℓ) \ θ(ℓ) for all ℓ ∈ ∆.

Definition 2.8. ([20]) The union of HS set (π,Λ) and HS set (θ,Γ) is an HS set (ω,∆), denoted by (π,Λ) ⊔̃
(θ,Γ) = (ω,∆), where ∆ = Λ ∩ Γ and ω(ℓ) = π(ℓ) ∪ θ(ℓ) for all ℓ ∈ ∆.

Definition 2.9. ([18]) The intersection of HS set (π,Λ) and HS set (θ,Γ) is an HS set (ω,∆), denoted by (π,Λ)
⊓̃ (θ,Γ) = (ω,∆), where ∆ = Λ ∩ Γ and ω(ℓ) = π(ℓ) ∩ θ(ℓ) for all ℓ ∈ ∆.

Definition 2.10. ([13]) Let (π,Σ) be an HS set over ℜ and r ∈ ℜ. Then r ∈ (π,Σ) if r ∈ π(ℓ) for all ℓ ∈ Σ.
Also for any r ∈ ℜ, r < (π,Σ), if r < π(ℓ) for some ℓ ∈ Σ.
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Definition 2.11. ([13]) Let Υ ⊆ ℜ. Then (Ỹ,Σ) denotes the HS set overℜ defined by Υ̃(ℓ) = Υ for all ℓ ∈ Σ.

Definition 2.12. ([13]) Let (π,Σ) be an HS set over ℜ and Υ ⊆ ℜ. Then the sub HS set of (π,Σ) over Υ
denoted by (πΥ,Σ) is defined as πΥ(ℓ) = Υ ∩ π(ℓ) for all ℓ ∈ Σ.

In other words, (πΥ,Σ) = (Υ̃,Σ) ⊓̃ (π,Σ).

Definition 2.13. ([13]) Let TH be the collection of HS sets overℜ, then TH is said to be an HST onℜ if:
(1) (ϕ̃,Σ), (ℜ̃,Σ) belong to TH;
(2) The intersection of any two HS sets in TH belongs to TH;
(3) The union of any number of HS sets in TH belongs to TH.

Then (ℜ,TH,Σ) is called an HSTS. The members of TH are said to be HS open sets and its complement
is called an HS closed sets.

Proposition 2.14. ([13]) Let (ℜ,TH,Σ) be an HSTS. Then:
(1) (ϕ̃,Σ), (ℜ̃,Σ) are HS closed set overℜ;
(2) The union of any two HS closed sets is an HS closed set overℜ;
(3) The intersection of any number of HS closed sets is an HS closed set overℜ.

Definition 2.15. ([13]) Let (ℜ,TH,Σ) be an HSTS and Υ ⊆ ℜ. Then THΥ = {(πΥ,Σ) | (π,Σ) ∈̃ TH} is said to be
the relative HST on Υ and (Υ,THΥ ,Σ) is called an HS subspace of (ℜ,TH,Σ).

Proposition 2.16. ([14]) Let (Υ,THΥ ,Σ) be an HS subspace of HSTS (ℜ,TH,Σ) and (π,Σ) be an HS set over ℜ,
then:

(1) (π,Σ) is HS open in Υ if and only if (π,Σ) = (Υ̃,Σ) ⊓̃ (θ,Σ) for some (θ,Σ) ∈ TH;
(2) (π,Σ) is HS closed in Υ if and only if (π,Σ) = (Υ̃,Σ) ⊓̃ (θ,Σ) for some HS closed set (θ,Σ) inℜ.

Definition 2.17. ([14]) A property of an HSTS is said to be HS hereditary if every HS subspace of the space
has that property.

Corollary 2.18. Let (π,Σ) be an HS set overℜ and r ∈ ℜ. Then:
(1) r ∈ (π,Σ) if and only if (πr,Σ) ⊑̃ (π,Σ);
(2) If (πr,Σ) ⊓̃ (π,Σ) = (ϕ̃,Σ), then r < (π,Σ).

Proof. Straightforward.

Remark 2.19. The opposite of Corollary 2.18 (2) does not hold.

Example 2.20. Letℜ = {r1, r2}, σ1 = {ε1, ε2, ε3}, σ2 = {ε4}, andσ3 = {ε5}. Let (π,Σ) = {((ε1, ε4, ε5), {r1}), ((ε2, ε4, ε5),
{r1}), ((ε3, ε4, ε5),ℜ)}. Then, r2 < (π,Σ) but (πr2 ,Σ) ⊓̃ (π,Σ) , (ϕ̃,Σ).

3. Hypersoft separation axioms

The definitions of HS Ti-spaces (i = 0, 1, 2) are given in this section. The essential characteristics of these
spaces are discussed, as well as the relationships between them.

Definition 3.1. An HSTS (ℜ,TH,Σ) is said to be:
(1) An HS T0-space if for every r , s ∈ ℜ, there is an HS open set (π,Σ) with r ∈ (π,Σ), s < (π,Σ) or s ∈

(π,Σ), r < (π,Σ);
(2) An HS T1-space if for every r , s ∈ ℜ, there are HS open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ), s <

(π1,Σ) and s ∈ (π2,Σ), r < (π2,Σ);
(3) An HS T2-space if for every r , s ∈ ℜ, there are HS open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ), s ∈

(π2,Σ) and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ).

Next, we examine some results related to the HS T0-space.
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Proposition 3.2. Let (ℜ,TH,Σ) be an HSTS and r , s ∈ ℜ. If there is an HS open set (π,Σ) with r ∈ (π,Σ), s ∈
(π,Σ)c or s ∈ (π,Σ), r ∈ (π,Σ)c, then (ℜ,TH,Σ) is an HS T0-space.

Proof. Let r , s ∈ ℜ and (π,Σ) be an HS open set with r ∈ (π,Σ), s ∈ (π,Σ)c. Since s ∈ (π,Σ)c then s ∈ πc(ℓ)
for all ℓ ∈ Σ. This means s < π(ℓ) for all ℓ ∈ Σ. Therefore s < (π,Σ). Similarly, we may verify s ∈ (π,Σ) and
r < (π,Σ). Hence, (ℜ,TH,Σ) is an HS T0-space.

Proposition 3.3. Let (ℜ,TH,Σ) be an HSTS and Υ ⊆ ℜ. If (ℜ,TH,Σ) is an HS T0-space, then (Υ,THΥ ,Σ) is an
HS T0-space.

Proof. Let r , s ∈ Υ. Since (ℜ,TH,Σ) is an HS T0-space, then there is an HS open set (π,Σ) with r ∈ (π,Σ),
s < (π,Σ) or s ∈ (π,Σ), r < (π,Σ). Say, r ∈ (π,Σ) and s < (π,Σ). As, r ∈ (π,Σ) then r ∈ π(ℓ) for all ℓ ∈ Σ. Since
r ∈ Υ, then r ∈ Υ ∩ π(ℓ) = πΥ(ℓ) for all ℓ ∈ Σ. Hence, r ∈ (πΥ,Σ). Consider s < (π,Σ). Then, s < π(ℓ) for some
ℓ ∈ Σ. This implies s < Υ ∩ π(ℓ) = πΥ(ℓ) for some ℓ ∈ Σ. Hence, s < (πΥ,Σ). Similarly, we may verify s ∈
(πΥ,Σ) and r < (πΥ,Σ). Hence, (Υ,THΥ ,Σ) is an HS T0-space.

In the following result, we present a complete description of an HS T1-space and then establish various
characteristics of this space.

Proposition 3.4. If (πr,Σ) is an HS closed set of (ℜ,TH,Σ) for each r ∈ ℜ, then (ℜ,TH,Σ) is an HS T1-space.

Proof. Let (πr,Σ) is an HS closed set of (ℜ,TH,Σ) for each r ∈ ℜ. Then, (πr,Σ)c is an HS open set in TH. For
r , s ∈ ℜ, (πr,Σ)c is an HS open set with s ∈ (πr,Σ)c and r < (πr,Σ)c. Similarly, (πs,Σ)c

∈̃ TH with r ∈ (πs,Σ)c

and s < (πs,Σ)c. Thus, (ℜ,TH,Σ) is an HS T1-space.

Remark 3.5. The next example illustrates the converse of Proposition 3.4 is not true.

Example 3.6. Letℜ = {r1, r2}, σ1 = {ε1, ε2}, σ2 = {ε3}, and σ3 = {ε4}. Let TH = {(ϕ̃,Σ), (ℜ̃,Σ), (π1,Σ), (π2,Σ),
(π3,Σ)} be an HST defined onℜ, where
(π1,Σ) = {((ε1, ε3, ε4), {r1}), ((ε2, ε3, ε4), {r2})};
(π2,Σ) = {((ε1, ε3, ε4), {r1}), ((ε2, ε3, ε4),ℜ)};
(π3,Σ) = {((ε1, ε3, ε4),ℜ), ((ε2, ε3, ε4), {r2})}.
Then, (ℜ,TH,Σ) is an HS T1-space. We note that for (πr1 ,Σ), (πr2 ,Σ) overℜ, where
(πr1 ,Σ) = {((ε1, ε3, ε4), {r1}), ((ε2, ε3, ε4), {r1})};
(πr2 ,Σ) = {((ε1, ε3, ε4), {r2}), ((ε2, ε3, ε4), {r2})}.
The HS complement (πr1 ,Σ)c, (πr2 ,Σ)c overℜ are defined by
(πr1 ,Σ)c = {((ε1, ε3, ε4), {r2}), ((ε2, ε3, ε4), {r2})};
(πr2 ,Σ)c = {((ε1, ε3, ε4), {r1}), ((ε2, ε3, ε4), {r1})}.
Neither (πr1 ,Σ)c nor (πr2 ,Σ)c belong to TH. Thus, (πr1 ,Σ) and (πr2 ,Σ) are not HS closed sets of (ℜ,TH,Σ).

Proposition 3.7. Let (ℜ,TH,Σ) be an HSTS and r ∈ ℜ. Ifℜ is an HS T1-space, then for each HS open set (π,Σ)
such that r ∈ (π,Σ):

(1) (πr,Σ) ⊑̃ [⊓̃ (π,Σ)];
(2) s < ⊓̃ (π,Σ) for all s , r.

Proof. (1) Since r ∈ ⊓̃ (π,Σ), then by Corollary 2.18, (πr,Σ) ⊑̃ [⊓̃ (π,Σ)].
(2) Let r , s ∈ ℜ, then there are HS open sets (θ,Σ) with r ∈ (θ,Σ) and s < (θ,Σ). So, s < θ(ℓ) for some

ℓ ∈ Σ, and hence s < ∩ℓ∈Σ π(ℓ). Thus, s < ⊓̃ (π,Σ).

Remark 3.8. In Proposition 3.7 (1), the equality does not hold.

Example 3.9. Let ℜ = {r1, r2}, σ1 = {ε1, ε2}, σ2 = {ε3, ε4}, and σ3 = {ε5}. Let TH = {(ϕ̃,Σ), (ℜ̃,Σ), (π1,Σ),
(π2,Σ), (π3,Σ), (π4,Σ), (π5,Σ)} be an HST defined onℜ, where
(π1,Σ) = {((ε1, ε3, ε5),ℜ), ((ε1, ε4, ε5), {r1}), ((ε2, ε3, ε5), {r1}), ((ε2, ε4, ε5), {r1})};
(π2,Σ) = {((ε1, ε3, ε5), {r2}), ((ε1, ε4, ε5), {r2}), ((ε2, ε3, ε5), {r2}), ((ε2, ε4, ε5),ℜ)};
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(π3,Σ) = {((ε1, ε3, ε5),ℜ), ((ε1, ε4, ε5),ℜ), ((ε2, ε3, ε5), {r1}), ((ε2, ε4, ε5), {r1})};
(π4,Σ) = {((ε1, ε3, ε5), {r2}), ((ε1, ε4, ε5), ϕ), ((ε2, ε3, ε5), ϕ), ((ε2, ε4, ε5), {r1})};
(π5,Σ) = {((ε1, ε3, ε5), {r2}), ((ε1, ε4, ε5), {r2}), ((ε2, ε3, ε5), ϕ), ((ε2, ε4, ε5), {r1})}.

Then, (ℜ,TH,Σ) is an HS T1-space. But for all HS open sets r1 ∈ (π1,Σ) and r1 ∈ (π3,Σ) we have (π1,Σ)
⊓̃ (π3,Σ) = (π1,Σ) , (πr1 ,Σ).

Proposition 3.10. Let (ℜ,TH,Σ) be an HSTS and r , s ∈ ℜ. If there are HS open sets (π1,Σ) and (π2,Σ) with r ∈
(π1,Σ), s ∈ (π1,Σ)c and s ∈ (π2,Σ), r ∈ (π2,Σ)c, then (ℜ,TH,Σ) is an HS T1-space.

Proof. Similar to the proof of Proposition 3.2.

Proposition 3.11. Let (ℜ,TH,Σ) be an HSTS and Υ ⊆ ℜ. If (ℜ,TH,Σ) is an HS T1-space, then (Υ,THΥ ,Σ) is an
HS T1-space.

Proof. Similar to the proof of Proposition 3.3.

In the following results, we characterize an HS T2-space and investigate some of its properties.

Proposition 3.12. Let (ℜ,TH,Σ) be an HSTS and r ∈ ℜ. Ifℜ is an HS T2-space, then for each HS open set (π,Σ)
with r ∈ (π,Σ), (πr,Σ) = ⊓̃ (π,Σ) .

Proof. Let r , s ∈ ℜ and s ∈ ∩π(ℓ) for some ℓ ∈ Σ. Since (ℜ,TH,Σ) is an HS T2-space, then there are HS
open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ), s ∈ (π2,Σ) and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ). Therefore (π1,Σ) ⊓̃
(π2s,Σ) = (ϕ̃,Σ) and hence π1(ℓ) ∩ π2s(ℓ) = ϕ. This contradicts s ∈ ∩π(ℓ) for some ℓ ∈ Σ. This is the complete
of the proof.

Proposition 3.13. Let (ℜ,TH,Σ) be an HSTS and r , s ∈ ℜ. If there are HS open sets (π1,Σ) and (π2,Σ) with r ∈
(π1,Σ), s ∈ (π1,Σ)c and s ∈ (π2,Σ), r ∈ (π2,Σ)c, then (ℜ,TH,Σ) is an HS T2-space.

Proof. Let r , s ∈ ℜ and (π1,Σ), (π2,Σ) be two HS open sets with r ∈ (π1,Σ), s ∈ (π1,Σ)c and s ∈ (π2,Σ), r ∈
(π2,Σ)c. Then, r ∈ π1(ℓ), s ∈ πc

1(ℓ) and s ∈ π2(ℓ), r ∈ πc
2(ℓ) for all ℓ ∈ Σ. This means r ∈ π1(ℓ), s < π1(ℓ) and s ∈

π2(ℓ), r < π2(ℓ) with π1(ℓ) ∩ π2(ℓ) = ϕ for all ℓ ∈ Σ. Then, we have r ∈ (π1,Σ) and s ∈ (π2,Σ) with (π1,Σ) ⊓̃
(π2,Σ) = (ϕ̃,Σ). Thus, (ℜ,TH,Σ) is an HS T2-space.

Proposition 3.14. Let (ℜ,TH,Σ) be an HSTS and Υ ⊆ ℜ. If (ℜ,TH,Σ) is an HS T2-space, then (Υ,THΥ ,Σ) is an
HS T2-space.

Proof. Let r , s ∈ Υ. Since (ℜ,TH,Σ) is an HS T2-space, then there are HS open sets (π1,Σ) and (π2,Σ) with
r ∈ (π1,Σ), s ∈ (π2,Σ) and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ). This means r ∈ π1(ℓ) and s ∈ π2(ℓ) with π1(ℓ) ∩ π2(ℓ) =
ϕ for all ℓ ∈ Σ. Since r, s ∈ Υ, then r ∈ Υ ∩ π1(ℓ) = π1Υ (ℓ) and s ∈ Υ ∩ π2(ℓ) = π2Υ (ℓ) with π1Υ (ℓ) ∩ π2Υ (ℓ) = ϕ
for all ℓ ∈ Σ. Then, r ∈ (π1Υ ,Σ) and s ∈ (π2Υ ,Σ) with (π1Υ ,Σ) ⊓̃ (π2Υ ,Σ) = (ϕ̃,Σ). Hence (Υ,THΥ ,Σ) is an HS
T2-space.

Proposition 3.15. Every HS Ti-space is HS Ti−1-space, for i = 1, 2.

Proof. Let (ℜ,TH,Σ) be an HSTS and r , s ∈ ℜ. For the case i = 1, let (ℜ,TH,Σ) be an HS T1-space, then
there are HS open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ), s < (π1,Σ) and s ∈ (π2,Σ), r < (π2,Σ). This implies
r ∈ (π1,Σ), s < (π1,Σ) or s ∈ (π2,Σ), r < (π2,Σ). Thus, (ℜ,TH,Σ) is an HS T0-space. Now, for the case i = 2,
let (ℜ,TH,Σ) be an HS T2-space, then there are HS open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ), s ∈ (π2,Σ)
and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ). This means r ∈ π1(ℓ), s ∈ π2(ℓ) and π1(ℓ) ∩ π2(ℓ) = ϕ for all ℓ ∈ Σ. Then, we
have r ∈ π1(ℓ), s < π1(ℓ) and s ∈ π2(ℓ), r < π2(ℓ) for all ℓ ∈ Σ. Thus, r ∈ (π1,Σ), s < (π1,Σ) and s ∈ (π2,Σ), r <
(π2,Σ). Therefore, (ℜ,TH,Σ) is an HS T1-space.

Remark 3.16. The next example shows the opposite of Proposition 3.15 is incorrect.
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Example 3.17. Let (ℜ,TH,Σ) be the same as in Example 3.6. Then, (ℜ,TH,Σ) is an HS T1-space. But for
r1, r2 ∈ ℜ there do not exist any two HS open sets (π1,Σ) and (π2,Σ) with r1 ∈ (π1,Σ), r2 ∈ (π2,Σ) and
(π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ). Hence it is not an HS T2-space. Now let TH = {(ϕ̃,Σ), (ℜ̃,Σ), (π,Σ)}where (π,Σ) =
{((ε1, ε3, ε4), {r1}), ((ε2, ε3, ε4),ℜ)}. Then, (ℜ,TH,Σ) is an HS T0-space . But since for r1, r2 ∈ ℜ there do not
exist HS open sets (π1,Σ) and (π2,Σ) with r1 ∈ (π1,Σ), r2 < (π1,Σ) and r2 ∈ (π2,Σ), r1 < (π2,Σ). Then, it is
not an HS T1-space

4. Hypersoft regular and hypersoft normal spaces

In this section, we study and characterize the regular and normal spaces of HS in detail.

Definition 4.1. An HSTS (ℜ,TH,Σ) is said to be HS regular if for every HS closed set (ω,Σ) with r < (ω,Σ),
there are HS open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ), (ω,Σ) ⊑̃ (π2,Σ) and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ).

Corollary 4.2. Let (ω,Σ) be an HS closed set of an HSTS (ℜ,TH,Σ) such that r < (ω,Σ). If (ℜ,TH,Σ) is an HS
regular space, then there is HS open set (π,Σ) with r ∈ (π,Σ) and (π,Σ) ⊓̃ (ω,Σ) = (ϕ̃,Σ).

Proposition 4.3. Let (ℜ,TH,Σ) be an HSTS and r ∈ ℜ. Ifℜ is an HS regular space, then:
(1) For an HS closed set (ω,Σ), r < (ω,Σ) if and only if (πr,Σ) ⊓̃ (ω,Σ) = (ϕ̃,Σ);
(2) For an HS open set (π,Σ), r < (π,Σ) if and only if (πr,Σ) ⊓̃ (π,Σ) = (ϕ̃,Σ).

Proof. (1) Let r < (ω,Σ). Then, there is an HS open set (π,Σ) with r ∈ (π,Σ) and (π,Σ) ⊓̃ (ω,Σ) = (ϕ̃,Σ) by
Corollary 4.2. Since r ∈ (π,Σ), then by Corollary 2.18 (1), (πr,Σ) ⊑̃ (π,Σ). Hence, (πr,Σ) ⊓̃ (ω,Σ) = (ϕ̃,Σ).
The converse is obtained by Corollary 2.18 (2).

(2) Let r < (π,Σ). Then, we have two cases: (a) for all ℓ ∈ Σ, r < π(ℓ) and (b) for some ℓ, β ∈ Σ, r < π(ℓ)
and r ∈ π(β). In case (a) we have (πr,Σ) ⊓̃ (π,Σ) = (ϕ̃,Σ). In case (b) for some ℓ, β ∈ Σ, r ∈ πc(ℓ) and r < πc(β) .
Hence, (π,Σ)c is an HS closed set with r < (π,Σ)c, by (1), (πr,Σ) ⊓̃ (π,Σ)c = (ϕ̃,Σ). So (πr,Σ) ⊑̃ (π,Σ) but this
contradicts r < π(ℓ) for some ℓ ∈ Σ. Thus, (πr,Σ) ⊓̃ (π,Σ) = (ϕ̃,Σ). The converse is obvious.

Proposition 4.4. Let (ℜ,TH,Σ) be an HSTS and r ∈ ℜ. Then, these are equivalent:
1) (ℜ,TH,Σ) is an HS regular space;
(2) For each HS closed set (ω,Σ) with (πr,Σ) ⊓̃ (ω,Σ) = (ϕ̃,Σ), there are HS open sets (π1,Σ) and (π2,Σ) with

(πr,Σ) ⊑̃ (π1,Σ), (ω,Σ) ⊑̃ (π2,Σ) and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ).

Proof. Follows from Proposition 4.3 (1) and Corollary 2.18 (1).

Proposition 4.5. Let (ℜ,TH,Σ) be an HSTS and r ∈ ℜ. Ifℜ is an HS regular space, then:
(1) For an HS open set (π,Σ), r ∈ (π,Σ) if and only if r ∈ π(ℓ) for some ℓ ∈ Σ;
(2) For an HS open set (π,Σ), (π,Σ) = ⊔̃{(πr,Σ) : r ∈ π(ℓ) for some ℓ ∈ Σ}.

Proof. (1) Let r ∈ π(ℓ) for some ℓ ∈ Σ, and r < (π,Σ). Then, (πr,Σ) ⊓̃ (π,Σ) = (ϕ̃,Σ) by Proposition 4.3 (2). But
this contradicts our assumption and hence r ∈ (π,Σ). The converse is obvious.

(2) Follows from (1) and r ∈ (π,Σ) if and only if (πr,Σ) ⊑̃ (π,Σ).

Proposition 4.6. Let (ℜ,TH,Σ) be an HSTS . If (ℜ,TH,Σ) is an HS regular space, then the these are equivalent:
(1) (ℜ,TH,Σ) is an HS T1-space;
(2) For r , s ∈ℜ, there are HS open sets (π1,Σ) and (π2,Σ) with (πr,Σ) ⊑̃ (π1,Σ) and (πs,Σ) ⊓̃ (π1,Σ) = (ϕ̃,Σ);

and (πs,Σ) ⊑̃ (π2,Σ) and (πr,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ).

Proof. r ∈ (π,Σ) if and only if (πr,Σ) ⊑̃ (π,Σ) and, by Proposition 4.3 (2), r < (π,Σ) if and only if (πr,Σ) ⊓̃
(π,Σ) = (ϕ̃,Σ). Therefore the above statements are equivalent.

Definition 4.7. An HSTS (ℜ,TH,Σ) is said to be HS T3-space if it is HS regular and HS T1-space.
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Proposition 4.8. Let (ℜ,TH,Σ) be an HSTS and Υ ⊆ ℜ. If (ℜ,TH,Σ) is an HS T3-space, then (Υ,THΥ ,Σ) is an
HS T3-space.

Proof. Since (ℜ,TH,Σ) be an HS T3-space, then it is HS T1-space. By Proposition 3.11, (Υ,THΥ ,Σ) is an HS
T1-space. Let r ∈ Υ and let (ω,Σ) be an HS closed set in Υ with r < (ω,Σ). Then, r < ω(ℓ) for some ℓ ∈ Σ.
Since (ω,Σ) be an HS closed set in Υ, then there is an HS closed set (η,Σ) inℜ with ω(ℓ) = η(ℓ) ∩ Υ. Since
r < ω(ℓ) for some ℓ ∈ Σ, then r < η(ℓ) ∩ Υ = ω(ℓ) and hence r < (η,Σ). As (ℜ,TH,Σ) is HS regular space, then
there are HS open sets (π1,Σ) and (π2,Σ) with r ∈ (π1,Σ) and (η,Σ) ⊑̃ (π2,Σ) with (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ).
Now, if we take (π1Υ ,Σ) and (π2Υ ,Σ) as two HS open sets in Υ, then π1Υ (ℓ) = π1(ℓ) ∩ Υ and π2Υ (ℓ) = π2(ℓ) ∩
Υ. This means r ∈ (π1Υ ,Σ) and (ω,Σ) ⊑̃ (π1Υ ,Σ) with (π1Υ ,Σ) ⊓̃ (π2Υ ,Σ) = (ϕ̃,Σ). Thus, (Υ,THΥ ,Σ) is an HS
regular space and hence (Υ,THΥ ,Σ) is an HS T3-space.

Proposition 4.9. Let (ℜ,TH,Σ) be an HSTS . If (ℜ,TH,Σ) is an HS T3-space, then (πr,Σ) is an HS closed for each
r ∈ ℜ.

Proof. For each s ∈ ℜ \ {r}, since (ℜ,TH,Σ) is an HS regular and HS T1-space, then by Proposition 4.6, there
is an HS open set (π,Σ) with (πs,Σ) ⊑̃ (π,Σ) and (πr,Σ) ⊓̃ (π,Σ) = (ϕ̃,Σ). So, ⊔̃s∈ℜ\{r}(π,Σ) ⊑̃ (πr,Σ)c. Now,
for each s ∈ ℜ\ {r} and for each ℓ ∈ Σ, πr

c(ℓ) =ℜ\{r} = ⊔̃s∈ℜ\{r}{s} = ⊔̃s∈ℜ\{r}{s(ℓ)} ⊑̃ ⊔̃s∈ℜ\{r}{π(ℓ)}. This means
(πr,Σ)c

⊑̃ ⊔̃s∈ℜ\{r}(π,Σ) and hence (πr,Σ)c = ⊔̃s∈ℜ\{r}(π,Σ). Since (π,Σ) is an HS open set for each s ∈ ℜ \ {r}.
Hence, (πr,Σ) is an HS closed.

Proposition 4.10. An HS T3-space is HS T2-space.

Proof. Let (ℜ,TH,Σ) be an HS T3-space. For r , s ∈ ℜ, (πs,Σ) is an HS closed set and r < (πs,Σ) by
Proposition 4.9. Since (ℜ,TH,Σ) is HS regular space, then there are HS open sets (π1,Σ) and (π2,Σ) with r
∈ (π1,Σ), s ∈ (πs,Σ) ⊑̃ (π2,Σ) and (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ). Hence, (ℜ,TH,Σ) is an HS T2-space.

Remark 4.11. The opposite of Proposition 4.10 is not true in general.

Example 4.12. Let ℜ = {r1, r2}, σ1 = {ε1, ε2, ε3}, σ2 = {ε4}, and σ3 = {ε5}. Let TH = {(ϕ̃,Σ), (ℜ̃,Σ), (π1,Σ),
(π2,Σ), (π3,Σ), (π4,Σ), (π5,Σ), (π6,Σ), (π7,Σ)} be an HST defined onℜ, where
(π1,Σ) = {((ε1, ε4, ε5), {r1}), ((ε2, ε4, ε5), {r1}), ((ε3, ε4, ε5), {r1})};
(π2,Σ) = {((ε1, ε4, ε5), {r2}), ((ε2, ε4, ε5), {r2}), ((ε3, ε4, ε5), {r2})};
(π3,Σ) = {((ε1, ε4, ε5), ϕ), ((ε2, ε4, ε5), {r1}), ((ε3, ε4, ε5), {r1})};
(π4,Σ) = {((ε1, ε4, ε5), ϕ), ((ε2, ε4, ε5), {r2}), ((ε3, ε4, ε5), {r2})};
(π5,Σ) = {((ε1, ε4, ε5), {r1}), ((ε2, ε4, ε5),ℜ), ((ε3, ε4, ε5),ℜ)};
(π6,Σ) = {((ε1, ε4, ε5), {r2}), ((ε2, ε4, ε5),ℜ), ((ε3, ε4, ε5),ℜ)};
(π7,Σ) = {((ε1, ε4, ε5), ϕ), ((ε2, ε4, ε5),ℜ), ((ε3, ε4, ε5),ℜ)}.

Then, (ℜ,TH,Σ) is an HS T2-space. But it is not HS T3-space since for r1 < (π3,Σ)c, there do not exist HS
open sets (π,Σ) and (θ,Σ) with r1 ∈ (π,Σ), (π3,Σ)c

⊑̃ (θ,Σ) and (π,Σ) ⊓̃ (θ,Σ) = (ϕ̃,Σ).

Definition 4.13. An HSTS (ℜ,TH,Σ) is said to be HS normal if for every HS closed sets (ω1,Σ) and (ω2,Σ)
with (ω1,Σ) ⊓̃ (ω2,Σ) = (ϕ̃,Σ), there are HS open sets (π1,Σ) and (π2,Σ) such that (ω1,Σ) ⊑̃ (π1,Σ) and (ω2,Σ)
⊑̃ (π2,Σ) with (π1,Σ) ⊓̃ (π2,Σ) = (ϕ̃,Σ).

Proposition 4.14. Let (ℜ,TH,Σ) be an HSTS. If (ℜ,TH,Σ) is an HS normal space and if (πr,Σ) is an HS closed
set for each r ∈ ℜ, then (ℜ,TH,Σ) is an HS T3-space.

Proof. Since (πr,Σ) is an HS closed set for each r ∈ ℜ, then by Proposition 3.4, (ℜ,TH,Σ) is an HS T1-space.
It is also HS regular space by Proposition 4.4 and Definition 4.13. Hence, (ℜ,TH,Σ) is an HS T3-space.

Definition 4.15. An HSTS (ℜ,TH,Σ) is said to be HS T4-space if it is HS normal and HS T1-space.

Remark 4.16. An HS T4-space need not be HS T3-space.
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Example 4.17. Suppose that (ℜ,TH,Σ) is the same as in Example 4.12. Then, it is obvious that (ℜ,TH,Σ) is
HS T4-space but is not HS T3-space.

Now, we summarize the relationships between the HS Ti-spaces for i = 0, 1, 2, 3, 4.

HS T4-space↛ HS T3-space ↚→ HS T2-space ↚→ HS T1-space ↚→ HS T0-space

5. Conclusions

In this article, we continued to investigate the topological structures of HS sets by introducing HS
separation axioms, namely HS Ti-spaces (i = 0, 1, 2, 3, 4). We showed that every HS Ti-space is HS Ti−1 for
i = 1, 2, 3, but HS T4-space need not be HS T3-space using an example as reference. We also showed that
every HS subspace of HS Ti-spaces is HS Ti-spaces for i = 0, 1, 2, 3. Finally, since we indicated the relation
between the HS sets and the ordinary points, some other relations between them can be defined. This lead
to the study of many other types of HS separation axioms.
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