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Abstract. In this study, replication of a period-doubling cascade in coupled systems with delay is rigorously
proved under certain assumptions, which guarantee the existence of bounded solutions and replication of
sensitivity. A novel definition for replication of sensitivity is utilized, in which the proximity of solutions is
considered in an interval instead of a single point. Examples with simulations supporting the theoretical
results concerning sensitivity and period-doubling cascade are provided.

1. Introduction

The occurrence of time delays is an issue that is crucial for nonlinear processes. In the case that
time delays are taken into consideration, delay differential equations can be utilized in modeling of such
processes. Infinite-dimensional dynamical systems can arise from delay differential equations [1, 2], and
such equations can exhibit chaotic behavior, even in scalar case [3, 4]. Delay differential equations are useful
in various fields such as neural networks, secure communication, robotics, economics, and lasers [5]-[9].
Some open problems concerning differential equations with delay can be found in the papers [10]-[12].
Another phenomenon that can be observed in dynamics of nonlinear systems is period-doubling cascade,
which is capable of giving rise to the emergence of chaos. Likewise systems with delay, the presence of
period-doubling cascades as well as chaos can be observed and have applications in a variety of scientific
areas [13]-[16].

We understand chaos as the presence of sensitivity, which can be considered as the main ingredient
of chaos [17]-[19], and infinitely many unstable periodic solutions in a compact region. Motivated by the
effective scientific roles of chaos and systems with delay, in the present study, we consider the replication of
period-doubling route to chaos in unidirectionally coupled systems in which the secondary system is with
delay. More precisely, we take into account the systems

x′(t) = F(t, x(t)) (1)

and

y′(t) = Ay(t) + G(t, x(t), y(t − τ)) (2)
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where the functions F : R ×Rm
→ Rm and G : R ×Rm

×Rn
→ Rn are continuous in all of their arguments,

all eigenvalues of the matrix A ∈ Rn×n have negative real parts, and τ is a positive number. Our purpose
is to rigorously prove that system (2) exhibits chaotic motions, provided that the same is true for system
(1) under certain conditions that will be mentioned in the next section. These assumptions are required in
order to verify the existence of bounded solutions and replication of sensitivity.

The existence of chaos in delay differential equations was demonstrated in the studies [3, 4, 20]. The
results of the papers [3, 4] are based on the Li-Yorke definition of chaos [21, 22]. Utilizing the results obtained
in their study [23], Lani-Wayda and Walther [20] constructed a delay differential equation possessing chaotic
behavior. On the other hand, global attractors for delay differential equations were investigated in [24, 25].
The global attractiveness of a three-dimensional compact invariant set of a differential equation modeling
a system governed by delayed positive feedback and instantaneous damping was shown by Krisztin and
Walther [24]. In addition to the presence of a global attractor in the dynamics of a differential equation
with state-dependent delay, one of its topological properties were investigated in [25]. Moreover, results
concerning periodic solutions of state-dependent delay differential equations were presented by Kuang
and Smith [26]. The technique provided in this study is different compared to the papers [3, 4, 20] such that
we take into account replication of sensitivity and period-doubling cascades in unidirectionally coupled
systems.

Regular inputs such as periodic, quasi-periodic, and almost periodic motions can lead to the formation
of outputs of the same types in dynamics of certain types of differential equations [27, 28]. The main idea
of our investigation is the usage of chaotic motions as inputs in systems with delay, and it is demonstrated
that chaotic outputs are obtained. The inputs are supplied from solutions of another system possessing
chaos. The reader is referred to the papers [29, 30] for some applications of input-output systems.

The foundations of chaos generation in systems of differential equations by means of perturbations and
impulsive actions were laid by Akhmet [31]-[33]. An answer to the question whether continuous chaotic
inputs generate chaotic outputs was given in the study [35] for systems without delay. It was rigorously
proved in [35] that under certain conditions chaotic dynamics of a system of differential equations can
be replicated by another system under unidirectional coupling between them. Chaos in the senses of
Devaney [34] and Li-Yorke [21] as well as period-doubling cascade were considered by Akhmet and Fen
[35]. Moreover, the study [36] was concerned with replication of period-doubling route to chaos in systems
with impulsive actions. Systems with delay were not taken into account in the studies [35, 36]. The main
novelty of the present research is the consideration of replication of chaos problem for systems with delay.
Due to the presence of delay, a novel definition for replication of sensitivity is provided and the contraction
mapping principle is utilized for its verification. The obtained results are valid for systems with arbitrary
high dimensions. The book [37] comprises some applications of the replication of chaos technique to neural
networks, economics, and weather dynamics.

In the literature, unidirectionally coupled chaotic systems have been considered within the scope of
synchronization [38]-[40]. In the case of identical systems, synchronization occurs when asymptotic prox-
imity of the states of the drive and response systems is valid [38]. For the presence of synchronization in
the dynamics of non-identical systems, the asymptotic proximity is considered with the help of a functional
relation, which determines the phase space trajectory of the response system from the trajectory of the
drive [39]. The approach utilized in this study is different from synchronization of chaos since the coupled
system (1)-(2) is not taken into account from the asymptotic point of view. For that reason, following the
terminology of paper [35], we call system (1) the generator and system (2) the replicator.

The rest of the paper is organized as follows. In the next section, preliminary results and conditions on
the coupled system (1)-(2), which are required for replication of sensitivity and the existence of unstable
periodic solutions, are provided. In Section 3, replication of sensitivity is theoretically investigated. Section
4, on the other hand, is concerned with replication of period-doubling cascade. Section 5 is devoted to
examples in which the Lorenz system [17] and Duffing equation [41] are utilized as generator systems.
Finally, some concluding remarks are given in Section 6.
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2. Preliminaries

Our main assumption on the generator system (1) is the existence of a nonempty set A of all solutions
of the system that are uniformly bounded on R. In this case there exists a compact set Λ ⊂ Rm such that
the trajectories of all solutions that belong to A lie inside Λ. We also assume that there exists a positive
number T such that

F(t + T, x) = F(t, x)

and

G(t + T, x, y) = G(t, x, y) (3)

for all t ∈ R, x ∈ Rm, and y ∈ Rn.
Since we suppose that all eigenvalues of the matrix A in the replicator system (2) have negative real

parts, there exist numbers K ≥ 1 and ω > 0 such that
∥∥∥eAt

∥∥∥ ≤ Ke−ωt for all t ≥ 0.
Throughout the paper, we make use of the usual Euclidean norm for vectors and the spectral norm for

square matrices.
The following conditions are required.

(C1) There exists a positive number LF such that
∥∥∥F(t, x) − F(t, x̃)

∥∥∥ ≤ LF

∥∥∥x − x̃
∥∥∥ for all t ∈ R and x, x̃ ∈ Λ;

(C2) There exists a positive number L1 such that
∥∥∥G(t, x, y) − G(t, x̃, y)

∥∥∥ ≥ L1

∥∥∥x − x̃
∥∥∥ for all t ∈ R, x, x̃ ∈ Λ,

and y ∈ Rn;
(C3) There exists a positive number L2 such that

∥∥∥G(t, x, y) − G(t, x̃, y)
∥∥∥ ≤ L2

∥∥∥x − x̃
∥∥∥ for all t ∈ R, x, x̃ ∈ Λ,

and y ∈ Rn;
(C4) There exists a positive number L3 such that

∥∥∥G(t, x, y) − G(t, x, ỹ)
∥∥∥ ≤ L3

∥∥∥y − ỹ
∥∥∥ for all t ∈ R, x ∈ Λ, and

y, ỹ ∈ Rn;
(C5) There exists a positive number MG such that sup

t∈R,x∈Λ,y∈Rn

∥∥∥G(t, x, y)
∥∥∥ ≤MG;

(C6) ω − 2KL3eωτ/2 > 0.

For the existence and uniqueness of the bounded solutions of system (2), the conditions (C4) and (C5)
are utilized. Conditions (C1), (C3), (C4), and (C6), on the other hand, are required to show the proximity of
the bounded solutions of (2) on a closed interval with length τ in the verification of replication of sensitivity.
Moreover, the condition (C2) is used in the replication of sensitivity to show the divergence of the bounded
solutions, and the condition (C6) is required also in their global exponential stability.

Suppose that the conditions (C4), (C5) hold. For a fixed solution x ∈ A of system (1), it can be verified
that a function y(t) which is bounded on the whole real axis is a solution of system (2) if and only if the
integral equation

y(t) =

t∫
−∞

eA(t−s)G(s, x(s), y(s − τ))ds

is satisfied. Denote by C the set of continuous functions ϕ : R→ Rn with
∥∥∥ϕ∥∥∥

∞
≤M0, where∥∥∥ϕ∥∥∥

∞
= sup

t∈R

∥∥∥ϕ(t)
∥∥∥

and

M0 =
KMG

ω
. (4)

Let us define the operator Γ on C through the equation

Γϕ(t) =

t∫
−∞

eA(t−s)G(s, x(s), ϕ(s − τ))ds.
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If ϕ is a function in C , then one can confirm that
∥∥∥Γϕ∥∥∥

∞
≤ M0, which yields Γ(C ) ⊆ C . Additionally, if ϕ1,

ϕ2 belong to C , then
∥∥∥Γϕ1 − Γϕ2

∥∥∥
∞
≤

KL3

ω

∥∥∥ϕ1 − ϕ2

∥∥∥
∞

. Therefore, if ω − KL3 > 0, then the operator Γ is a
contraction. For that reason, if the conditions (C4), (C5) hold and the inequality ω − KL3 > 0 is valid, then
for each fixed solution x ∈ A of system (1), there exists a unique solution φx of system (2) which is bounded
on the whole real axis such that

sup
t∈R

∥∥∥φx(t)
∥∥∥ ≤M0

and

φx(t) =

t∫
−∞

eA(t−s)G(s, x(s), φx(s − τ))ds. (5)

It is worth noting that the condition (C6) implies the inequality ω − KL3 > 0. Moreover, if conditions
(C4)−(C6) are satisfied, then for each x ∈ A the bounded solutionφx(t) of system (2) is globally exponentially
stable [42].

To investigate the replication of sensitivity theoretically, we introduce the set of uniformly bounded
functions

B =
{
φx(t) : x ∈ A

}
. (6)

There is a one-to-one correspondence between the sets A and B under the condition (C2). In other words,
for each solution x ∈ A of generator (1) there exists a unique bounded solution φx ∈ B of replicator (2),
and vice versa.

3. Replication of Sensitivity

The definition of sensitivity for system (1) is as follows.

Definition 3.1. [35]. System (1) is called sensitive if there exist positive numbers ε0 and ∆ such that for an arbitrary
positive number δ0 and for each x ∈ A , there exist x ∈ A , t0 ∈ R, and an interval J ⊂ [t0,∞) with a length no less
than ∆ such that

∥∥∥x(t0) − x(t0)
∥∥∥ < δ0 and

∥∥∥x(t) − x(t)
∥∥∥ > ε0 for all t ∈ J.

The next definition is concerned with the replication of sensitivity by systems with delay.

Definition 3.2. System (2) replicates the sensitivity of system (1) if there exist positive numbers ε1 and ∆ such
that for an arbitrary positive number δ1 and for each bounded solution φx ∈ B, there exist a bounded solution
φx ∈ B, t0 ∈ R, and an interval J̃ ⊂ [t0,∞) with a length no less than ∆ such that sup

t∈[t0−τ,t0]

∥∥∥φx(t) − φx(t)
∥∥∥ < δ1 and∥∥∥φx(t) − φx(t)

∥∥∥ > ε1 for all t ∈ J̃.

The main result of the present section is provided in the next theorem. In the proof of the theorem,
first of all, utilizing the initial proximity of two solutions of system (1) in A we estimate the distance
between them backward in time. Then, this estimation is used to verify the initial proximity of the bounded
solution of system (2) on an interval of length τ by means of the contraction mapping principle. Finally, an
equicontinuous family of functions is constructed based on the equicontinuity of both A and the bounded
solutions of system (2), and it is useful for verifying the divergence of the bounded solutions of (2). The
provided proof technique makes it possible to determine the numbers ε1 and ∆ mentioned in Definition 3.2.

Theorem 3.3. Assume that the conditions (C1)− (C6) are valid. If system (1) is sensitive, then system (2) replicates
the sensitivity of (1).
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Proof. Fix an arbitrary positive number δ1 and a bounded solution φx ∈ B of system (2). Let us denote

R1 =
2KM0ω

ω − 2KL3eωτ/2
, (7)

where M0 is the number defined by (4), and

R2 =
KL2

ω − KL3
. (8)

The numbers R1 and R2 are positive by condition (C6). Suppose that δ0 = γδ1e−NLF , where γ is a positive
number such that

γ <
1

R1 + R2
(9)

and N is a positive number satisfying the inequality

N ≥ τ +
2
ω

ln
(

1
γδ1

)
. (10)

Since system (1) is sensitive, there exist positive numbers ε0 and ∆ such that∥∥∥x(t0) − x(t0)
∥∥∥ < δ0 (11)

and ∥∥∥x(t) − x(t)
∥∥∥ > ε0, t ∈ J, (12)

for some x ∈ A , t0 ∈ R, and for some interval J ⊂ [t0,∞) with a length no less than ∆.
Making use of the relation

x(t) − x(t) = x(t0) − x(t0) +

t∫
t0

(F(s, x(s)) − F(s, x(s))) ds,

it can be verified for t ∈ [t0 −N, t0] that

∥∥∥x(t) − x(t)
∥∥∥ ≤ ∥∥∥x(t0) − x(t0)

∥∥∥ +

∣∣∣∣∣
t∫

t0

LF

∥∥∥x(s) − x(s)
∥∥∥ ds

∣∣∣∣∣,
Applying the Gronwall-Bellman inequality [43] we obtain that∥∥∥x(t) − x(t)

∥∥∥ ≤ ∥∥∥x(t0) − x(t0)
∥∥∥ eLF |t−t0 |, t ∈ [t0 −N, t0].

Therefore,
∥∥∥x(t) − x(t)

∥∥∥ < γδ1 for t ∈ [t0 −N, t0] in accordance with the inequality (11).
One can confirm that the function ψ(t) = φx(t) − φx(t) is a solution of the system

ψ′(t) = Aψ(t) + G(t, x(t), ψ(t − τ) + φx(t − τ)) − G(t, x(t), φx(t − τ)). (13)

Accordingly, the equation

ψ(t) = eA(t−t0+N)
(
φx(t0 −N) − φx(t0 −N)

)
+

t∫
t0−N

eA(t−s)
(
G(s, x(s), ψ(s − τ) + φx(s − τ)) − G(s, x(s), φx(s − τ))

)
ds

is satisfied for t ≥ t0 −N.
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Let us denote by H the set of continuous functions ψ(t) defined on R such that∥∥∥ψ(t)
∥∥∥ ≤ R1e−ω(t−t0+N)/2 + R2γδ1 (14)

for t0 −N − τ ≤ t ≤ t0, where the numbers R1 and R2 are respectively defined by the equations (7) and (8),

and
∥∥∥ψ∥∥∥

∞
≤ 2K

(
M0 +

MG

ω

)
in which

∥∥∥ψ∥∥∥
∞

= sup
t∈R

∥∥∥ψ(t)
∥∥∥ . Define an operator Π on H through the equation

Πψ(t) =



φx(t) − φx(t), t < t0 −N,

eA(t−t0+N)
(
φx(t0 −N) − φx(t0 −N)

)
+

t∫
t0−N

eA(t−s)
(
G(s, x(s), ψ(s − τ) + φx(s − τ)) − G(s, x(s), φx(s − τ))

)
ds, t ≥ t0 −N.

First of all, we will show that Π (H ) ⊆ H . Suppose that ψ(t) belongs to H . If t0 − N ≤ t ≤ t0, then it
can be obtained using inequality (14) that∥∥∥Πψ(t)

∥∥∥ ≤

∥∥∥eA(t−t0+N)
∥∥∥ ∥∥∥φx(t0 −N) − φx(t0 −N)

∥∥∥
+

t∫
t0−N

∥∥∥eA(t−s)
∥∥∥ ∥∥∥G(s, x(s), ψ(s − τ) + φx(s − τ)) − G(s, x(s), φx(s − τ))

∥∥∥ ds

+

t∫
t0−N

∥∥∥eA(t−s)
∥∥∥ ∥∥∥G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))

∥∥∥ ds

≤ 2KM0e−ω(t−t0+N) +

t∫
t0−N

KL3e−ω(t−s)
(
R1e−ω(s−τ−t0+N)/2 + R2γδ1

)
ds

+

t∫
t0−N

KL2γδ1e−ω(t−s)ds

< 2K
(
M0 +

L3R1eωτ/2

ω

)
e−ω(t−t0+N)/2 +

Kγδ1

ω
(L2 + L3R2)

= R1e−ω(t−t0+N)/2 + R2γδ1,

since equations (7) and (8) respectively imply that

2K
(
M0 +

L3R1eωτ/2

ω

)
= R1

and

K
ω

(L2 + L3R2) = R2.

Additionally, since 2M0 < R1, the inequality
∥∥∥Πψ(t)

∥∥∥ < R1e−ω(t−t0+N)/2 +R2γδ1 is also valid for t0−N−τ ≤

t < t0 −N. On the other hand, it can be confirmed that
∥∥∥Πψ∥∥∥

∞
≤ 2K

(
M0 +

MG

ω

)
. Thus, Π (H ) ⊆H .
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Now, our purpose is to verify that the operator Π is a contraction. Let ψ1(t) and ψ2(t) be functions that
belong to H . The inequality

∥∥∥Πψ1(t) −Πψ2(t)
∥∥∥ ≤

t∫
t0−N

∥∥∥eA(t−s)
∥∥∥ ∥∥∥G(s, x(s), ψ1(s − τ) + φx(s − τ))

− G(s, x(s), ψ2(s − τ) + φx(s − τ))
∥∥∥ds

<
KL3

ω

(
1 − e−ω(t−t0+N)

) ∥∥∥ψ1 − ψ2

∥∥∥
∞

is valid for t ≥ t0 −N. Moreover,
∥∥∥Πψ1(t) −Πψ2(t)

∥∥∥ = 0 for t < t0 −N. Hence,∥∥∥Πψ1 −Πψ2

∥∥∥
∞
≤

KL3

ω

∥∥∥ψ1 − ψ2

∥∥∥
∞
,

and the operator Π is a contraction since the inequality
KL3

ω
< 1 holds by condition (C6).

According to the uniqueness of solutions of system (13), the function ψ(t) = φx(t) − φx(t) is the unique
fixed point of the operator Π. Let us denote

ψ0(t) =


φx(t) − φx(t), t < t0 −N,

eA(t−t0+N)
(
φx(t0 −N) − φx(t0 −N)

)
, t ≥ t0 −N,

which belongs to H . The sequence of functions
{
ψk(t)

}
, where ψk+1(t) = Πψk(t), k = 0, 1, 2, . . . , converges to

φx(t) − φx(t) on R. Thus,∥∥∥φx(t) − φx(t)
∥∥∥ ≤ R1e−ω(t−t0+N)/2 + R2γδ1

for t0 −N − τ ≤ t ≤ t0. Using the inequalities (9) and (10), one can confirm for t0 − τ ≤ t ≤ t0 that∥∥∥φx(t) − φx(t)
∥∥∥ ≤ R1e−ω(−τ+N)/2 + R2γδ1 ≤ (R1 + R2)γδ1 < δ1.

Hence, we have sup
t∈[t0−τ,t0]

∥∥∥φx(t) − φx(t)
∥∥∥ < δ1.

Next, we will show the existence of positive numbers ε1 and ∆ such that
∥∥∥φx(t) − φx(t)

∥∥∥ > ε1 for all t ∈ J̃,
where J̃ ⊂ [t0,∞) is an interval with length ∆.

Let MF = sup
t∈R,x∈Λ

‖F(t, x)‖. Both of the sets A and B0 =
{
φx(t − τ) : x ∈ A

}
are equicontinuous families

on R since sup
t∈R
‖x′(t)‖ ≤MF and sup

t∈R

∥∥∥φ′x(t − τ)
∥∥∥ ≤ ‖A‖M0 + MG for each solution x ∈ A of system (1).

Suppose that G(t, x, y) =
(
G1(t, x, y),G2(t, x, y), . . . ,Gn(t, x, y)

)
, where Gi(t, x, y), i = 1, 2, . . . ,n, are real

valued functions. Let us denote Λ0 =
{
y ∈ Rn :

∥∥∥y
∥∥∥ ≤M0

}
and define the function G : R×Λ×Λ×Λ0 → Rn

by G(t, x1, x2, y) = G(t, x1, y) − G(t, x2, y). Due to the periodicity of the function G(t, x, y) in t, the function
G(t, x1, x2, y) is uniformly continuous on R ×Λ ×Λ ×Λ0. Therefore, the set of functions

F =
{
Gi(t, x(t), φx(t − τ)) − Gi(t, x(t), φx(t − τ)) : 1 ≤ i ≤ n, x, x ∈ A

}
is an equicontinuous family on R. Thus, there exists a positive number ξ < ∆, which is independent of the
functions x(t) and x(t), such that for each t1, t2 ∈ R with |t1 − t2| < ξ, the inequality∣∣∣ (Gi(t1, x(t1), φx(t1 − τ)) − Gi(t1, x(t1), φx(t1 − τ))

)
−

(
Gi(t2, x(t2), φx(t2 − τ)) − Gi(t2, x(t2), φx(t2 − τ))

) ∣∣∣ < L1ε0

2
√

n
(15)
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holds for each i = 1, 2, . . . ,n.
Let us denote by η the midpoint of the interval J and set α = η−ξ/2. There exists an integer j0, 1 ≤ j0 ≤ n,

such that ∣∣∣∣G j0

(
η, x(η), φx(η − τ)

)
− G j0

(
η, x(η), φx(η − τ)

)∣∣∣∣
≥

1
√

n

∥∥∥∥G
(
η, x(η), φx(η − τ)

)
− G

(
η, x(η), φx(η − τ)

)∥∥∥∥ .
We obtain by means of the condition (C2) and inequality (12) that∣∣∣∣G j0

(
η, x(η), φx(η − τ)

)
− G j0

(
η, x(η), φx(η − τ)

)∣∣∣∣ ≥ L1
√

n

∥∥∥x(η) − x(η)
∥∥∥ > L1ε0

√
n
.

One can confirm in accordance with inequality (15) that∣∣∣∣G j0

(
t, x(t), φx(t − τ)

)
− G j0

(
t, x(t), φx(t − τ)

)∣∣∣∣
>

∣∣∣∣G j0

(
η, x(η), φx(η − τ)

)
− G j0

(
η, x(η), φx(η − τ)

)∣∣∣∣ − L1ε0

2
√

n

>
L1ε0

2
√

n
(16)

for all t ∈ [α, α + ξ].
There exist numbers sk ∈ [α, α + ξ], k = 1, 2, . . . ,n, such that∥∥∥∥∥∥

α+ξ∫
α

(
G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))

)
ds

∥∥∥∥∥∥
=

[ n∑
k=1

( α+ξ∫
α

(
Gk(s, x(s), φx(s − τ)) − Gk(s, x(s), φx(s − τ))

)
ds

)2]1/2

= ξ

[ n∑
k=1

(
Gk(sk, x(sk), φx(sk − τ)) − Gk(sk, x(sk), φx(sk − τ))

)2
]1/2

.

Therefore, the inequality (16) yields∥∥∥∥∥∥
α+ξ∫
α

(
G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))

)
ds

∥∥∥∥∥∥
≥ ξ

∣∣∣G j0 (s j0 , x(s j0 ), φx(s j0 − τ)) − G j0 (s j0 , x(s j0 ), φx(s j0 − τ))
∣∣∣

>
ξL1ε0

2
√

n
.

Utilizing the equation

φx(t) − φx(t) = φx(α) − φx(α) +

t∫
α

A
(
φx(s) − φx(s)

)
ds

+

t∫
α

(
G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))

)
ds



M. O. Fen, F. Tokmak Fen / Filomat 36:2 (2022), 599–613 607

it can be deduced that

∥∥∥φx(α + ξ) − φx(α + ξ)
∥∥∥ ≥

∥∥∥∥∥∥
α+ξ∫
α

(
G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))

)
ds

∥∥∥∥∥∥
−

∥∥∥φx(α) − φx(α)
∥∥∥ − α+ξ∫

α

‖A‖
∥∥∥φx(s) − φx(s)

∥∥∥ ds

−

α+ξ∫
α

∥∥∥G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))
∥∥∥ ds

>
ξL1ε0

2
√

n
− (1 + ξ ‖A‖ + ξL3) max

t∈[α−τ,α+ξ]

∥∥∥φx(t) − φx(t)
∥∥∥ .

Hence,

max
t∈[α−τ,α+ξ]

∥∥∥φx(t) − φx(t)
∥∥∥ > ξL1ε0

2 (2 + ξ ‖A‖ + ξL3)
√

n
.

Suppose that max
t∈[α−τ,α+ξ]

∥∥∥φx(t) − φx(t)
∥∥∥ =

∥∥∥φx(λ) − φx(λ)
∥∥∥ , where α − τ ≤ λ ≤ α + ξ. Let us denote

ε1 =
ξL1ε0

4 (2 + ξ ‖A‖ + ξL3)
√

n

and

∆ =
ξL1ε0

4 (‖A‖M0 + MG) (2 + ξ ‖A‖ + ξL3)
√

n
.

For t ∈ J̃, where J̃ =
[
λ − ∆/2, λ + ∆/2

]
, we have that

∥∥∥φx(t) − φx(t)
∥∥∥ ≥

∥∥∥φx(λ) − φx(λ)
∥∥∥ − ∣∣∣∣∣∣

t∫
λ

‖A‖
∥∥∥φx(s) − φx(s)

∥∥∥ ds

∣∣∣∣∣∣
−

∣∣∣∣∣∣
t∫

λ

∥∥∥G(s, x(s), φx(s − τ)) − G(s, x(s), φx(s − τ))
∥∥∥ ds

∣∣∣∣∣∣
>

ξL1ε0

2 (2 + ξ ‖A‖ + ξL3)
√

n
− ∆ (‖A‖M0 + MG) .

Thus,
∥∥∥φx(t) − φx(t)

∥∥∥ > ε1 for all t ∈ J̃. Consequently, system (2) replicates the sensitivity of system (1). �
It is worth noting that if an autonomous system is utilized instead of the non-autonomous system (1) as

the generator, then the result obtained in Theorem 3.3 is also valid with the counterpart of condition (C1).
This is illustrated in the first example provided in Section 5.

The next section is devoted to the replication of period-doubling cascade.

4. Replication of Period-Doubling Cascade

Let us consider the system

x′(t) = H(t, x(t), µ), (17)
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where µ is a real parameter and the function H : R × Rm
× R → Rm, which is continuous in all of its

arguments, satisfies the equation H(t + T, x, µ) = H(t, x, µ) for all t ∈ R, x ∈ Rm, and µ ∈ R. We suppose
that there exists a finite value µ∞ of the parameter µ such that the function F(t, x) on the right-hand side of
system (1) is equal to H(t, x, µ∞).

System (1) is said to admit a period-doubling cascade [44–46] if there exists a sequence
{
µ j

}
, µ j → µ∞ as

j→∞, of period-doubling bifurcation values such that system (17) undergoes a period-doubling bifurcation
as the parameter µ increases or decreases through each µ j, i.e., for each j ∈N a new stable periodic solution
with period p02 jT appears in the dynamics of (17) for some positive integer p0, and the preceding p02 j−1T-
periodic solution loses its stability. Therefore, at the parameter value µ = µ∞ there exist infinitely many
unstable periodic solutions of system (17), and hence of system (1), all lying in a bounded region.

We say that system (2) replicates the period-doubling cascade of system (1) if for each periodic solution
x ∈ A of (1) system (2) admits a periodic solution with the same period.

The one-to-one correspondence between the periodic solutions of systems (1) and (2) is mentioned in
the following lemma.

Lemma 4.1. Suppose that the conditions (C2), (C4), (C5) hold and ω − KL3 > 0. Then x ∈ A is a k0T-periodic
solution of the generator system (1) for some positive integer k0 if and only if the bounded solution φx ∈ B of the
replicator system (2) is k0T-periodic.

Proof. First suppose that x ∈ A is a k0T-periodic solution of the generator system (1). Using the integral
equation (5) we obtain that

∥∥∥φx(t + k0T) − φx(t)
∥∥∥ ≤

t∫
−∞

∥∥∥eA(t−s)
∥∥∥ ∥∥∥G(s, x(s), φx(s + k0T − τ)) − G(s, x(s), φx(s − τ))

∥∥∥ ds

≤
KL3

ω
sup
t∈R

∥∥∥φx(t + k0T) − φx(t)
∥∥∥ .

The last inequality implies that sup
t∈R

∥∥∥φx(t + k0T) − φx(t)
∥∥∥ = 0. Thus, φx(t) is k0T-periodic.

Conversely, let us assume that φx ∈ B is k0T-periodic. Then we have

G(t, x(t), φx(t − τ)) = G(t, x(t + k0T), φx(t − τ))

for all t ∈ R. Using the last equation and condition (C2), one can confirm that x ∈ A is k0T-periodic. �
It is worth noting that if x ∈ A is an unstable periodic solution of system (1), then the periodic solution

(x, φx) ∈ A ×B of the coupled system (1)-(2) is also unstable.
The following theorem can be proved by using Lemma 4.1.

Theorem 4.2. Suppose that the conditions (C1) − (C6) hold. If system (1) admits a period-doubling cascade, then
system (2) replicates the period-doubling cascade of (1).

The result of Theorem 4.2 is also valid in the case that the generator system is an autonomous one with
the counterpart of condition (C1) and the periods of its periodic solutions appearing in the cascade and the
number T satisfying (3) are commensurable.

A corollary of Theorem 4.2 is as follows.

Corollary 4.3. Suppose that the conditions (C1) − (C6) hold. If system (1) admits a period-doubling cascade, then
the same is true for the coupled system (1)-(2).

It is worth noting that the coupled system (1)-(2) possesses exactly the same sequence of period-doubling
bifurcation values with the generator system (1) under the conditions of Theorem 4.2. For that reason the
Feigenbaum universality [44] holds also for the coupled system (1)-(2) provided that it is valid for (1).
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5. Examples

Two illustrative examples that support the theoretical results are provided in this section. The replication
of sensitivity is discussed in the first example, and the second one is concerned with replication of period-
doubling route to chaos.

5.1. Example 1
Let us consider the Lorenz system [17, 47]

x′1(t) = −10x1(t) + 10x2(t)
x′2(t) = −x1(t)x3(t) + 28x1(t) − x2(t) (18)

x′3(t) = x1(t)x2(t) −
8
3

x3(t).

It was demonstrated by Tucker [48] that system (18) admits a chaotic attractor.
In this example, we use the Lorenz system (18) as the generator, and as the replicator we take into

account the system

y′1(t) = −4.5y1(t) + 0.3 tanh(y2(t − 0.25)) + 1.7x1(t)
y′2(t) = −2.8y2(t) + 0.4 sin(y1(t − 0.25)) − 1.5x2(t) (19)
y′3(t) = −3.6y3(t) + 0.8x3(t) + 0.1 cos t,

where (x1(t), x2(t), x3(t)) is a solution of system (18).
System (19) is in the form of (2) with

A = diag(−4.5,−2.8,−3.6),

G(t, x1, x2, x3, y1, y2, y3) = (0.3 tanh y2 + 1.7x1, 0.4 sin y1 − 1.5x2, 0.8x3 + 0.1 cos t),

and τ = 0.25.
The conditions of Theorem 3.3 are satisfied for the coupled system (18)-(19) with K = 1,ω = 2.8, L1 = 0.8,

L2 = 1.7, L3 = 0.4, and accordingly, system (19) replicates the sensitivity of the Lorenz system (18).
In order to illustrate the replication of sensitivity, we depict in Figure 1 the trajectories of two initially

nearby solutions of system (19) in which initially nearby solutions of (18) that eventually diverge are
utilized. Let us consider the constant functions u1(t) = −1.06, u2(t) = 3.28, u3(t) = 4.36, v1(t) = −1.04,
v2(t) = 3.26, and v3(t) = 4.37. Using the solution (x1(t), x2(t), x3(t)) of (18) with x1(0) = 7.93, x2(0) = 2.41,
x3(0) = 33.05 in (19), we obtain the trajectory shown in blue corresponding to the initial data y1(t) = u1(t),
y2(t) = u2(t), y3(t) = u3(t), t ∈ [−0.25, 0]. On the other hand, the trajectory in red represents the solution of (19)
corresponding to y1(t) = v1(t), y2(t) = v2(t), y3(t) = v3(t), t ∈ [−0.25, 0], when the solution (x1(t), x2(t), x3(t)) of
(18) with x1(0) = 7.97, x2(0) = 2.36, x3(0) = 33.09 is utilized in (19). The time interval [0, 3.18] is used in the
simulation. Figure 1 confirms the result of Theorem 3.3 such that the trajectories in blue and red eventually
diverge even if they are nearby on the interval [−0.25, 0].
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Figure 1: Replication of sensitivity by system (19). The figure supports the result of Theorem 3.3 such that two trajectories of the
replicator system (19) which are nearby on the interval [−0.25, 0] eventually diverge.

Next, to demonstrate the chaotic behavior of system (19), using the solution (x1(t), x2(t), x3(t)) of (18)
with x1(0) = 7.93, x2(0) = 2.41, x3(0) = 33.05 one more time, we represent in Figure 2 the time series of the
y1-coordinate of (19) corresponding to the initial data y1(t) = u1(t), y2(t) = u2(t), y3(t) = u3(t) for t ∈ [−0.25, 0].
The irregularity seen in Figure 2 manifests the replication of chaos.
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Figure 2: Time series of the y1-coordinate of the coupled system (18)-(19). The figure reveals the chaotic behavior in the dynamics of
the replicator system (19).

5.2. Example 2

Let us take into account the Duffing equation

x′′(t) + 0.3x′(t) + x3(t) = µ cos t, (20)

where µ is a parameter. It was shown by Sato et al. [41] that equation (20) displays period-doubling
bifurcations and leads to chaos at µ = µ∞ ≡ 40.

Using the new variables x1(t) = x(t) and x2(t) = x′(t), equation (20) can be rewritten as the system

x′1(t) = x2(t)

x′2(t) = −0.3x2(t) − x3
1(t) + µ cos t. (21)
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One can confirm that the chaotic attractor of system (21) with µ = µ∞ takes place inside the compact
region

Λ =
{
(x1, x2) ∈ R2 : |x1| ≤ 5.5, |x2| ≤ 14

}
.

Next, we consider the system with delay

y′1(t) = −2y1(t) + y2(t) + 1.3x1(t) − 0.06x2
1(t) + 0.1 sin t

y′2(t) = −0.5y1(t) − 3y2(t) + 0.14 arctan(y1(t − 0.15)) + 0.9x2(t), (22)

where (x1(t), x2(t)) is a solution of system (21). The system (21)-(22) is a unidirectionally coupled one in
which (21) is the generator and (22) is the replicator.

Systems (21) and (22) are respectively in the forms of (1) and (2), where

F(t, x1, x2) =
(
x2,−0.3x2 − x3

1 + µ cos t
)
, A =

(
−2 1
−0.5 −3

)
,

G(t, x1, x2, y1, y2) =
(
1.3x1 − 0.06x2

1 + 0.1 sin t, 0.14 arctan y1 + 0.9x2

)
,

and τ = 0.15. The eigenvalues of the matrix A are −
5
2

+
1
2

i and −
5
2
−

1
2

i. Let us denote

P =

(
0 1

0.5 −0.5

)
.

Using the equation

eAt = e−5t/2P

cos
(

t
2

)
− sin

(
t
2

)
sin

(
t
2

)
cos

(
t
2

)  P−1,

it can be verified that
∥∥∥eAt

∥∥∥ ≤ Ke−ωt for all t ≥ 0, where K = ‖P‖
∥∥∥P−1

∥∥∥ ≈ 2.618034 and ω = 2.5.
The conditions (C1)−(C6) are valid for systems (21) and (22) with LF = 90.76, L1 = 0.452549, L2 = 2.156757,

L3 = 0.14, and MG = 15.701095. According to our theoretical results, system (22) replicates the period-
doubling cascade of system (21), and the coupled system (21)-(22) is chaotic at the parameter value µ = µ∞.

Figure 3 depicts the projections of periodic and irregular orbits of the coupled system (21)-(22) on the
y1 − y2 plane. The projections of period-1, period-2, and period-3 orbits are shown in Figure 3, (a), (b),
and (c), respectively. The values 31.7, 34.3, and 36.1 of the parameter µ are respectively used in Figure 3,
(a), (b), and (c). Figure 3, (d), on the other hand, represents the projection of the irregular orbit for µ = 40
corresponding to the initial data x1(t) = u1(t), x2(t) = u2(t), y1(t) = u3(t), y2(t) = u4(t) for −0.15 ≤ t ≤ 0, where
u1(t) = 1.26, u2(t) = −2.21, u3(t) = 1.36, and u4(t) = −1.29 are constant functions. The time series of the
y2-coordinate of the solution of the coupled system (21)-(22) corresponding to the same initial data and the
same value of µ that are utilized in Figure 3, (d) is shown in Figure 4. Figures 3 and 4 manifest that system
(22) replicates the period-doubling cascade of (21).

6. Conclusions

This paper is devoted to replication of chaos for unidirectionally coupled systems in which the replicator
is a system with delay. It is rigorously proved that the replicator exhibits dynamics similar to the one of
the generator system, which is the source of chaotic motions. The results are based on the replication of
sensitivity and the existence of infinitely many unstable periodic solutions in a compact region. Due to the
presence of delay, a novel definition as well as a more complicated proof for the replication of sensitivity are
provided compared to the paper [35]. Using the technique presented in this paper it is possible to obtain
high dimensional systems with delay which possess chaotic motions. The obtained theoretical results may
be applied to various fields such as neural networks, secure communication, robotics, economics, and lasers
in which dynamics are described through differential equations with delay [5]-[9].



M. O. Fen, F. Tokmak Fen / Filomat 36:2 (2022), 599–613 612

Figure 3: Projections of periodic and irregular orbits of the coupled system (21)-(22) on the y1 − y2 plane. (a) Period-1 orbit. (b)
Period-2 orbit. (c) Period-4 orbit. (d) Irregular orbit. The values 31.7, 34.3, 36.1, and 40 of the parameter µ are respectively used in (a),
(b), (c), and (d). The figure reveals the replication of period-doubling route to chaos.
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Figure 4: Irregular behavior in the dynamics of the replicator system (22). The figure shows the time series of the y2-coordinate of
the coupled system (21)-(22) with µ = 40 corresponding to the initial data x1(t) = u1(t), x2(t) = u2(t), y1(t) = u3(t), y2(t) = u4(t) for
−0.15 ≤ t ≤ 0, where u1(t) = 1.26, u2(t) = −2.21, u3(t) = 1.36, and u4(t) = −1.29.
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