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Abstract. By using Fink’s identity some new generalizations of Levinson type inequalities for n-convex
functions are obtained. In seek of applications of our results to information theory, new generalizations

based on f-divergence estimates are also proven. Moreover, some inequalities for Shannon entropies are
deduced as well.

1. Introduction and Preliminaries

The theory of convex functions has encountered a fast advancement. This can be attributed to a few
causes: firstly, applications of convex functions are directly involve in modern analysis, secondly, many
important inequalities are results applications of convex functions and convex functions are closely related
to inequalities (see [1]).

Ky Fan’s inequality is generalized by Levinson [21], (see also [23, p. 32, Theorem 1]) for 3-convex functions
as follow:

Theorem 1.1. Let f : I = (0,2a) » Rwith fO(t) > 0. Let x, € (0, ) and p, > 0. Then

1 & 1 & 1 ¢ 1 ¢
= Y pofC) = (5 X poxe) < 5= ) pofa=x) = f(5- ) pol2a =)} (1)
o p:l u p:l u PII u p:l
Functional form of (1) is defined as follows:
1 v 1 v 1
RGO = 5= Y pf@a=x) = A5 Y poa =) = 5= Y poftxy)
¢ p=1 H p=1 H p=1
1 &
+ f(P_y Z prp)~ 2)
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Working with the divided differences, assumptions of differentiability on f can be weakened.
In [24], Popoviciu noted that (1) is valid on (0, 2a) for 3-convex functions, while in [6], (see also [23, p. 32,
Theorem 2]) Bullen gave different proof of Popoviciu’s result and also the converse of (1).

Theorem 1.2. (a) Let f : I = [Cy,C2] — R be a 3-convex function and x,,y, € [C1,Co] for p =1,2,---, u be such
that

max{xy...x,} <minfyr...y.}, xi+yi=...=x,+y, 3)

and p, > 0 then

1 & 1 &
P—Mlepﬂxp)—f(P—H ;ppxp) prf(yp) (5 pryp) @

p:
(b) If f is continuous and p, > 0, (4) holds for all x,, y, satisfying (3), then f is 3-convex.

Functional form of (4) is defined as follows:

B(fO) = o prﬂyp) 5 quyp) prﬂxp + 1o prxp) ©)

Remark 1.3. It is essential to take note of that under the suppositions of Theorem 1.1 and Theorem 1.2, if the function
f is 3-convex then Ji(f(-)) > 0 fori = 1,2, and Ji(f(-)) = 0 for f(x) = x or f(x) = x* or f is a constant function.

In [25], (see also [23, p. 32, Theorem 4]) Pecari¢ weakened the assumption (3) and prove that inequality (4)
still holds, i. e. the following result holds:
Theorem 1.4. Let f : I = [C1,C2] — R be a 3-convex function, p, > 0. Also, let x,,y, € [C1,C2] be such that

=2C =1... % PoXp+Pu—p+1Xu—p+1
Xp+Yp =28 forp =1, i Xp+Xyp1 < 28 and === < & Then (4) holds.

In [22], Mercer made a notable work by replacing the condition of symmetric distribution of points x, and
Yy, with symmetric variances of points x, and y,. Second condition is weaker condition.

Theorem 1.5. Let f be a 3-convex function on [Cy, (2], pp are positive such that Zzzl pp = 1. Also, let x,,, y, satisfy
max{x ...xp} < min{y;...y,}and

p B 2 u 2
ZPP xp—prxp =Z,Pp }/p—ziﬂpyp / (6)
p=1 p=1 p=1 p=1
then (4) holds.

In the present paper, we use Fink’s identity and prove many interesting results. The following theorem is
proved by Fink in [2].

Theorem 1.6. Let f: [(4, Cz] — R, n > 1and {"~V is absolutely continuous on [T, Cy], where (1, € R. Then

n
flx) = L G f(t)
iiw wXWHKchmtwwwgm—@W)
G—-0
Co
1 (x — " TWISG )i (bdt, 7)

e G-0)
where

C1,C2 _ (t_C)r G <t<x<(,
W[CC](t'x)_{(t—C;), Cin<tsC§, (8)
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2. Main results

Motivated by identity (5), we construct the following identity with help of (7) coming from Fink’s
identity.
2.1. Bullen type inequalities for higher order convex functions

First we define the following functional. #: Let f : I = [(;,C2] — R be a function, xy,...,x, and
Yi,-..,Yv € I1 such that

maxfxy...x,} <min{y; ...y}, xi+tyi=.o=x0+ Y. 9)

Also, let (py,...,pu) € R¥ and (q1,...,4,) € R” be such that Zgzl pp=1, Zgzl gdo = 1 and x,, yg,zzzl PpXp,
ZZ:l 9oYo € I1. Then

v v u u
166D = Y 0,8 =1 Y ) = Y poten) + 1 Y po ) (10)
o=1 o=1 p=1 p=1

Theorem 2.1. Assume ¥ and §: I = [(1, (2] — R are such that i~V is absolutely continuous. Then

n—1

1G6) = 2(%)(%%“(@)}1«—cz>W—f<w4>(c1>11<-—cl)W)
w=3

1

m ]I( t)n—l W[C1’C2](t, ')f(n)(t)dt. )

Proof. Using Fink's identity (7) in the functional (10), we have

1G0) = Zqo[ o

o=1 G

= (1 —w\(fC D@, — L)Y — mathfrakf@ D)y, — &)°
_Z(')( —— -0 202)

w=1
R N yo)f(")(t)dt]
-G -0) J, 7° h

n Co
- d
555 ), o

1

& = w\ TP Go¥o — C)° = T D@ a1 oY — C2)°
_Z(nuﬂw)( 149070 — 19070 )

T ety (Zq@yé"t) Wmlm(“;W@)f(")“’dt]

G

© (n w)(f‘w V(&) - Cl);’ - TC(:’l)(Cz)(xp - CZ)w)

=1

S
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! : n=1yA71C1,Co] (1)
oG ) J, e W) ()|

n G

+[ el AL

B ni‘i (Tl - w)( f(w_l)(Cﬂ(Zg:l PoXp — Q)" - f(w_l)(C2)(Z£=1 PpXp — C2)w)
w=1

-G

After some simple calculation we have

JG() = —Zq@[z(n w)(f“" D)y, - cow—f<w-1><cz><yg—cz)w)]

w! OG-0
w=

il fle- 1)(51)(20 190Y0 — G — f@- ”(Cz)(Z@ 190Y0 — Cz)w)
" w:3( w! )( Cz - C1
: & (n—w\((@ @), - G)° = D), — )
" ; PP[ — ( w! )( -G )]
~ nZ_l (n w) - ”(Cl)(Z” —1 PpXp — G)¥ - f(w_l)(Q)(Zﬁ:l PpXp — Cz)w)
—\ w! -G
Ly [—1 CZ(y — (WIS, )T 0]
Ho-G-a J, ¥ v

[(n - 1)1(@2 ) (Z 9oy, =)' WG, Z %yo)f(")(t)dt]
=
K G2

Z’”P[(n— DG - C)

(Xp _ t)n—l W[Cl,Cz](t, xp)f(")(t)dt]
p=1

[m (;ppxp YW ZP xp) f(")(f)dt]

By using definition of J(-), we have

n—-1
160 = Y (ae g M@ - cz>w—f<w-”<c1>11<-—c1>“’)
w=3

1

m ]I( t)”_l wicucl t, -)f(")(t)dt,

where

u
-G)” ZQQ(]/Q G)* _(ZQo]/o Cl) _pr(xp_C1)w
p=1

+ (i PpXp — C1)w (12)
p=1
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and
I -0)Y = 2 qg(]/g -0)Y - (2 GoYo — Cz)w - Zy: Pp(xp - 0)”
o=1 0=1 p=1
H w
+ (prxp - Cz) . (13)
p=1
|

As an application of the above obtained identity, the next theorem gives generalization of Bullen type
inequalities for n-convex functions involving Fink’s identity.

Theorem 2.2. Let all the assumptions of Theorem 2.1 be satisfied and let for n > 1

J¢ =t WEelE, ) > 0 (14)
If { is n-convex function, then we have

n—1

n—uw
10 > Y (ae—o)
(T D@ - Q) - D@ - G)) (15)

Proof. Since fr=D ig absolutely continuous on [(y, (2], therefore " exists almost everywhere. As fisn-convex
we have " (x) > 0 for all x € [(;, (2] Applying Theorem 2.1, we obtain (15). [

Remark 2.3. In Theorem 2.2, reverse inequality in (14) leads to reverse inequality in (15).

If we put v = u, p, = q, and by using positive weights in (10), then J(-) converted to the functional J»(-)
defined in (5), also in this case, (11), (12), (13), (14) and (15) become

i u p 1
BC) = Y poi) =1 Y pove) = Y pofen) +1( ) o) (16)
p=1 p=1 p=1 p=1

n—-1

3 = _ 70 rw- oy _ s@-1) RPN

JG() = w§=3(w!(cz_ Cl))(f (Q)]2(- = &) =T (Co) ] C1))
1 “ T Y PR

+(n_1)!(C2_C1) : Jo(- = Wl i 1yt (17)

p p w U
Re=0" = Y poe =0 = (Y peve =) = Y p, - Q)
p=1 p=1 =1

S

+ (Z o, 1) (18)

1 u w M
Re-0" = Y pe- 0 = (Y pve =) = Y p, -0
p=1 p=1

p=1

0 w
+ (Z PpXp — Cz) , (19)
p=1
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(- — t)n—lw[Cl,Cz](t’ >0 (20)
and
= n—w
RO = ¥ (o)
x(’f(w_l)(Cz)fz(' - 0)Y = C)]a( - Cl)w)- (21)

Now, we will give generalization of Bullen type inequality for u-tuples.

Theorem 2.4. Let all the assumptions of Theorem 2.1 be satisfied in addition with the condition that p = (p1, ..., pu)
be positive p-tuples such that that Zzzl pp = 1 and consider | : [Cy, C2] — R be n-convex function. Then

(i) If n is odd and n > 4, then for every n-convex function f : [C1, (2] = R, (21) holds.

(ii) Let the inequality (21) be satisfied. If the function

n—1
80 = Z;(w'(cz—co)
X ({ D@t - @ = D@ - T)) @)

is 3-convex, the right hand side of (21) is non negative and we have inequality

J2(1()) = 0. (23)
Proof. (i) Let

REAY S
()= (=Wl ) = { E - 218 - 23 2 . ti i %
we have
W) = (n=Dn-2)n=3)- -ty (t-0), G<t<-<0,
Tl =D =2 =3)( -t =), G <-<t<(

So, W is 3-convex for odd n, where n > 4. Hence, by using Remark 1.3, (20) holds for odd values of n.
Therefore using Theorem 2.2, we have (21).

(i7) J(.) is linear functional, so we can rewrite the right hand side. of (21) in the form J(®(-)), where O is
defined in (22) and will be obtained after reorganization of this side. Since © is assumed to be 3-convex,
therefore using the given conditions and by following Remark 1.3, the non negativity of the right hand side.
of (21) is immediate and we have (23) for u-tuples. O

Next we have generalized form (for real weights) of Levinson’s type inequality for 2n points given in
[25](see also [23]).

Theorem 2.5. Let f: I = [Ty, (o] — R be such that {7~ is absolutely continuous, (p1, ..., pu) € R¥, (q1,...,qv) €
RY be such that Zﬁ:l Po =1 Y1 G = 1, Yooy qoY, and Zg | PpXp € I Also, let x1,...,x, and yy,...,y, € I

o Xp+Pu Xu—
such that x, + y, = 2€ and x, + Xy_ps1 < 2, W < & Then (11) holds.

Proof. Using Theorem 2.1 with the conditions given in statement we get the required result. [
In the following theorem we obtain generalizations of Levinson’s type functional for n-convex functions.

Theorem 2.6. Let f: I = [(1, (o] = R be such that {*~Y is absolutely continuous, (py, ..., pu) € R¥, (q1,...,q,) €
RY are such that ):Z:l pp=1,Y0190 =1, L}y oy, and Zgzl poxp € L. Also, let x1,...,xyand yy,...,y, € I be

such that x, + y, = 2€ and x, + Xy_ps1 < 26, W < & If (14) is valid then inequality (15) is also valid.
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Proof. Proof is similar to Theorem 2.2. [J

Theorem 2.7. Let f : I} = [C1,C] — R be such that {1 js absolutely continuous, (p1,...,pu) € R¥ be such
that Zgﬂ pp = 1. Also, let x1,...,x, and yy,...,y, € Iy be such that x, +y, = 2¢ and xp + x,—p41 < 2€,
PpXp+Pu—p+1Xu-p+1 %

R <. Then

(i) If n is odd and n > 4, then for every n-convex function { : [(1, (2] — R, (21) holds.
(ii) Let the inequality (21) be satisfied. If the function © is same as defined in (22), is 3-convex the right hand side of
(21) is non negative, then inequality (23) holds.

Proof. By using Theorem 2.6 and Remark 1.3, we get the inequality (23). O
In the next result we have Levinson’s type inequality (for real weights) under Mercer’s condition.

Corollary 2.8. Letf: I = [Cy, (2] = Rbesuch that f=1) jg absolutely continuous and x,,, y, satisfy max{x; ... x,} <
min{y; ...y} and

u 1 2 0 2
pr xp—prxp = Z% ]/@_Z%yp : (24)
p=1 p=1 p=1 p=1
Also, let (p1,...,pu) € R¥ be such that 25=1 pp = 1. Then (17) holds, where ](7(-)) is defined in (16).

Proof. Choose x, and y, such that the conditions max{x; ...x,} < min{y; ... y,} and (24) holds for positive
weights in Theorem 2.1, we get required the result. [

2.2. Levinson’s inequality for higher order convex functions

Motivated by identity (2), we construct the following identities for two type of data points with help of
(7) coming from Fink’s identity.
H: Letf: I, =[0,2a] » Rbe afunction, x1, .. Xy € ©,a), (1, - .,p,J) € R¥, (q1,.-.,9v) € R” are real numbers
such that Zgzl pp=Tland },_; g, = 1. Also, let x, ./ _; 7,(2a - x,) and 25:1 pp € I>. Then

v v u
JGO) = Y a.f@a-x) -1 Y 0.0 - x)) = Y poits)
o=1 o=1 p=1

+( i o) (25)

p=1

Theorem 2.9. Assume H and | : I, = [(1,0] — R be such that "=V is absolutely continuous. Then for
0 < G < G < 2a, we have

n—-1
16 = Y (e @6 - @) - D@ - )
w=3 :

; ? . — Ll Gley i)
Yo DNG =g J, TR @, o

where
Je-C)¥ = Zv: 70((2a — xp) = C1)* = (i go(2a — xp) — C1)w

0=1 0=1
u

- Z Pplxp = C)* + (Zy: PpXp = Cl)w (27)
p=1

p=1
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and

-G = Y adCa-x) -G (Y aa-x) -]
0=1

0=1
= w
_pr(xp _CZ)w +(prxp _CZ) . (28)
p=1

Proof. By replacing I; with I, and y, with (2a — x,,) in Theorem 2.1 we get (26). [

In the following theorem we obtain generalizations of Levinson’s inequality (for real weights) for n-convex
functions.

Theorem 2.10. Let all the assumptions of Theorem 2.9 be satisfied and let for n > 1
J(- - t)n—l W[Cl,Cz](t’ ) > 0. (29)

If f is n-convex function, then we have

n-1

n—w
Jae) = ;} (w!(Cz - C1))
H{FD@IC - @) = @I - )*) .

Proof. Similar to Theorem 2.2 by using given conditions in the statement. [J
Remark 2.11. Reverse inequality in (29) leads to reverse inequality in (30).

If we put v = y, p, = q, and by using positive weights in (25), then J(-) converted to the functional J;(-)
defined in (2), also in this case, (26), (27), (28), (29) and (30) become

I u u
RGO = Y pef@a—-x,) = i) ppa—x) - Y p,fixy)
p=1 p=1 p=1
u
O oo, (31)
p=1
R = (Y - @ - - )
—\wl(C - G)
Co
x - = BT, YO bt (32)

DG - g,

U w
Lh(-C0)Y = ZPp((Zﬂ - xp) — )" - (Zylpp(za —Xp) = Cl)
=1

p=1

P
I U w
- i Pp(xp -0)"+ (Z PpXp — Cl) ’ (33)
p=1 p=1
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u H w
W= = Y pp@a-x) -0 = (Y ppea-x)- o)
p=1 p=1

o H w
- Z Pp(xp = C2)" + (Z PpXp = Cz) , (34)
p=1 p=1
J1(- = IWe Gl Ly > 0 (35)
and
n-1
n—w
i) = w;(—w!(cz—cl))
A1 D@ - @ - 1D ERE - 0 (36)

Now we will give generalization of Levinson’s type inequality for positive u-tuples.

Theorem 2.12. Let all the assumptions of Theorem 2.9 be satisfied in addition with the condition that p = (p1, ..., pu)
be positive n -tuples such that that 22:1 ppl, and consider § : [0,2a] — R is n-convex function. Then

(i) If n is odd and n > 4, then for every n-convex function f : [0,2a] — R, (36) holds.

(ii) Let the inequality (36) be satisfied. If the function

n—1
©10) wz‘zg)(w'(Q —C1))
XD - Q) = V@R - ) (37)

is 3-convex, the right hand side of (36) is non negative then

J1(i()) = 0. (38)
Proof. By using Theorem 2.10 and Remark 1.3, the result holds. O

Remark 2.13. Cebysev, Griiss and Ostrowski-type new bounds related to obtained generalizations can also be
obtained. Moreover we can also give related mean value theorems by using non-negative functionals (11) and (26)
to construct the new families of n-exponentially convex functions and Cauchy means related to these functionals as
given in Section 4 of [3].

3. Application to information theory

The idea of Shannon entropy is the central job of information speculation, now and again implied

as measure of uncertainty. The entropy of a random variable is described with respect to a probability
distribution and it can be shown that it is a decent measure of random. The assignment Shannon entropy is
to assess the typical least number of bits expected to encode a progression of pictures subject to the letters,
including the size and the repetition of the symbols.
Divergences between probability distributions can be interpreted as measure of the difference between
them. An assortment of sorts of divergences exist, for example the f-divergences (especially, Kullback-
Leibler divergences, Hellinger distance and total variation distance), Rényi divergences, Jensen-Shannon
divergences, etc (see [15, 16]). There are a lot of papers dealing with the subject of inequalities and entropies,
see, e.g., [5,7,9,12, 13] and the references therein. The Jensen’s inequality which deals one kind of data
points, Levinson’s inequality deals with two type of data points.
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3.1. Csiszdr divergence
In [8, 10] Csiszar gave the following definition:

Definition 3.1. Let f be a convex function from R* to R*. Let ¥,k € RY. be such that Zﬁ:l rp =land Zﬁ:l k, =1.
Then f-divergence functional is defined by

u
I &) = kaf(li—”).
p=1 P

By defining the following:
70) := lim 7(x); 07(9) = 0; ()f( ) im xf( ) >0,
x>0+ 0 x—0+

he stated that nonnegative probability distributions can also be used.
Using the definition of f-divergence functional, Horvath ef al. [14], gave the following functional:

Definition 3.2. Let I be an interval contained in R and § : I — R be a function. Also, let ¥ = (ry,...,r,) € R and
k=(ki,..., k) € (0, c0)¥ be such that

el p=1
EG ; p=1..., U
Then
fi(# &) —kaf( ) (39)

p=1
We apply Theorem 2.2 for n-convex functions to [;(%, k).

Theorem 3.3. Let = (r1,...,7,) € Rf, W = (wy,...,w,) € RY, k = (ky,..., k) € (0,00 and ¥ = (t,...,1,) €
(0, 00)¥ be such that

P 1
— €l p=1L1L..., 4,
kP

and
—gel, o=1,...,v
ty

Also, let T : I = [C1, o] — R be such that i~V is absolutely continuous, then for n > 4 (n is odd), we have

-1

) = Y (wv<c2 )

S R NS CR@ON S} (40)

where

_ Zy: Z“]ip kp(l:_p - C1)w +( 3 Zgii 5 - Cl)w (41)
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and
~ 0 _ v to % B w _ 14 wo B w
36~ ) 21 - t@( ) (Z}X1 -Gl
H kp o w © o w
- L -G + L (). 4
;Zg_lkp(kp 2) (; bk 2) (42)
Proof. Let
) o= (- — I WIGGI sy = ('_t)n_l(t_C1)r G <t<-<L0Qy,
)= 0-07W (t’)‘{ (- -0, G<-<tsOy,
we have
() = n=1m-2)n-3)( - t-0) G<t<-<G,
Tl =D - -3 -t -C), G < <t<i

So, W is 3-convex for odd 1, where n > 4, (14) holds for odd values of n. Hence using p, = Z,,k—”k, Xp =g
p=1"P
t (

Go = Titg, Yo= 1, in Theorem 2.2, (15) becomes (40), where (%, k) is defined in (39) and
o . W,
Ii(#, 1) = t(,f(t—). (43)
0=1 ¢
O

3.2. Shannon Entropy
Definition 3.4. (see [14]) The Shannon entropy of positive probability distribution k = (ky,.. ., ky) is defined by

u
=Y Ko log(ky). (44)
p=1

Corollary 3.5. Let k = (ki, ..., ky) and t = (t,...,t) be positive probability distributions. Also, let ¥ =
(rl,...,ry) € (0,0 and W = (wn, ..., w,) € (0, 0)".
If base of log is greater than 1 and n is odd, then

n-1
n—w
O = ) Fe-o)
D=2 (D=
X( (C)vt M- (G)e ! N-6) ),
(45)
where
() = Z t,log(w,) + S —log [Z w@J Z kolog(r,) + S
p=1
u
+log [Z rp] (46)
p=1

and J(- — C1)¥, J(- — C2)¥ be the same as defined in (41) and (42) respectively.
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Proof. The function f : x — log(x) is n-convex for odd n (n > 4) and base of log is greater than 1. Therefore
using f(x) = log(x) in (40), we have (45), where S is defined in (44) and

S==-Yt,log(t,).
o=1

O

Remark 3.6. Inequality in (45) holds in reverse direction if n is even, because f(x) = log(x) is n-concave for
n==a6,8§,...
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