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Abstract. Our main aim in this work is to construct an original extension of bivariate Bernstein type
operators based on multiple shape parameters to give an application of four-dimensional infinite matrices
to approximation theory, and prove some Korovkin theorems using two summability methods: a statistical
convergence method which is stronger than the classical case and a power series method. We obtain the rate
of generalized statistical convergence, and the rate of convergence for the power series method. Moreover,
we provide some computer graphics to numerically analyze the efficiency and accuracy of convergence of
our operators and obtain corresponding error plots. All the results that have been obtained in the present
paper can be extended to the case of n-variate functions.

1. Introduction and Preliminaries

Bernstein opened a new way [1, 2] by giving the most well-known proof of Weierstrass approximation
theorem (see [42]). He constructed a sequence of approximating polynomials and many researchers have
successfully extended this idea to approximate functions (see [22-24, 32, 33]). Korovkin-type theorems
provide a process to decide whether a given sequence of positive linear operators converges strongly.
Using certain types of statistical convergences instead of the classical convergence in Korovkin type ap-
proximation theory gives us many advantages. Applications of Korovkin type approximation on positive
linear operators can be seen in [6-8]. We also note that classical convergence is also used in Korovkin type
approximation theory in many papers [10-12, 32-39].

In this study, we construct an original extension of bivariate Bernstein type operators based on multiple
shape parameters and prove certain Korovkin theorems using a four-dimensional summability method,
and a power series method. We obtain the rate of D-statistical convergence, and the rate of convergence for
the power series method (PSM) with the help of the modulus of continuity. Finally, we demonstrate some
computer graphics to numerically see the efficiency and accuracy of convergence of proposed operators,
and obtain corresponding error plots.

First we provide standard notations, notions and auxiliary results.
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Assume that there is N = N(1) € N for each 7 > 0, so that |Qu,v - Q| < 7 whenever u,v > N, in this case
double sequence ¢ = (g,,0) is said to be convergent to Q in Pringsheim’s sense (or simply [I-convergent),
and it is denoted by I — limg, » = Q (see [17]). When there is a positive number E so that )gu,v| < E for

1,

all (1,0) € N?> = N x N, double sequence is said to be bounded. As it is well known, a convergent single
sequence is bounded whereas a convergent double sequence need not to be bounded.

Assume that D = (d;,,,,) is a four-dimensional summability method. Given a double sequence ¢ = (0,,5),
D transform of g, denoted by Dp := ((Dp)y,), is defined as

(DQ)Z,O = Z dl,o,u,v@u,v/

u,v=1

and the double series is [1-convergent for (,0) € IN2. When four-dimensional matrix D = (d;,,,,) maps
every bounded [I-convergent sequence into a [I-convergent sequence with the same [T-limit, it is called
RH-regular (shortly RHR). A four-dimensional matrix D = (dj,,,») is RHR if and only if

(ﬂ) IT- lirnl,o dl,o,u,v = 0/

(b) IT— lirnl,o Z dl,o,u,v = 1/

u,v=1
(o]

() IT—limy, ¥ |diou0| = 0 (Yo € N),
u=1

@1 =timy, T |dou0] = 0 (V1 € N),

(o)
(e) X |d1,g,u,v| is [T-convergent,

u,u=1
(f) The inequality }, |d1,0,u,v| < Ej is satisfied for finite positive integers E1 and E; and for each
u,v>E,
(1,0) € N2.

These conditions are called Robison-Hamilton conditions [18]. Assume that D = (d;,, ) is a nonnegative
RHR matrix, and S ¢ IN?, then D—density of S is defined as

6(8) := 11~ lim Y oo
0 (u,0)€S

provided that the limit on the right-hand side exists in the Pringsheim sense. A real double sequence
0 = (0u,) is called D—statistically convergent to Q and denoted by stzD —limg,, = Qif, for every 7 > 0,
u,o

53({(1,0) € N? oy, — Q| 2 7)) = 0

(see also [16, 19]). A [I-convergent double sequence is D—statistically convergent to the same number even
if converse statement may not be true. When D = C(1, 1), C(1, 1)—statistical convergence becomes statistical
convergence for double sequences (see also [15]), where C(1,1) = (cj,) is double Cesaro matrix, defined
by croun =1/l0if 1 <u<o0,1<v <1 and ¢;,,, = 0 otherwise. Suppose that (£,,) is a double sequence of
nonnegative numbers with condition &y > 0, then power series

has radius of convergence @, where © € (0, 0] and 4,b € (0, ®) . When following equality is satisfied

00

. 1 U0 _
ﬂ,lljl_{%75 @ b)uZ éu,va b OQuop = Q

,0=0
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for each a,b € (0,0), then double sequence g = (g,,,) is said to be convergent to Q in the sense of PSM [27].
PSM for double sequences is regular if and only if

Z ér,vau Z éy,sbv
lim =2 =, lim &2 =
ab—6- &(a,b) ! ab—6- &(a,b)

are satisfied for any u, v [27]. In this work, we assume that PSM is regular. When ® = 1and &,, =1 PSM

becomes Abel summability method, and it becomes logarithmic summablhty method if &,, = m

Also, PSM becomes Borel summability method when ® = oo and &,,, = u,v, Some properties of modified
Szédsz-Mirakyan, Baskakov-Schurer-Szasz, and generalized Szasz operators in polynomial weight spaces
were studied by power summability methods in [3-5]. We also note that applications of various statistical
summability methods in approximation theory can be seen in the papers [13, 14, 29-31]. Finally, one can
see more information about double sequences in [15, 16, 20, 21, 40, 41], and application of double sequences
in approximation theory in [6, 27].

2. Bivariate Operators and Statistical Convergence

In this part, we construct an original extension of bivariate Bernstein type operators based on multi-
ple shape parameters and prove some Korovkin theorems using statistical convergence four-dimensional
matrices and power series method. The following polynomial functions

ﬂu,o(P} x)=(1- x)u 1- Plx),

a,i(p;x) = x'(1 — x)*~* ((Z) + pi — pix — pi+1x), i=12..., [g] -1,

I

u u—le u u [
ae)(p;x) = x21(1 - x) [21(([H])+P[2]—P[ Ly + pl2h! )
2

a,i(p;x) = x'(1 — x)*~* ((Z) —pi+pix + pi+1x), i= [g] +1,...,u-1,
Auu(p; %) = xX"(1 = py + pyx) )

are called generalized Bernstein polynomials of degree u (u > 2) and for x € [0, 1] with shape parameters
pi,i=1,2,...,u, where

prel=(. (A1 =128l
{ple[ (l‘_ll(tjl)] /l—[2]+1r-~r wit {

;if uis even
;if uis odd.

u
2
u

)

—_
NI= NI

]
] =

These polynomials were introduced by Han et al. in. [26] and they are reduced to classical Bernstein basis
functions b, ;(x) of degree u on x € [0, 1] which is defined as

bu,i(x) = (Z)xi (1-0"", i=0,...,u

when p; =0 (i = 1,2,...,u). Generalized Bernstein basis functions with parameters p; (i = 1,2,...,u) are
linearly independent (see [25]) and these basis functions are effectively and flexibly used in designing
parametric curves and surfaces (see [25, 26]). These functions also have partition of unity, symmetry and
nonnegativity properties (see [26]). In 2017, Hu et al. [25] have obtained the following equations to convert
classical Bernstein polynomials of degree u to generalized Bernstein polynomials of degree u associated
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with shape parameters p;:

au0(p; X) = byy1,0(x) + %bwm (),

a,,i(p; x) = %bwl,i(x) + %bmmm, i=12...[5]-1,

Bui(pi ) = (()+1f b () + %bu @, i=3]

00 (0;) = %buu,z’(@ v %buﬁ,m(x» i=[5]+ 101,

Bu(p3 ) = (Z()M%p“bwl,u(x) + by (). 3)

Let C[0,1] = C be the space of all continuous functions on unit interval [0,1] and C ([0, 1] x [0,1]) = C. The
operators B!, B} : C — C for any u,v € N are given as follows, respectively,

B (f;y) = i f (ﬁ) au,i(v; ), (4)
i=0
%e9=), L) o2, ®

where polynomials a,,;(v; y) and a,,j(u; z) are given in (3). The parametric extension of (4) and (5) for u,v € N
and & € C are the operators

VY @il . ¢ 7
B,,8, :C—C,

where
., S i
B, (h;y,z) = Z ay,i(v; y)h(;, ;), (6)
i=0
B (h;y,2) = av,j(y;z)h(i,i). @)
j=0

Lemma 2.1. The parametric extension of operators defined in (6) and (7) are linear and positive.

Proof. The assertion follows from the definitions of 8, and 8,°. O

Lemma 2.2. The parametric extensions of bivariate operators commute on C. Their product establishes bivariate
operators B,/ : C —> C defined for any u,v € N and any h € C by the relation
u 4 l ]
Bty = )Y w2~ 1) ®
i=0 j=0

Proof. We get the desired result by direct computation, taking into account definitions (6), (7) and Lemma
21. 0O

Lemma 2.3. The bivariate operators (8) are linear and positive.
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Proof. Using the fact that the product of linear and positive operators are also linear and positive, and
applying Lemma 2.1 we obtain desired result. [J

Lemma 2.4. [13] For any natural number u (u > 2) the following equalities hold:

B =1, Bt =x+* —Ro(x), B ) = — L e 1u_zx[27el<x) - Ro)],
- DHu-2 3u-1 1—
Bﬁ(ts, X) = (1/! 1,)[(2u )x3 + (uuz )x2 + % + u3x[3R2(x) - 3R1(x) + Ro(x)],
Bﬁ(tA, x) — (Ll — 1)(“ —32)(14 - 3)x4 + 6(“ — 1)3(” - 2)x3 " 7(1/[ g 1)x2 + 13
u U y »
+ 1 —4 X [47z3(x) — 6Ry(x) + 4Ry (x) — Ro(x)],
u
where

[5] . u .
P .
Rp(x) = Z %bu,i(x) - Z Lpi bui(x), p=0,1,2,...u, x€[0,1].
i1 \v

i=[4]+1 @
Lemma 2.5. The parametric extension B, satisfies the identities in Lemma 2.1.
Proof. By using the definition (6) of 8,/ and Lemma 2.1, we get the result. [
Remark 2.6. The parametric extension Bl satisfies identities similar to the identities in Lemma 2.1.

Lemma 2.7. Let e, (y,z) = y'z%, u,v € N, y,z € R be the two-dimensional test functions. The bivariate operators

defined in (8) satisfy

1-y

v, v Vv 1 —Z
Bheoo; v,2) =1, Brb(ew;y,2) =y + Ro(y), Biloleo; y,2) =z + —Ro(2),

u
v, _u=-1, Yy 1-y B

Bihlew y,2) = —— v+ = + —=[2Ri(y) - Ro(v)],

VL v—-1 z 1-z

Bl y,2) = ——2 + —+ —=[2Ri(2) - Ro(2)],

v, u—-1Dw-2)(u-3 6(u—1)(u-2 7(u—1
Bu,’;(eso;y,z)=( ) - ) )y4+ ( u)3( )y3+ (M3 )y2+%

+

1-
—Z[4Ra() - 6Ra(x) + 4R1 () ~ Ro(v)],

v, ) -)w-2)v-3) , 6@-1)(v-2), 70w-1), =z
Bu,};(e%r y/ Z) = ’03 z°+ v3 zo 4+ 03 75 4+ 5

1@—4Z [4‘}23(2) — 6Ry(z) + 4R1(z) — RO(Z)],
(u=1)(u—-2)(u-3) (= 1)(u-2)

+

, 6 7(u—1) Y
0 . _ 4
Bu,g(e40/ ]// Z) - L[3 ]/ + u3 ]/3 + 1/[3 ]/2 + E
1-
+ — 2 [4Rs(y) ~ 6Raly) + 4R1(y) ~ Ro(v)],
B,(eos; Y, 2) = -Nw-2)@- 3)24 + Sl G 2)23 + ACks 1)22 + =

3 3 3 3

1: [4R3(z) — 6R>(2) + 4R (2) — sqo(z)],

+

Proof. Taking into account definition (8) and Lemma 2.4, we complete the proof. [J
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Lemma 2.8. The bivariate operators (8) satisfy the relations

1- 1
g(l —2Ro(y)) +

—2Ri) - Row)],

Bt (e —yY;y,2) = -

Z—(lv_ 21— 2Ry(2)) + 1

v, —Z
Brh(leon —2)*;y,2) = - [2R1(2) - Ro(2) |-
Proof. Since 81;’, ! is linear, we have

B -yiy2) = Bihleny,2)
—2yB,k(e10; Y, 2) + V2B, (e10; Y, 2).

By applying Lemma 2.7, we get relation (9). Similary we have the equality (10).

512

©)

(10)

Following theorem gives Korovkin type approximation for statistical convergence by four-dimensional

matrices:

Theorem 2.9. [19] Let D = (d.,) be a nonnegative RHR matrix. Let (Q,») be a double sequence of operators

acting from C([a, b] X [c, d]) into itself. So, for each h € C([a,b] X [c,d]),
2 _ 1 =
stp = l}lrllll ”Qu,v (h) - h“c([a,b]x[c,d]) =0
if and only if
2 1 =
st2) = 1im [[Quo 01) = ey = O

where ho(y,z) =1, h1(y,2) = ¥, ho(y,2) = zand ha(y, z) = y* + 2.
Theorem 2.9 provides next result.

Theorem 2.10. Let h € C, then

B, () = hl. = 0.

2 .
st5, — lim |
p~hn

Proof. Assume that

B;:,Z (hu) - hu”C =0.

sth — 1%[111)1 |
We have the following result for iy using Lemma 2.7 (a):
sty = lim |85 (o) — ol = 0.

By Lemma 2.7, we obtain

y el
” Ro(y) y'Su-

B, () - hl“é =  sup
(y,2)€l0,11x[0,1]

y+

For a given €’ > 0, we choose a number € > 0 such that € < €’. Let us define the following sets:

. ={(u’0)2“81v"g (hl)_hlnc([o,l]x[o,l]) 26/}'

S :{(u,v):%Ze—e’}.

(11)

(12)
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We observe that S C S;. So 6,23 (S) < 52D (87) is satisfied and the following relation is satisfied for h; :

sth B () = Inl|o =

Using the same manner we have
ot |85 )~ = 0,

that is (11) is satisfied for 1. Considering the following relations

182 (13) = | 13)
< |[Bik ex0) = exo] . + (|1 (e02) — eoa
yl-y) 1-y
= su + 2R ( )_R ( )
(y,Z)e[O,ll]Dx[o,u u u? [ 1y oly ]
1-
+ sup -9, 1 ~ Ro(2)]
(y,2)€[0,1]x[0,1] 4
1- 1=
< sp | y)+2a;uwf+y( yq' ”
(¥2)<l01]x[0,1] u U u
N sup z(1-2z) N 2(1 :—v) [22 N z(1- z)]
(y,2)€[0,1]x[0,1] 4 v

and taking D-statistical limit in both-sides of last inequality, we obtain
sty = lim |85 () = sl = 0,
that is (11) is satisfied for h3. O

The following result is obtained by replacing the matrix D in Theorem 2.9 with double identity matrix.

Corollary 2.11. Assume that h € C, then
81500~ h =

The C(1, 1)-statistical convergence becomes statistical convergence for double sequences if D = C(1,1) is
chosen, and following result is satisfied:

Corollary 2.12. Assume that h € C, then

sty ~ lim 1825 () = k]l = 0.

3. Power series method for operators BZ’;

Assume throughout the section, ¥ := [a,b] X [c,d] and (Q,,») be a double sequence of positive linear
operators acting from C (W) into itself such that

)Zawa B [|Quo (D] < o0 (15)

O<a b<@ 0 (a b

Set

Sap (h5,2) = Zsu 16 Qo (5 y,2), a,b € (0,0)

@ww
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and
. — 1 . u1,0 RVH .
Top (Y, 2) = —Q ) u;_oéu,ya b8, (hy,z), abe(0,0).

The proof of following theorem was given in [23], for the readers convince we also give it here.
Theorem 3.1. Let h € C(WV), then

Jim 501 )= =0 a6
if and only if
Jim{[S0s 1) = Bl = 0 (17)

where ho(y,z) =1, h1(y,2) = y, ha(y, z) = z and h3(y, z) = y* + 2%

Proof. The implication (16)=(17) is clear since h, € C (V) for eachu =0,1,2,3. Leth € C(¥) and (y,z) € ¥
be fixed. Since function % is continuous on W, following inequality is satisfied:

|h (v, z)( <M;.
Therefore

(s, t) = h(y,2)| < 2M;.
Also, since h is continuous on W, there is a number p > 0 so that |h (s,5)—h(y, z)( < 7 holds foreach 7 > 0
and (s, t) € W satisfying |s - y( < pand |t — z| < p. Hence, we get

2M

|h(s,t) —h(y,z)| <7+ p_zh {(s —y)? + (¢t —z)z}.

This means
2M 2M

T p—z"{(s_y)z +(t=2?) <h(s,)-h(yz)<T+ p—j{(s_y)z +(t-27).

So, we can write

|Sa,b (hr ]//Z) —h (% Z)|

1 (o8]
= wod"b°Quo Ly, z) —h(y,z
Q(a,b)l;f’ Quo (1y,2) = (y,2)
1 (o)
< wod"b°Quo (s, 1) —h(y,z
g(a,b)u;f’ Qua (|1 (s,8) = (1,2)))
1 (o]
+[n(y,2) Y €6 Qu (10; y,2) = oy, 2)
0(a,b) &
2M,, [Ih
< orforms TG iy, -ty 2)

AMy, |11 llcowy
—
p

Sup (h1;y,2) = i (y,2)|

AM;, |hzlle
+—2(\p) |Sa (h2; y,2) = ha(y, 2)|

oM
+p_2h |Sus (h3;y,2) = ha(y, 2)|
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Then taking supremum over (y,z) € ¥, we have

”Sﬂ/b (h) = h”c(\y)

3
< TN {Z 1S0s (i, 2) =y, Z)”cmf)}’

u=0

where

4

2My, || 4AMy, ||h 4AMy, ||h 2
N oo max{T+Mh+ 1 h3llcea nllhallcew) 1 llh2llcew) Mh}.

p? L
By the aid of relation (17), following result, which completes the proof, is obtained:

tim 55 () = ]y, =
|

Theorem 3.2. Let h € C, then
1 -

=0

Proof. Since BZ’/Z(eOO; y,z) = 1, we see that (15) holds. Considering Lemma 2.7 and the inequalities (12) and (13), the
proof is completed. []

4. Rate of statistical convergence, and rate of convergence for PSM

In this section, with the aid of modulus of continuity, we calculate the rate of statistical convergence by
four-dimensional matrices and the rate of convergence for PSM, here modulus of continuity is expressed as

w(h, p) = sup (s, t) = h(y,2)| (p>0), heC.
ey ete-r2p
We know that, for any p > 0 and forallh € C
w(h, pp) < (L +[p]) w(h, p),
where [p] is greatest integer less than or equal to p.

Theorem 4.1. Assume that h € C, u,v € Z,, D = (d),,,,) is a nonnegative RHR matrix and (a,,) is a positive
non-increasing double sequence so that w(h, py) = sté —o(ayy), then

5 6 = hll = st~ 0 @),
where

{2 3 4w+1) 2 3 4(v+1)}§
Pup =3 =+ — + o+ =+ .

u2 us v 02 03

Proof. Assume that the hypotheses are satisfied. Using positivity and monotonicity of operators B, we
get

IA

B (|nGs, t) = iy, )| v, 2)
2 2
Bl ((1 P D ]w(h, Py, z]

w(h, "
w(h, p) + %Bu’fé (-9 +t-27y.2).

|85 (1 y,2) = i (y,2)|

IN
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Then taking supremum over (y,z) € [0, 1] X [0,1], we have

|1B1% (1) = |

w(hr P) v, v,
< wlhp)+ Izt (6= 2|+ i (¢ - ).
h, 1- 212 — 2(u + 1)y(1 —
< ol p)+ w( 2p) {y( - v, yuz y, 2+ L);/( y)}
wh,p) (z1-2) 222-z 2w+1)z(1-2)
2 + 2 + 3
p 0 (% v
h, 2 3 4 1 2 3 4 1

By the following chose of p

2 3 4u+l) 2 3 4@+1))?
p=pu,v:={ +

-+ =+ -+ =+
u  u? u3 v 02 3

the following inequality is satisfied for any positive integers u, v :
B () = h| o« < 2e0(h, puz)-
Hence the following relation is satisfied for any 7 > 0 :

1

o
s

Aioup < ! Z i o0
4 () —h| o2 Y ol pup)2
and the following final step is obtained from the hypothesis
|B1its () = || = st = 0 ().
0
We give rate of convergence for PSM by the following theorem.

Theorem 4.2. Let h € Cand C be a positive real function defined on (0,©) x (0, ©) . If w(h, ¥) = 0(C),asa,b - O,
then

|Tew () = H = 0©
asa,b — O, where Y : (0,0) x (0,0) — R is given as
¥ (a,b)

_ {ﬁ i £V’ || By (5= )% + (¢ - ')z)Hc}
77 u,0=0

Proof. Since the operators are linear and the positive the following relations are satisfied

|Top (B y,2) = h (y,2)|

1 . U1, QVs
T L b B (y,2) < (1,2)

u,0=0

1
2

IA

0 (; b) Z Eu,va“bvBZ'/ﬁ (|h(S, ) — h(y, z) Y, z)
"7 up=0

IN

a)(h, p) N a)(h, P) { 1 Z Cfu,vaubvBZ’,‘; ((S _ y)Z (- Z)Z " Z)}
v=0

P \o@b)
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for any a,b € (0,0) and (y, z) € [0, 1] X [0, 1]. Then taking supremum, we have
[ Tos () = H]| o < 2 0(h, ),

where

p = ¢@b)

,0=0

O

5. Convergence by graphics

In this part, we first focus on the behavior of generalized basis polynomials a,, , (v, y)a,,.(1;z) and give sev-
eral illustrative examples with the help of Mathematica to verify the convergence behavior, computational
efficiency and consistency of the generalized bivariate Bernstein operators.

In order to see the effect of shape parameters v and u to behaviour of polynomials a,,,(v,y)a,,,(1,z) we
choose certain parameters v and p. In Figure 1 (a), we present behaviour of polynomials b, ()b, ,(z) to see
the difference. In Figure 1 (b)-(f), we choose the following shape parameters, respectively:

) v= (1)) =2 lgh w=(2)- () =25
=1 =l w=()-(,00) =Bl

(©) vl»z(,i‘l), i=12,...[5] yjz(],i’l), i=12...[5)

Example 5.1. Consider the following function

(23 - %) sin(mty) cos(mty)
(v +2) (27 + %)

h(]// z) =
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u v | Absolute Error y z

4 4 1.4204 1 0.8635
10 | 10 0.7281 1 0.8617
20 | 20 0.3976 1 0.8589
30 | 30 0.2731 1 0.8579
40 | 40 0.2079 1 0.8575
50 | 50 0.1679 1 0.8573

5 | 50 0.5915 0.8349 | 0.8490

5 | 100 0.5291 0.8346 | 0.8476
100 | 100 0.0855 1 0.8569

Table 1: Absolute errors of approximation for certain 1 and v values and related occurring points (y, z) for
Example 5.1

u v GB B

4 | 4 | 0.1507 | 0.1596
6 | 6 | 01148 | 0.1216
8 | 8 | 0.0936 | 0.0984
10 | 10 | 0.0793 | 0.0826
12 | 12 | 0.0688 | 0.0712

20 | 4 | 0.0552 | 0.0658
4 | 20 | 0.1482 | 0.1565
50 | 10 | 0.0261 | 0.0313

Table 2: Comparison of bivarite Bernstein and 8,/ operators by absolute errors for Example 5.3

on (y,z) € [0,1] X [0, 1]. We choose the following shape parameters for this example:

1 u . u 1 v : v
V= m(i_l)' i=123) ”f=m(j_1)' j=12 )

viz(t,l), i=[g]+1,...,u, yjz(z;), j=[g]+1,...,v.

In Table 1, we give maximum error of approximation for B, for certain u and v values and related occurring (y, z)
points.
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W bs50(y)bs,0(z) B bs1(y)bs 1(2) W aso(v;y)aso(u;z) B asq(v;y)asq(u;z)

W bs55(y)bs2(2) K bs3(y)bs 3(2) W as2(v;y)asz(u5z) Bl ass(viy)ass(y;z)

W bs54(y)bs.4(z) W bs5(y)bs 5(2) W as4(v;y)as4(1;z) W ass(viy)ass(u;z)
() (b)

0.10

0.05

0.00

W aso(v;y)aso(u;z) B asq(v;y)as 1(u;2) W aso(v;y)aso(u;z) B asq(v;y)as 1(u;2)

W as2(viy)as2(u;z) Bl as3(viy)ass(p;z) W as2(viy)as2(u;z) Bl as3(viy)ass(p;z)

W as.4(v;y)as4(u;z) B ass5(v;y)ass(u;z) W as.4(v;y)as4(u;z) B ass5(v;y)ass(y;z)
(0) (d)

W aso(v;y)aso(u;z) B asq(v;y)as 1(u;z) W aso(v;y)aso(u;z) B asq(v;y)as 1(u;z)

W as2(viy)as 2 (u;z) Bl as3(viy)ass(u;z) W as>(viy)as 2 (u;z) Bl as3(viy)ass(u;z)

W as.4(v;y)as4(u;z) B ass5(v;y)ass(u;z) W as.4(v;y)as4(u;z) B ass5(v;y)ass(u;z)
(e) )

Figure 1: Behaviour of polynomials a,, (v y)a,,,(1;z) and by, »(y)by,.(2)
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N

)

%

,///
e T R 74

0.0 0.5

o

Bl h(y,z) k] u=v=10

Figure 2: Approximations of 8,; operators with different values of u and v for Example 5.2

Example 5.2. Consider the following function

5z3 —1{(y® — 22) (z + 1) cos(1.57z)
o B2 s
lv* - 15|

on (y,z) € [0,1] X [0, 1]. We choose the following shape parameters for this example:

7 ] 7 .
(B S RN I R

1 . 1 .
Vi:l_()i(bil)' 1=[%]+1,...,u, ‘ujzﬁj(z;), ]=[g]+1,...,v.

In Figures 2-3, we give approximations of By, operators with u = v = 10 and related error of approximation,
respectively. In Figure 4, we extensively examine errors with different values of u and v.

Example 5.3. Consider the following function

(23 - 278 yz) sin(2mz)
22 +1)

h(% Z) =

on (y,z) € [0,1] X [0, 1]. We choose the following shape parameters for this example:

v = —0.000005(”1,‘), i=1,2,...[5] wi= —0.000005(7;), i=12...[5]

u . Tu v . [0
vi = —0.000001(1, B 1), i=[]+ 1 = —0.000001(], N 1), i=[3]+1.e
In Figures 5-6, we provide convergence of B,%, and related errors of approximation for the given function. In Figure
7, we extensively examine errors with different values of u and v. We also compare the maximum error of B,/ with
the classical Bernstein operators in Table 2.
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0.6

0.4

0.2

Figure 3: Errors of approximation for Example 5.2

(c) u=10and v = 100 (d)u=100andv =5

Figure 7: Approximation errors of B, to the function h(y, z) for different v and v values
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(c) u,v=40 (d) u,v =50

05

(g) u=>50,0=10 (h)u =20,0v=>50

Figure 4: Approximation errors of B,/ to the function h(y, z) for different v and v values
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I h(y,z) & u=v=30

Figure 5: Approximation of 8,%, operators for u = v = 30

0.5

Figure 6: Error of approximation
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