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Abstract. Extropy has been discussed in many works of literature as a complementary dual of Shannon’s
entropy function. In this paper, a replacement procedure of uncertainty of random variable, constructed on
the cumulative distribution function F, called cumulative extropy is proposed. Some properties and features
of the deemed measure are obtained. Moreover, the dynamic form of cumulative extropy is considered.
Finally, non-parametric estimators for the proposed measure are included.

1. Introduction

A vintage measure of uncertainty is the Shannon entropy (Shannon [34]) for the non-negative continuous
random variable (r.v.) X, with probability density function (PDF) f (x), defined as

H(X) = −E(log f (X)) = −

∫
∞

0
f (x) log f (x)dx, (1)

which has been mightily used in many regions such communication theory, computer science, physical and
biological sciences and fuzzy sets. With introducing some additional parameters, many generalizations of
entropy are obtained in literature, which make these entropies ticklish to different shapes of probability
distributions. Rao et al., [28] defined the cumulative residual entropy as

ε(X) = −

∫
∞

0
F̄(x) log F̄(x)dx, (2)

where F(x) is the cumulative distribution function (CDF) of a r.v. X, F̄(x) = 1 − F(x) is the survival function.
Some implementations of (2) are presented in Asadi and Zohrevand [2]. Di Crescenzo and Longobardi [7]
proposed an information measure similar to (2) is the cumulative entropy, as follows

Cε(X) = −

∫
∞

0
F(x) log F(x)dx. (3)

A renowned generalization of Shannon’s entropy is Tsallis entropy of order α that was premiered
introduced by Havrda and Charvat [9] in the status of the cybernetics concept. Then, Tsallis [35] exploited
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its non-extensive features and placed it in a physical context. This measure is defined for continuous r.v. X
as

Tα(X) =
1

α − 1
E(1 − ( f (X))α−1) =

1
α − 1

(
1 −

∫
∞

0
( f (x))αdx

)
, (4)

where 0 < α , 1. Clearly, when α → 1, Tα(X) → H(X). Recently, Sati and Gupta [32] presented the
cumulative residual Tsallis entropy (CRTE) of order α, which defined as

ηα(X) =
1

α − 1

(
1 −

∫
∞

0
(F̄(x))αdx

)
. (5)

Rajesh and Sunoj [29] defined an alternate procedure of CRTE of order α as

ξα(X) =
1

α − 1

(∫
∞

0
(F̄(x) − (F̄(x))α)dx

)
, α , 1, α > 0. (6)

Cali et al. [3] proposed the cumulative Tsallis entropy (CTE) of order α as

Cξα(X) =
1

α − 1

(∫
∞

0
(F(x) − (F(x))α)dx

)
, α , 1, α > 0, (7)

for more details see [21].

The extropy defined by Lad et al. [16] is an accomplishment to notions of information based on
entropy. They exhibited that the information measure called ”extropy” is a complementary dual function
of Shannon’s entropy function. In the view of extropy in discrete density, the extropy measure −

∑N
i=1(1 −

θi) log(1−θi) can be closely approximated by −1
2

∑N
i=1 θ

2
i when the possibilities for X increases (as a result of

larger N). Therefore, to realize extropy for a continuous density, extropy of a non-negative continuous r.v.
X with PDF f (x) is defined as

J(X) =
−1
2

∫
∞

0
f 2(x)dx. (8)

Based on extropy of record values and order statistics, Qiu [24] further studied some monotone proper-
ties, characterization results, lower bounds and symmetric properties. For a non-negative r.v. X, Qiu and
Jia [25] investigated residual extropy as follows

J(X; t) =
−1

2F̄2(t)

∫
∞

t
f 2(x)dx, t ≥ 0. (9)

Qiu et al. [27] presented a mixed systems lifetime via extropy and obtained some features and bounds
of it. Recently, based on of k-records, Jose and Sathar [[12], [13]] exploited the residual and past extropy,
respectively, emerging from any continuous distribution. For extra researches on extropy, see Qiu and Jia
[26], Yang et al. [36], Noughabi and Jarrahiferiz [23], Raqab and Qiu [30] and Lad et al. [17].

Jahanshahi et al. [10] proposed cumulative residual extropy (CREX). Let X be a non-negative r.v. with
continuous survival function F̄, the CREX is given by

ζ(X) =
−1
2

∫
∞

0
F̄2(x)dx. (10)

It is simple to note that the model proposed in (9) is permanently negative. An analogy with, Jahanshahi et
al. [10], Abdul Sathar and Dhanya [1] introduced the CREX and refers to it as survival extropy. Moreover,
they conduct the dynamic survival extropy of the r.v. [X − t|X ≥ t] as

ζ(X; t) =
−1

2F̄2(t)

∫
∞

t
F̄2(x)dx, t ≥ 0. (11)
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Let X represents the random lifetime of an item survived up to time t. Therefore, the residual lifetime
of the system at age t is Xt = [X − t|X > t], which its mean residual life is denoted by m(t) = E(Xt). Di
Crescenzo and Longobardi [6] defined the past entropy of X(t) = [X|X ≤ t], which characterize the past
lifetime of the system at age t, with mean past lifetime µ(t) = E[X(t)]. The mean inactivity time of the r.v.
[t − X|X ≤ t], t > 0, is

µ̃̃(t) = E[t − X|X ≤ t] =
1

F(t)

∫ t

0
F(x)dx. (12)

The derivative of µ̃̃(t) is given by

µ̃′(̃t) = 1 − τX(t)µ̃̃(t), t > 0,F(t) > 0, (13)

which conducted in term of the reversed hazard rate (if existing) τ(t) =
f (t)
F(t) . For more consequences about

these notions in reliability theory see Ebrahimi [8], Kayid and Ahmad [14] and Misra et al. [18].

Krishnan et al. [15] presented the past extropy for past lifetime of r.v. Xt = [t − X|X ≤ t] as follows

JP(X; t) =
−1

2F2(t)

∫ t

0
f 2(x)dx. (14)

Throughout this paper, we propose some properties and features of a measure of uncertainty based
on the CDF called cumulative extropy (CEX). The proposed measures have some additional features and
relationships with other important information and reliability measures. The purpose of using CDF in this
model is that it is more interest than PDF, because the PDF is determined as the derivative of CDF. The rest
of the article is ordered as follows: Section 2 holds the definition of CEX and illustrates the case when it
exists. Meanwhile, several theorems discussed the description of its properties. Besides, we study upper
and lower bounds and inequalities concerning CEX. In Section 3, we introduce the dynamic form of the CEX
and provide some stochastic ordering and Characterization in terms of this model. Finally, the problem of
estimating the CEX by exploring two different empirical estimators of CDF is considered in Section 4.

2. Cumulative extropy properties

In this section, we define CEX and give some properties and relationships about it.

Definition 2.1. Let X be a non-negative r.v. with support in [a, b], 0 ≤ a < b < ∞, having a CDF F. Then, the CEX
of the r.v. X is defined as

Cζ(X) =
−1
2

∫ b

a
F2(x)dx. (15)

Based on families and distributions with an infinite range, such as Pareto, exponential, and Weibull
distributions, we can easily find that Cζ(X) doesn’t exist. But for some distributions like power or uniform
distributions which its range has an upper and lower limit, we can see that Cζ(X) exists, i.e. the r.v. X
defined with support in [a, b], a, b ∈ R+. Meanwhile, ζ(X) given in (10) exists, where X is defined in its
support. Based on this notation, we provide the following applications and features for those measures.

Example 2.1. In this example we will present some values of Cζ(X) based on some distributions as follows:

1. If X follows uniform distribution with CDF F(x) = x−a
b−a , a ≥ 0, b > 0, a ≤ x ≤ b, using (15) and (10), then

Cζ(X) = ζ(X) = 1
2 ( a

3 −
b
3 ).

2. If X follows power function distribution with CDF F(x) = ( x
b )k, 0 ≤ x ≤ b, b, k > 0, using (15) and (10), then

Cζ(X) = −b
2(1+2k) and ζ(X) = −b k2

(1+k)(1+2k) = ( 2k2

1+k ) Cζ(X).
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3. If X follows finite range distribution with CDF F(x) = 1 − (1 − a x)b, a, b > 0, 0 < x < 1
a , using (15) and (10),

then Cζ(X) = −b2

a(1+b)(1+2b) and ζ(X) = −1
2a(1+2b) = ( 1+b

2b2 ) Cζ(X).
4. If X follows triangular Distribution with CDF

F(x) =


0, x ≤ a,

(x−a)2

(b−a)(c−a) , a < x ≤ c,

1 − (b−x)2

(b−a)(b−c) , c < x < b,
1, b ≤ x,

∞ < a < −∞, b : b > a, c : a ≤ c ≤ b, using (15), then

Cζ(X) =

 (a−c)3

10(a−b)2 , a < x ≤ c,
−(((b−c)(15a2+8b2+4bc+3c2

−10a(2b+c)))
30(a−b)2 , c < x < b.

Figure 1: CEX of power function distribution (left panel), and finite range distribution (right panel).

Remark 2.1. Figure 1 shows the CEX of power function and finite range distributions, respectively. Therefore, from
Example 2.1, we can note the following:

1. Based on power function distribution, by increasing k with fixed b, we can see that CEX increases. Furthermore,
by increasing b with fixed k, we can see that CEX decreases.

2. Based on finite range distribution, by increasing b with fixed a, we can see that CEX decreases. Furthermore,
by increasing a with fixed b, we can see that CEX increases.

The following theorem discuss the sufficient case for CEX to be limited.

Theorem 2.1. Let X be a non-negative r.v. with support in [a, b], with a, b finite. If the moment generating function
MX(φ) < +∞, for every φ < 0, then Cζ(X) ∈ (−∞, 0].

Proof. Since
∫ b

a F2(x)dx < +∞. Using Chernoff bound, we can obtain∫ b

a
F2(x)dx ≤

∫ b

a

[
E(eφX)

eφx

]2

dx

= MX(φ)2 e−2aφ
− e−2bφ

2φ
.

(16)

Thus, the result follows.
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Remark 2.2. The existence of the moment generating function MX(φ) is the sufficient case for the convergence of
CEX Cζ(X).

The following proposition discuss the effect of linear transformations on CEX.

Proposition 2.1. Let X be a non-negative r.v. with support in [a, b], such that a and b are finite. If ψ(x) = a1 x + b1,
a1 > 0 and b1 ≥ 0, then Cζ(ψ(X)) = a1 Cζ(X).

Theorem 2.2. Suppose that Xn be a sequence of N-dimensional random vectors converging in distribution to a
random vector X which supported in [a, b], such that a and b are finite. If all the Xn are bounded, then

lim
n→+∞

Cζ(Xn) = Xn (Weak conver1ence). (17)

Proof. Since Xn converges to X in distribution, we get

lim
n→+∞

F2
|Xn |

(x) = F2
|X|(x), x ∈ RN

+ .

Moreover, using (16), we can obtain

F2
|Xn |

(x) ≤
N∏

i=1

F
2
N
|Xi |

(xi)

≤

N∏
i=1

[
e−φxi I[a,b](xi) E(eφ|Xni |)

] 2
N .

Therefore, F2
|Xn |

(x) is bounded by a function which is integrable. In the sequel, the proof is completed by the
dominated of the convergence theorem.

Theorem 2.3. Let X be a non-negative r.v. which supported in [a, b], such that a and b are finite. From the cumulative
entropy Cε, ζ(X) and Cζ(X) defined in (2), (15) and (10), respectively. Then,

1. Cζ(X) ≥ −1
2 (b − E(X)).

2. Cζ(X) ≥ ζ(X) if 0 ≤ F(x) ≤ 1
2 and Cζ(X) < ζ(X) if 1

2 < F(x) ≤ 1.
3. Cζ(X) ≤ 1

2 [Cε − (b − E(X))].

Proof. 1. Since F2(x) ≤ F(x) and recalling the definition of CEX, the result follows. The proof of 2. can
be obtained from the condition x ≥ (1 + log x), for x > 0.

From (15) and (7), we can find the relation between the CEX and the CTE according to the following
lemma.

Lemma 2.1. If X is a r.v. defined in its support, then

Cζ(X) =
1
2

[
Cξ2(X) −

∫ b

a
F(x)dx

]
=

1
2

[
E(µ̃̃(x)F(x)) −

∫ b

a
F(x)dx

]
≤
−1
2

[∫ b

a
(1 + log F(x))F(x)dx

]
,

(18)

where µ̃̃(x) is defined in (12).
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Proof. The proof is directly follows from (15), (7) and 3. in Theorem (2.3). Moreover, using the results
obtained in Cali et al. [3] that Cξ2(X) = E(µ̃̃(x)F(x)) ≤ Cε.

Remark 2.3. If X is a r.v. defined in its support, then

1. Cξ2(X) = 0 if and only if X is degenerate.
2. Cζ(X) = 0 if and only if F(x) = 0.

Theorem 2.4. Let X be a non-negative r.v. which supported in [a, b], such that a and b are finite, with mean inactivity
time µ̃̃(t), mean µ and CRX Cζ(X). We have:

1. For b − µ ≥ 1, then

−1
2

(b − µ) ≤ Cζ(X) ≤
−1
2

e−E(µ̃̃(t)), (19)

2. For b − µ < 1, then

Cζ(X) ≥
−1
2

(b − µ)

≥
−1
2

e−E(µ̃̃(t)),
(20)

where µ̃̃(t) is defined in (12).

Proof. Based on the fact that F2(x) ≤ F(x), integrating both sides with respect to x, we obtain −1
2 (b− µ) ≤

Cζ(X). on the other hand, for b − µ ≥ 1 (b − µ < 1)

E(µ̃̃(t)) =

∫ b

a

[
1

F(x)

∫ x

a
F(u)du

]
f (x)dx

= −

∫ b

a
F(x) log(F(x))dx.

From log-sum inequality

E(µ̃̃(t)) ≥
(∫ b

a
F(x)dx

)
log


∫ b

a F(x)dx∫ b

a F2(x)dx


= (b − µ) log(b − µ) − (b − µ) log

(∫ b

a
F2(x)dx

)
≥ (≤) − log

(∫ b

a
F2(x)dx

)
,

and the result follows.

Example 2.2. Let X be a r.v. with a power function distribution defined in Example (2.1). We get:

1. For b = 3, k = 4, then b − µ = 0.6, Cζ(X) = −0.16667, −1
2 (b − µ) = −0.3, −1

2 e−E(µ̃̃(t))=−0.3093,
2. For b = 5, k = 4, then b − µ = 1, Cζ(X) = −0.277, −1

2 (b − µ) = −0.5, −1
2 e−E(µ̃̃(t))=−0.224,

3. For b = 7, k = 4, then b − µ = 1.4, Cζ(X) = −0.38889, −1
2 (b − µ) = −0.7, −1

2 e−E(µ̃̃(t))=−0.16314,

which ensure the previous theorem.
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2.1. Stochastic ordering of cumulative extropy

Suppose that X and Y denote r.v.’s with CDF’s F and G. Now, we will present the following definitions
to illustrate some results on the CEX ordering of r.v.’s, see Shaked and Shanthikumar [33].

Definition 2.2. X is smaller than Y in the stochastic order, symbolized by X ≤st Y if and only if F(t) ≥ G(t), for all
t ∈ R.

Definition 2.3. X is smaller than Y in the dispersive order, symbolized by X ≤disp Y, if G−1(F(x)) − x is increasing
in x ≥ 0.

Definition 2.4. X is smaller than Y in the increasing concave order, symbolized by X ≤incv Y if E[ϕ(X)] ≤ E[ϕ(Y)]
such that E[.] exist and for all increasing concave function ϕ.

Theorem 2.5. Let X and Y be two non-negative continuous r.v.’s defined in its support, with CDF’s F and G and
finite mean E(X) and E(Y), respectively. If X ≤st Y, then,

1. Cζ(X) ≤ Cζ(Y),
2. we have

Cζ(X) − Cζ(Y) ≤
−1
2

[E(Y) − E(X)]. (21)

Proof. Suppose X ≤st Y then, from (15), we have

Cζ(X) − Cζ(Y) =
−1
2

[∫ b

a
(F2(x) − G2(x))dx

]
≤
−1
2

[∫ b

a
(F(x) − G(x))dx

]
=
−1
2

[E(Y) − E(X)].

Now, we will discuss the connection between CEX and increasing concave ordering by the following
theorem.

Theorem 2.6. Let X and Y be two non-negative continuos r.v.’s supported in [a, b], such that a and b are finite, with
increasing concave CDF’s F and G, respectively. If X ≤incv Y then Cζ(X) ≥ Cζ(Y).

Proof. Since the concave function
∫ b

t F(x)dx is increasing. Meanwhile, from (24), Cζ(X) = −1
2 E

(∫ b

t F(x)dx
)

and recalling the concept of increasing concave order, we have∫ b

t
F(x)dx ≤

∫ b

t
G(x)dx ⇒ Cζ(X) ≥ Cζ(Y).

Let X1,X2, ...,Xn be n iid non-negative r.v.’s having CDF F, then the lifetime of a series system is
determined by X1:n = min{X1,X2, ...,Xn} and the lifetime of a parallel system is determined by Xn:n =
max{X1,X2, ...,Xn} with CDF’s F1:n and Fn:n, respectively. Based on the mean lifetime, the following propo-
sition express lower bounds for CEX of series and parallel systems

Proposition 2.2. Let X1,X2, ...,Xn be iid non-negative continuous r.v.’s supported in [a, b], such that a and b are
finite, with common CDF F. Then

1. Cζ(Xn:n) ≤ −b
2 + a( 1

2 − n) + E(X)
2. Cζ(Xn:n) ≥ Cζ(X)
3. Cζ(Xn:n) ≥ −1

2 (b − E(X))
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4. We have

Cζ(X1:n) ≥ n2Cζ(X)

≥
−n2

2
(b − E(X))

Proof. 1. From (15), utilizing Bernoulli’s inequality, we have

Cζ(Xn:n) =
−1
2

[∫ b

a
F2n(x)dx

]
≤
−1
2

[∫ b

a
(1 − 2n(1 − F(x)))dx

]
=
−1
2

(b − a) + n
[∫ b

a
(1 − F(x))dx

]
=
−b
2

+ a(
1
2
− n) + E(X).

Since F2n(x) ≤ F2(x) ≤ F(x). Thus, from (15), the proof for both (2.) and (3.) is simple to obtain. To prove 4.,
from (15) and utilizing Bernoulli’s inequality, we have

Cζ(X1:n) =
−1
2

[∫ b

a
(1 − F̄n(x))2dx

]
≥
−1
2

[∫ b

a
(nF(x))2dx

]
= n2Cζ(X)

≥
−n2

2

∫ b

a
F(x)dx =

−n2

2
(b − E(X)).

Example 2.3. Let X1,X2, ...,Xn be iid non-negative continuous r.v.’s with standard uniform distribution supported
in (0, 1). We getE(X) = 1

2 , Cζ(X) = −1
6 , Cζ(X1:n) = −n2

2n2+3n+1 , Cζ(Xn:n) = −1
2(2n+1) , for n ≥ 1 which assure the previous

theorem.

Corollary 2.1. 1. Let Xi:n and Yi:n be the ith order statistic from samples of size n, X1, ...,Xn and Y1, ...,Yn
respectively. If X ≤st Y, then Xi:n ≤

st Yi:n and we get Cζ(Xi:n) ≤ Cζ(Yi:n).
2. Suppose that Un and Vn denotes the nth record of two sequences of r.v.’s {Xn,n ≥ 1} and {Yn,n ≥ 1} respectively.

If X ≤st Y, then Un ≤
st Vn and we get Cζ(Un) ≤ Cζ(Vn).

Theorem 2.7. Let X and Y be two independent non-negative r.v.’s with right-end support points uX = uY < +∞. If
X and Y have log-concave PDF’s, thus

1. Cζ(X + Y) ≤ max{Cζ(X),Cζ(Y)}
2. Cζ(X + Y) ≤ Cζ(X) + Cζ(Y).

Proof. Let X have a log-concave function. Then, X ≤disp X + Y for any r.v. Y independent of X, see
Theorem 3.B.7 of Shaked and Shanthikumar [33]. Since uX = uY < +∞, we have, X ≤st X+Y. Therefore, from
Theorem (2.5) we get Cζ(X + Y) ≤ Cζ(X). Similarly when Y has a log-concave PDF i.e. Cζ(X + Y) ≤ Cζ(Y).
Noting that the CEX of a r.v. is always non-positive.

2.2. Cumulative stop-loss transform
Let X be a non-negative r.v. which supported in [a, b], such that a and b are finite. The stop-loss

transform ZF(t) of the r.v. X is defined as

ZF(t) = E(max{X − t, 0}) =

∫ b

t
F̄(x)dx.
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Hence, the Cumulative stop-loss transform can be derived as

CZF(t) =

∫ t

a
F(x)dx. (22)

Theorem 2.8. Let X be a non-negative r.v. which supported in [a, b], such that a and b are finite, with Cζ(X). Then,
we have

Cζ(X) =
−1
2

[b − E(X) − E(CZF(t))]. (23)

Proof.

Cζ(X) =
−1
2

∫ b

a
F2(x)dx =

−1
2

∫ b

a
F(x)

(∫ x

a
f (t)dt

)
dx

=
−1
2

∫ b

a
f (t)

(∫ b

t
F(x)dx

)
dt.

(24)

Since ∫ b

t
F(x)dx =

∫ b

a
F(x)dx −

∫ t

a
F(x)dx = b − E(X) − E(CZF(t)),

then the result follows.

Remark 2.4. From (12), we can use the relation µ̃̃(t) =
CZF(t)

F(t) to express the CEX in terms of mean inactivity time:

Cζ(X) =
−1
2

[b − E(X) − E(µ̃̃(t)F(t))].

2.3. Proportional reversed hazard model and Gini index
If Fθ∗ (x) and F(x) denote the CDF of the r.v.’s Xθ∗ and X, respectively. Then the proportional reversed

hazard rate (PRHR) is given as follows

Fθ∗ (x) = [F(x)]θ, x ∈ R, (25)

where θ is a real number. Now, the following result is to compare Cζ(X), Cζ(Xθ∗ ) and Cζ(θX).

Proposition 2.3. For the CEX, given in (15) the following statements hold:

Cζ(Xθ∗ ) ≥ (≤)Cζ(X) ≥ (≤)Cζ(θX), θ ≥ 1(0 < θ ≤ 1). (26)

Proof. By using the relation [F(x)]2θ
≤ [F(x)]2, for θ > 1 and [F(x)]2θ

≥ [F(x)]2, for 0 < θ < 1 and the
result follows.

Corollary 2.2. Let X1, ...,Xn be i.i.d non-negative continuous r.v.’s with common CDF F, with n a positive integer,
then from Proposition (2.3)

Cζ(nXn) ≤ Cζ(Xn:n),

where Xn:n = max{X1, ...,Xn}.

Definition 2.5. (Gini coefficient) Let X be an independent r.v. which supported in [a, b], such that a and b are finite.
The Gini index is

Gindex =
1
E(X)

∫ b

a
F(x)(1 − F(x))dx

=
1
E(X)

[b − E(X) −
∫ b

a
F2(x)dx].

(27)
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See Wang [37] for more details. Using (27), the CEX in terms of Gini index:

Cζ(X) =
1
2

[E(X)(Gindex + 1) − b]. (28)

From (28) and Proposition (2.3), we have the following result.

Proposition 2.4.

Gindex(Xθ∗ ) ≥ (≤)Gindex(X) ≥ (≤)Gindex(θX), θ ≥ 1(0 < θ ≤ 1).

3. Dynamic past cumulative extropy

Abdul Sathar and Dhanya [1] proposed the dynamic cumulative extropy in (11). The r.v. Xt = [X|X ≤ t]
is the past lifetime of the system at age t with CDF FXt . Then, motivated by (11), the dynamic past cumulative
extropy (DCEX) of a non-negative r.v. X which supported in [a, b], such that a and b are finite, is

Cζ(X; t) = Cζ(t) =
−1
2

∫ t

a
[FXt(x)]2dx

=
−1

2F2(t)

∫ t

a
F2(x)dx, t ≥ 0,

(29)

and that Cζ(t) is always negative.

Proposition 3.1. Let X be a non-negative r.v. with support in [a, b], such that a and b are finite. If ψ(x) = a1 x + b1,
a1 > 0 and b1 ≥ 0, then Cζ(ψ(X); t) = a1 Cζ(X; t−b

a ), t ≥ 0.

The following theorem is extension of Theorem (2.4) in the case of DCEX. The proof omitted by the same
way of the proof of Theorem (2.4).

Theorem 3.1. Let X be a non-negative r.v. which supported in [a, b], such that a and b are finite, with mean inactivity
time µ̃̃(t), mean µ and DCRX Cζ(X; t). We have:

1. For b − µ ≥ 1, then

−1
2
µ̃̃(t) ≤ Cζ(X; t) ≤

−1
2

e−E(µ̃̃(t)|X≤t), (30)

2. For b − µ < 1, then

Cζ(X; t) ≥
−1
2
µ̃̃(t)

≥
−1
2

e−E(µ̃̃(t)|X≤t),
(31)

where µ̃̃(t) is defined in (12).

Definition 3.1. The CDF F is called increasing (decreasing) in DCEX, IDCEX (DDCEX), if Cζ(X; t) is an increasing
(decreasing) function of t.

Theorem 3.2. Let X be a non-negative r.v. which supported in [a, b], such that a and b are finite, with reversed
hazard rate τ(t) =

f (t)
F(t) . The CDF F(x) is IDCEX (DDCEX) if and only if, for all t ≥ 0

Cζ(X; t) ≥ (≤)
−1

4τ(t)
. (32)
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Proof. From (29), we have

−2 Cζ(X; t)F2(t) =

∫ t

a
F2(x)dx. (33)

Differentiating (33) with respect to t, we get

d
dt

Cζ(X; t) = −2Cζ(X; t)τ(t) −
1
2
, (34)

and the result follows.

The following theorem shows that the DCEX uniquely determines the distribution.

Theorem 3.3. Let X and Y be two non-negative continuous r.v.’s supported in [a, b], such that a and b are finite, with
CDF’s F and G respectively and with reversed hazard rate functions τF(t) and τG(t) respectively. Let Cζ(X; t) and
Cζ(Y; t) be the DCEX’s corresponding to X and Y respectively. If, for all t ≥ 0, Cζ(X; t) = Cζ(Y; t) then F(t) = G(t).

Proof. Let Cζ(X; t) = Cζ(Y; t) and using (34), we get

−2Cζ(X; t)τF(t) −
1
2

= −2Cζ(Y; t)τG(t) −
1
2
,

which implies that τF(t) = τG(t) or equivalently F(t) = G(t).

The following theorem gives an identity between the dynamic cumulative extropy ζ(X; t) and DCEX
Cζ(X; t).

Theorem 3.4. Let X be a r.v. with support in [0, b] and symmetric about b
2 , i.e. F(x) = F̄(b−x), 0 ≤ x ≤ b. Therefore,

from (11) and (29), we have

Cζ(X; t) = ζ(X; b − t), 0 ≤ t ≤ b. (35)

Proof. Recalling (29), we have

Cζ(X; t) =
−1
2

∫ t

0 F2(x)dx

F2(t)

=
−1
2

∫ t

0 F̄2(b − x)dx

F̄2(b − t)

=
1
2

∫ b−t

b F̄2(y)dy

F̄2(b − t)

=
−1
2

∫ b

b−t F̄2(y)dy

F̄2(b − t)
= ζ(X; b − t).

Example 3.1. If the r.v. X has uniform distribution supported in [0, b], 0 ≤ t ≤ b, we have

Cζ(X; t) =
−t
6
,

ζ(X; t) =
−(b − t)

6
,

which is in agreement with the previous theorem.
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3.1. Stochastic ordering of dynamic cumulative extropy
We discuss the ordering of DCEX of two r.v.’s. Let X and Y be two r.v.’s with CDF’s F and G respectively

and with reversed hazard rate functions τF(t) and τG(t) respectively.

Definition 3.2. The r.v. X is less than or equal to Y in the

1. reversed hazard rate ordering, symbolized by X ≥rhr Y, if τF(x) ≥ τG(x), for all x ≥ 0.
2. cumulative extropy ordering, symbolized by X ≤CEX Y, if Cζ(X) ≤ Cζ(Y).

Theorem 3.5. Let X and Y be two non-negative continuous r.v.’s supported in [a, b], such that a and b are finite,
with CDF’s F and G respectively. Thus:

1. If X ≤st Y, then X ≤CEX Y.
2. If X ≥rhr Y, then Cζ(X; t) ≥ Cζ(Y; t). In particular, Cζ(X) ≥ Cζ(Y).

Proof. 1. Since X ≤st Y⇒ F(x) ≥ G(x)⇒ −1
2

∫ b

a F2(x)dx ≤ −1
2

∫ b

a G2(x). Therefore, X ≤CEX Y.
2. Since X ≥rhr Y⇒ τF(x) ≥ τG(x)⇒ F(x) ≤ G(x). Therefore, X ≥st Y and the result follows.

3.2. Characterization
In this subsection, we provide some characterizations of a r.v. based on these new measures.

Theorem 3.6. Let X be a r.v. supported in [0, b], b is finite, with mean inactivity time µ̃(t) defined in (12). For all
t ∈ [0, b], we get

1. Cζ(X; t) = q µ̃(t) if and only if F(t) = ( t
b )

k
1−k , k = −(1 + 1

2q ), −1
2 < q < −1

4 ,

2. Cζ(X; t) = q µ(t) − t
2 if and only if F(t) = ( t

b )
1−k

k , k = 2 − 1
q , 1

2 < q < 1.

proof. 1. Let Cζ(X; t) = q µ̃(t) for all t ∈ [0, b]. Differentiating both side with respect to t and from (34)
and (13) we have

Cζ′(X; t) = qµ̃′(t)

⇒ −2Cζ(X; t)τ(t) −
1
2

= q[1 − τ(t)µ̃̃(t)]

⇒ τ(t)µ̃(t) = −(1 +
1
2q

)

⇒ τ(t)µ̃(t) = k,

where k = −(1 + 1
2q ), such that −1

2 < q < −1
4 . Note that (13) gives

τ(t) =
1 − µ̃′(̃t)
µ̃̃(t),

then we have

µ̃′(̃t) = 1 − k.

Which yields µ̃̃(t) = (1 − k)t, where µ̃̃(0) = 0. Moreover, we get

τ(t) =
k

1 − k
1
t
.

Thus

F(t) =
( t

b

) k
1−k

, 0 ≤ t ≤ b.
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2. Since the mean inactivity time can be written as

µ̃̃(t) = t − µ(t).

Let Cζ(X; t) = q µ(t)− t
2 for all t ∈ [0, b]. Differentiating both side with respect to t and from (34) and (13) we

have

Cζ′(X; t) = qµ′(t) −
1
2

⇒ −2Cζ(X; t)τ(t) −
1
2

= q[1 − µ̃′(̃t)] −
1
2

⇒ µ̃(t) =

(
2 −

1
q

)
t

⇒ µ̃(t) = k t,

where k = 2 − 1
q , such that 1

2 < q < 1. So, we have

τ(t) =
1 − k

k
1
t
.

Thus

F(t) =
( t

b

) 1−k
k

, 0 ≤ t ≤ b.

The converse for both (1.) and (2.) is simple to obtain.

4. Non-parametric estimation

Let X1,X2, ...,Xn be a random sample of size n drawn from a population with a CDF F support in [a,
b], 0 ≤ a < b < ∞, and its order statistic denoted by a ≤ X(1) ≤ X(2) ≤ ... ≤ X(n) ≤ b. Consequently, we use
two different empirical estimators of the CDF to estimate CEX by means of the its empirical. We define the
empirical CEX, from (15), as

Cζ(Fn) =
−1
2

∫ b

a
F2

n(x)dx

=
−1
2

n−1∑
j=1

∫ X( j+1)

X( j)

F2
n(x),

(36)

where Fn is an empirical estimator of F and the empirical CEX converges to CEX of X i.e. Cζ(Fn) → Cζ(F)
a.s. as n→∞.

By replacing empirical CDF in (36) we can be obtain the first estimator (Cζ1(Fn)) as follows

Cζ1(Fn) =
−1
2

n−1∑
j=1

(X( j+1) − X( j))
(

j
n

)2

, (37)

where Fn(x) =
j
n , j = 1, 2, ...,n − 1.

The second estimator (kernel-smoothed estimator) (Cζ2(Fn)) can be accomplished by replacing empirical
kernel-smoothed estimator in (36) as

Cζ2(Fn) =
−1
2

n−1∑
j=1

(X( j+1) − X( j))(Fl(x j))2, (38)
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where

Fl(x j) =
1
n

n∑
i=1

h
(x − Xi

l

)
,

h(x) =
∫ x

−∞
K(t)dt and l is a bandwidth parameter, see Nadaraya [22].

In the following examples, we apply the proposed methods to illustrate the effectiveness of the empirical
and kernel estimators. For the kernel estimation, the Gaussian kernel, K(x) = φ(x) is used as the kernel
function, φ is the standard normal density function. Meanwhile, to estimate the bandwidth (l) we utilize
the procedure proposed by Sarda [31].

Example 4.1. Let X1, ...,Xn be a random sample of standard uniform distribution supported in (0, 1). From David
and Nagaraja [5], the sample spacings are non-dependent, with W( j) = X( j)−X( j−1) which has a Beta(1,n) distribution.
Hence, from (37) and (38), we have:

E(Cζ1(Fn)) =
−1

2n2(1 + n)

n−1∑
j=1

j2, Var(Cζ1(Fn)) =
1

4n3(2 + n)(1 + n)2

n−1∑
j=1

j4, (39)

E(Cζ2(Fn)) =
−1

2(1 + n)

n−1∑
j=1

F2
l (x j), Var(Cζ2(Fn)) =

n
4(2 + n)(1 + n)2

n−1∑
j=1

F4
l (x j). (40)

In Table (1), we use different values of sample size (n = 5, 10, 20, 30, 40, 50, 100) and we conclude that the
values of mean and variance of the suggested estimators are decreased when the sample size increases.

Table (1): Variance and mean of the empirical CEX.

n E(Cζ1(Fn)) Var(Cζ1(Fn)) E(Cζ2(Fn)) Var(Cζ2(Fn))
5 -0.1 0.002809524 -0.06805947 0.001305995
10 -0.1295455 0.002639979 -0.1048848 0.001643077
20 -0.1470238 0.001812339 -0.1302864 0.001394198
30 -0.1533154 0.001344086 -0.1430673 0.001123888
40 -0.1565549 0.001063473 -0.1488226 0.0009387412
50 -0.1585294 0.0008786068 -0.1521608 0.0007967567

100 -0.1625495 0.0004686039 -0.1582621 0.0004383877
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Figure 2: Histogram of the real data.

Figure 3: Empirical estimators for real data.
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Figure 4: Empirical estimators for simulated data

Example 4.2. We consider the data given in Crowder and Hand [4]. The original data consists of twelve hospital
patients were given a special diet. Measurements of plasma ascorbic acid were taken twice before treatment, three
times during, and twice after, at week numbers 1, 2, 6, 10, 14, 15, 16. A question of interest is whether there is
any treatment effect. We introduce here the data from weeks 1. The actual observations are recorded as follows
0.22, 0.18, 0.73, 0.3, 0.54, 0.16, 0.3, 0.7, 0.31, 1, 0.6, 0.73.

For fitting to data, we apply Kolmogorov-Smirnov (K-S) test to figure out the reasonableness of using
standard uniform distribution. The K-S statistic is 0.19 and the corresponding p-value is 0.7792. Thus, it is
feasible to use the uniform distribution to fit the data, see Figure 2. The theoretical value of CEX based on the
standard uniform distribution is equal to -0.1666667 but empirical estimator (Cζ1(Fn)) and kernel-smoothed
estimator (Cζ2(Fn)) are -0.1870486 and -0.1346251 respectively which Cζ1(Fn) is more closer than Cζ2(Fn)
to the theoretical value. Figure 3 display that by increasing sample size, the empirical estimators become
nearer to the theoretical value. Also, it can be noted that the first empirical estimator closest to the amount
of the theory value more straight away than the second empirical estimator. Subsequently, we observe that
the empirical estimator is more accurate than kernel-smoothed estimator.

We perform a simulation study by generating two samples of size n = 100, 200 from standard uniform
distribution. Figure 4, gives an appropriate visional outline of comparing suggested estimators which are
influenced by the sample size. In addition, it is evident that both of them are quite similar behave to be
close to producing good accuracy to estimate the theoretical value by increasing the sample size.

5. Conclusion

In this dissertation, we introduced a new measure of information and its dynamic past version based
on the CDF. We denoted them by CEX and DCEX respectively. Moreover, we mentioned the adequate
family and distributions that the CEX defined in its support. In addition, we expressed the CEX in terms of
other measures of information. Furthermore, we obtained several properties of the proposed measure and
provide some results on the CEX and DCEX ordering of r.v.’s with applications on order statistics. Some
features, such as cumulative stop-loss transform, Proportional reversed hazard model and Gini coefficient,
are studied. In the last part, non-parametric estimation for the new measure is proposed. Moreover, we
concluded that the suggested estimators are influenced by sample size and almost give the same behavior
in the simulation procedure. In future work, we can extend the obtained models for ordered variables and
their concomitants, for more details see [19, 20].
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