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Abstract. Homogeneous and non-homogeneous Lizorkin-Triebel spaces with generalized smoothness
Ḟλ(.)

pq (Rn) and Fλ(.)
pq (Rn) have been considered. In particular, under some assumptions of the function λ(t) :

R+
→ R+, λ(1) = 1 determining the generalized smoothness properties, the discretization procedure is

realized and the relationship is established between these spaces on Rn and their discrete analogues.

1. Introduction

In this paper, homogeneous and non-homogeneous Lizorkin-Triebel spaces with generalized smooth-
ness Ḟλ(.)

pq (Rn) and Fλ(.)
pq (Rn) are discussed. Under some assumptions of the function λ(t) : R+

→ R+, λ(1) = 1
determining the generalized smoothness properties, the discretization procedure is realized and the rela-
tionship is established between these spaces on Rn and their discrete analogues. In modern mathematical
analysis, the function spaces play the key role. The most important among these spaces is the class of spaces
containing smooth functions (in general functions with non entire order). One can cite the widely used
spaces that are Nikoliski-Bezov [βαpq] and Lizorkin- Triebel [Fαpq] spaces (Frazier and Jawerth 1988, Frazier et
al.1991, Mutarutinya 1996, Mutarutinya 1999). The authors Farkas and Leopold 2006, studied the function
spaces of generalized smoothness of Besov and Triebel– Lizorkin type.They established the equivalent
quasi-norms in terms of maximal functions. A more recent study by Ullrich 2012 investigates the con-
tinuous Characterizations of Besov-Lizorkin-Triebel Spaces whereby characterizations for homogeneous
and inhomogeneous Besov-Lizorkin-Triebel spaces in terms of continuous local means for the full range of
parameters are established. A paper by Moura et al.2014 considers the Spaces of generalized smoothness
in the critical case: Optimal embeddings, continuity envelopes and approximation numbers. In this paper,
the necessary and sufficient conditions for embeddings of Besov spaces of generalized smoothness Bσ,Np,q (Rn)

into generalized Holder spaces ∧µ(.)
∞,r(Rn) are established and the analogous results for the Triebel–Lizorkin

spaces of generalized smoothness Fσ,Np,q (Rn) are given. In this study, we consider the Lizorkin-Triebel spaces
of differential functions with generalized smoothness on Rn. The topicality of this study of functions with
generalized smoothness is most found in applications of inclusion and approximation theories. The impor-
tance of using this generalization is the transit from the real number parameters to generalized parameters,
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functions or sequences with minimum limitations on them. We start by giving notations of basic concepts
and background tools, then proceed with defining homogeneous and non-homogeneous Lizorkin-Triebel
spaces denoted by Ḟλ(.)

pq (Rn) and Fλ(.)
pq (Rn) respectively. Next, we deal with discretization of norms in ho-

mogeneous Lizorkin-Triebel spaces using so called ϕ-transform. Finally, the relationship between these
spaces and their discrete analogues generalizing the known Frazier-Jawerth results is established (Frazier
et al.1991, Bownik 2000).

1.1. Notations and some background tools

As usual, the notations Z ,R and C will denote the set of integers, real numbers and complex numbers
respectively. Consider the function ϕ : (Rn)→ C. Let

t > 0, ϕ(t)(x) = t−nϕ(t−1x) (1)

Choosing ϕ ∈ S(Rn) such that

sup Fϕ ⊂
{
ξ :

1
2
≤ |ξ| ≤ 2

}
(2)

and ∣∣∣∣∣Fϕ(ξ)
∣∣∣∣∣ ≥ C0 > 0,

3
5
|ξ| <

5
3
, (3)

then ∀ f ∈ S′ and ∀t > 0, we can define the convolution(
ϕ(t) ∗ f

)
(x)

de f
= (2π)−

n
2

(
f|y|, ϕt(x − y)

)
.

From the theory of generalized functions, it is known that(
ϕ(t) ∗ f

)
∈ C∞(Rn) ∩ S

′

(Rn).

In addition, the formula

F
(
ϕ(t) ∗ f

)
(x) = (Fϕ(t))(ξ)(F f )(ξ)

or

(ϕ(t) ∗ f )(x) = F−1
[
(Fϕ(t))(ξ)(F f (ξ))

]
(x)

holds. Hence, we see that

sup F(ϕ(t) ∗ f ) ⊆ sup Fϕ(t) ⊆

{
ξ :

t−1

2
≤ |ξ| ≤ 2t−1

}
(4)

In addition, if t > 0, then

|ϕ(t)|L1(Rn) = t−n
∫
Rn
|ϕ(t−1x)|dx,

=

∫
Rn
|ϕ(y)|dy,

= c < ∞
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This norm does not depend on t, Consequently, from generalized Minkowiski inequality if 1 ≤ p ≤ ∞, then
∀1 ∈ Lp,

‖ϕ(t) ∗ 1‖Lp ≤ ‖ϕ(t)‖L1‖1‖LP (5)

= c‖1‖LP

where c = ‖ϕ‖L1 and does not depend on t and on the function 1.

Now, Let’s consider the function λ defining the generalized smoothness:

λ : Rn
−→ R+;λ(1) = 1;

0 < λ0 6
λ(τ)
λ(t)

< Λ0 < ∞,∀t > 0, τ ∈ [t, 2t] (6)

Thus, for example if ∃α, β ∈ R : λ(t)
tα ↑ (increases)λ(t)

tβ ↓ (decreases); then, ∀t > 0, τ ∈ [t, 2t], we have

λ(τ)
λ(t)

=
λ(τ)

tα
·

tα

λ(t)

≥
λ(t)
tα
·

tα

λ(t)
·

(
τ
t

)α
=

(
τ
t

)α
≥ min{1; 2α}

If α ≥ 0, then λ(τ)
λ(t) ≤ 1 (here Λ0 = 1 ); while if α < 0, then ( τt )α ≥ λ(τ)

λ(t) = 2α > 0 (here Λ0 = 2α). So, if λ(t)
tα ↑, then

λ(τ)
λ(t) ≥ Λ0 > 0,∀τ ∈ [t, 2t]. Analogically, ∀τ ∈ [t, 2t] we have

λ(τ)
λ(t)

=
λ(τ)

tβ
·

tβ

λ(t)

≥
λ(t)
tβ
·

tβ

λ(t)
·

(
τ
t

)α
=

(
τ
t

)β
≤ max{1; 2β}

If β ≥ 0, then λ(τ)
λ(t) ≤ 1 (here Λ0 = 1 ); while if β < 0, then λ(τ)

λ(t) < 2β (here Λ0 = 2β). Hence, if λ(t)
tβ ↓, then

λ(τ)
λ(t) ≥ Λ0 < ∞,∀τ ∈ [t, 2t].

1.2. Generalized Lizorkin-Triebel spaces
For ν ∈ Z, ϕ : Rn

→ C ⊂ S, we have ϕν(x) = ϕ(2−ν)(x) = 2νnϕ(2νx), and we suppose the system
{Φ, ϕν, ν ≥ 1} forms the Fourier expansion of 1, that is,

Fφ(ξ) +

∞∑
ν=1

Fϕν(ξ) ≡ 1,∀ξ ∈ Rn.

Definition 1.1. Let 1 ≤ p < ∞ and 0 ≤ q < ∞. Then,

Ḟλ(·)
pq (Rn) =

{
f ∈ S

′

: ‖ f ‖Ḟλ(·)
pq

=

∥∥∥∥∥{∑
ν∈Z

[
λ(2v)|ϕν ∗ f |

]q} 1
q
∥∥∥∥∥

Lp

< ∞
}

(7)

is the homogeneous generalized Lizorkin-Triebel space. Note that if λ(t) = tα, α > 0, then Ḟλ(·)
pq (Rn) = Ḟtα

pq(Rn) which
is a usual Lizorkin-Triebel space (Frazier et al. 1991, Mutarutinya 1999). The condition such that Ḟλ(·)

pq (Rn) = 0
means that f ∈ P, the class of all polynomials.
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Definition 1.2. Let 1 ≤ p < ∞ and 0 ≤ q < ∞. The space

Fλ(·)
pq (Rn) =

{
f ∈ S

′

: ‖ f ‖Fλ(·)
pq

=

∥∥∥∥∥{∣∣∣∣∣Φ ∗ f
∣∣∣∣∣q +

∑
ν≥1

[
λ(2ν)|ϕν ∗ f |

]q} 1
q
∥∥∥∥∥

Lp

< ∞
}

(8)

is called the non-homogeneous generalized Lizorkin-Triebel space, where Φ ∈ S(Rn) and

sup Fϕ ⊂ {ξ : ‖ξ‖≤ 2},
∣∣∣∣∣FΦ(ξ)

∣∣∣∣∣ ≥ 0, for |ξ| <
5
3
. (9)

For non-homogeneous space

‖ f ‖Fλ(·)
pq

= 0⇔ f = 0 (in S
′

)

and we have to note that

‖ f ‖Fλ(·)
pq
≈ ‖Φ ∗ f ‖Lp +

∥∥∥∥∥{∑
ν≥1

[
λ(2ν)|ϕν ∗ f |

]q}∥∥∥∥∥
Lp

}
(10)

Likewise in the case of homogeneous spaces, ifλ(t) = tα then Fλ(·)
pq (Rn) = Fαpq(Rn) is a usual non-homogeneous

Lizorkin-Triebel space.

1.3. Relationship between homogeneous and non-homogeneous Lizorkin-Triebel spaces
The following theorem gives the relationship between homogeneous and non-homogeneous Lizorkin-

Triebel spaces.

Theorem 1.3. Let 1 ≤ p < ∞ and 0 ≤ q ≤ ∞, λ(·) ↑ satisfy the condition λ(2t) ≥ λ0λ(t),∀t > 0, where λ0 > 1, then

f ∈ Fλ(·)
pq (Rn)⇔ { f ∈ Lp} ∩

{
f ∈ Ḟλ(·)

pq (Rn)
}

and

‖ f ‖Fλ(·)
pq
≈‖φ‖L1 + ‖ f ‖Ḟλ(·)

pq

Note thatλ(t) = tα lnγ(2+t), α > 0, γ ∈ R satisfies the condition of this theorem, whileλ(t) = tα lnγ(2+t),∀α ∈
R doesn’t.

2. Main Results

Our first result is about the discretization of the norm in Lizorkin-Triebel space using ϕ− transform.
Let the functions ϕ and ψ satisfy the conditions (1) − (3) and such that

∑
ν∈Z

Fϕ(2νξ)Fψ(2νξ) = 1,∀ξ , 0 (11)

As above, Let

ϕν(x) = 2νn(2νx), ψν(x) = 2νnψ(2νx), ν ∈ Z (12)

We introduce the dyadic cubes: ∀ν ∈ Z,K ∈ Zn, we define

Q ≡ Qνk =
{
(x1, x2, ..., xn) ∈ Rn : 2−νk j ≤ x j ≤ 2−ν(k j + 1), j = 1, 2, ...,n

}
(13)
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The point 2−νk = xQ is the left lower vertex of cube Qνk and `(Q) = 2−ν is the side of length of the cube. Next,
suppose for the cube

Q : |Q| = `(Q)n = 2−nν (the volume of cube)

we define

ϕQ(x) = |Q|−
1
2ϕ(2νx − k)

= |Q|−
1
2ϕν(x − xQ) (14)

Similarly, we define for π

ψQ(x) = |Q|−
1
2ψ(2νx − k)

= |Q|−
1
2ψν(x − xQ)

For the ϕ− transform and its inverse transform we proceed as follows:
Let’s introduce the operators: Sϕ (ϕ − transform) and Sψ (inverse ψ − transform). Note that the function
ϕ̃ = ϕ(−x) also satisfies the conditions (2) and (3). For the dyadic cube Q = Qνk, f ∈ S′ (Rn)/P (the space of
tempered distributions modulo polynomials). We have(

Sϕ f
)

Q
≡ 〈 f , ϕQ〉 ≡ 2−

νn
2

(
ϕ̃ν ∗ f

)
(xQ) = 2−

νn
2

(
ϕ̃ν ∗ f

)
(2−νk), (15)

knowing that

(ϕ̃ν ∗ f )(x) ∈ C∞(Rn) ∩ S
′

(Rn) see (1)

Thus, the value of the function at xQ = 2−νk is defined. Finally, applying the operator SQ to the function

f ∈ S′ (Rn)/P, we obtain the collection of numbers Sϕ f =
{
(Sϕ f )Q

}
Q

satisfying the dyadic cubes Q. Now, let

S = {SQ}Q be a given collection of numbers satisfying all dyadic cubes Q. Then, the operator Tψ is defined
by

(Tψ)(S)(x) =
∑

Q

SQψQ(x), (16)

where the sum is taken over all dyadic cubes Q, i.e.,

S = {Sν,k}ν∈Z, k ∈ Zn

and

(TψS)(x) =
∑

Q

SQΨQ(x)

=
∑
ν∈Z

2−
νn
2

∑
ν∈Z

Sν,kΨν(x − 2−νk). (17)

Finally, we define the discrete analogous space of Ḟλ(·)
pq (Rn), for S = {SQ}Q and denote it by

‖S‖ ˙f λ(·)
pq

=

∥∥∥∥∥{∑
Q

[
λ(2ν)|SQ|χ̄Q(x)

]q} 1
q
∥∥∥∥∥

Lp(Rn)
(18)

where χ̄Q(x) = |Q|−
1
2χQ(x) is the normed characteristic function of dyadic cube in L2 and ˙f λ(·)

pq (Rn) is the set
of all sequences S = {SQ}Q, such that ‖S‖ ˙f λ(·)

pq
< ∞..

This leads us to our next result.
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Theorem 2.1. (Discrete analogous of homogeneous Lizorkin-Triebel space Ḟλ(·)
pq (Rn)).

Let 1 ≤ p < ∞ and 1 < q ≤ ∞; each of the functions ϕ and ψ satisfy the conditions (1) - (3) and in addition, ϕ and ψ
satisfy the relation (11). Moreover, if the function λ(·) > 0 is such that

λ(t) ≈ λ(τ) for τ ∈ [t, 2t] and t > 0,

then, under the assigned conditions on p, q, ϕ and ψ, the operators

Sϕ : Ḟλ(·)
pq −→

˙f λ(·)
pq

and

Tψ : ˙f λ(·)
pq −→ Ḟλ(·)

pq

are bounded. Furthermore,

Tψ o Sϕ = id : Ḟλ(·)
pq −→ Ḟλ(·)

pq .

In particular,

‖ f ‖Ḟλ(·)
pq (Rn)≈ ‖Sϕ f ‖Ḟλ(·)

pq (Rn) (19)

and Ḟλ(·)
pq (Rn) can be identified with complement space in Ḟλ(·)

pq (Rn).

Remark 2.2. The operator Sϕ identifies Ḟλ(·)
pq (Rn) with space Sϕ

(
Ḟλ(·)

pq

)
⊂ ˙f λ(·)

pq and thus the operator

Pr = Sϕ o Tψ : ˙f λ(·)
pq −→ Sϕ

(
Ḟλ(·)

pq

)
is the projector in ˙f λ(·)

pq .

Indeed,

P2
r = (Sϕ o Tψ)(Sϕ o Tψ)

= Sϕ o (Sϕ o Tψ) o Tψ
= Sϕ o Id o Tψ
= Sϕ o Tψ
= Pr

Thus, there exists a bounded projection Pr such that

‖Pr‖≤ ‖Sϕ‖·‖Tψ‖

To prove Theorem 2.1, we need two lemmas. First of all, let us introduce the following notations.
Let S = {SQ}Q be a family / set of numbers corresponding to dyadic cubes Q, `(Q) the side’s length of

Q, xQ = 2−νk the left lower angle of the cube Q = Qν,k,0 < ν ≤ ∞, δ > 0 fixed, S∗Q =
{
(S∗r)Q

}
Q

where

(S∗r)Q =
{ ∑

p:`(p)=`(Q)

|Sp|
r

1 + `(Q)−1|xp − xq|
δ

} 1
r

(20)

It is clear that

(S∗ϕ)Q ≥ |SQ|

The sum from the right hand side in the relation (20) is greater than one term where P = Q.
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Lemma 2.3. Let 1 < p < ∞, 0 < q < ∞, δ > n, and the function λ(·) > 0 . Then

r = min{p, q} · ‖S‖ ˙f λ(·)
pq

≈ |S∗r| ˙f λ(·)
pq

Furthermore, for f ∈ S′/P and Q = Qν,k(i.e.`(Q) = 2−ν, |Q| = 2−νn). By letting

sup( f ) =
{
sup

Q
( f )

}
Q

we see that sup( f ) is a sequence of the form

sup
Q

( f ) = |Q|
1
2 sup

y∈Q

∣∣∣∣∣(ϕ̃ν ∗ f )(y)
∣∣∣∣∣ (21)

Lemma 2.4. Let 1 < p < ∞, 0 < q < ∞, δ > n, and the function λ(·) > 0 satisfy the condition

λ(τ) w λ(t),∀t > 0, τ ∈ [t, 2t].

Then,

‖ f ‖Ḟλ(·)
pq
≈‖ sup( f )‖ ˙f λ(·)

pq

First, let us prove the theorem basing on Lemma 2.3 and Lemma 2.4 and thereafter, we will prove the lemmas.

Proof of theorem 2.3

1. For the dyadic cube Q = Qν,k, we have

|Q|
1
2 = 2−

νn
2 ,

|(Sϕ f )Q|
(15)
= 2−

νn
2

∣∣∣∣∣(ϕ̃ψ ∗ f )(2−νk)
∣∣∣∣∣

≤ 2−
νn
2 sup

y∈Q

∣∣∣∣∣(ϕ̃ψ ∗ f )(y)
∣∣∣∣∣

(21)
= sup

Q
( f ).

So,

‖Sϕ f ‖Fλ(·)
pq

(15)
=

∥∥∥∥∥[∑
Q

|λ(2ν)|(Sϕ f )Q|χ̃Q(x)|q
] 1

q
∥∥∥∥∥

Lp

≤

∥∥∥∥∥[∑
Q

|λ(2ν)| sup
Q
|( f )χ̃Q(x)|q

] 1
q
∥∥∥∥∥

Lp(Rn)

=

∥∥∥∥∥ sup
Q

( f )
∥∥∥∥∥

f λ(·)
pq

Lemma 2.4
= c1‖ f ‖ f λ(·)

pq
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Thus,

Sϕ : Ḟλ(·)
pq −→

˙f λ(·)
pq

is a bounded operator.

2. Now, let us prove the boundness of the operator:

Tϕ : ˙f λ(·)
pq −→ Ḟλ(·)

pq

Let S = {SK}k, K be a dyadic cube, f = TψS given by the formulas (16) and (17), i.e. f =
∑

k Skψk. Then, we
have

(ϕ̃ν ∗ f ) = ϕ̃µ ∗
(∑

k

Skψk

)
=

ν+1∑
µ=ν−1

[ ∑
k:k(`)=2−µ

Sk(ϕ̃ν ∗ ψk)
]

(22)

The relation (22) means that if K = Qν,k, then

sup Fψk ⊂ {ζ ∈ R
n : 2µ−1

≤ |ζ| ≤ 2µ+1
}

(see (11) − (14) for t = 2−ν). Then,

sup Fϕ ⊂
{
ζ ∈ Rn : 2ν−1

≤ |ζ| ≤ 2ν+1
}

follows for

ϕ̃ν ∗ ψk = F−1[Fϕν · Fψk].

We have, for µ < ν − 1 and for µ > ν + 1, that

ϕ̃ν ∗ ψk = 0.

So why from this sum
∑

k in (22) remains only sum for K = Qµ,i, where ν − 1 < µ < ν + 1 so that
∑

i∈Zn for
fixed µ exists

∑
k:l(k)=2−ν .

3. Next, Let us prove that for Q = Qν,k and r = min{p, q}, we have

|(ϕ̃ν ∗ f )|(x) ≤ c1|Q|−
1
2

[
(S∗r)Q∗ + (S∗r)Q∗∗

]
, (23)

where,

x ∈ Q∗,Q∗ ⊂ Q ⊂ Q∗∗ and `(Q∗) = 2−(ν+1)`(Q) = 2−(ν)`(Q∗∗) = 2−(ν−1),

such that

|Q∗| = 2−n
|Q|, |Q∗∗| = 2n

|Q|

For that the expression/assertion (23) is true ∀x ∈ Q and such that for this x we can identify Q∗ ⊂ Q, such
that x ∈ Q∗ From (23), we see that ∀x ∈ Rn and for Q = Qν,k such that x ∈ Qν,k,

|(ϕ̃ν ∗ f )| ≤ c2

[ ∑
Q∗⊂Q

|Q∗|−
1
2 (S∗r)Q∗ χ̃

∗

Q(x) + |Q|−
1
2 (S∗r)Qχ̃Q(x) + |Q∗∗|−

1
2 (S∗r)Q

∗∗χ̃∗Q(x)
]
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Consequently,

‖TψS
′

‖Ḟλ(·)
pq

= ‖ f ‖Ḟλ(·)
pq

=

∥∥∥∥∥{∑
ν∈Z

[
λ(2ν)(S∗r)Q∗ χ̃Q∗

]q} 1
q

+
{∑

Q

[
λ(2ν)(S∗r)Qχ̃Q

]q} 1
q

+
{∑

Q∗∗

[
λ(2ν)(S∗r)Q∗∗ χ̃Q∗∗

]q} 1
q

‖Lp

Using triangular inequality and considering that

λ(2ν) = λ(2ν+1)

λ(2ν) = λ(2ν−1)

= C4

∥∥∥∥∥{∑
Q∗

[
λ(2ν + 1)(S∗r)Q∗ χ̃Q∗

]q} 1
q
∥∥∥∥∥

Lp

+ C3

∥∥∥∥∥{∑
Q

[
λ(2ν)(S∗r)Qχ̃Q

]q} 1
q
∥∥∥∥∥

Lp

+

∥∥∥∥∥{∑
Q∗∗

[
λ(2ν − 1)(S∗r)Q∗∗ χ̃Q∗∗

]q} 1
q
∥∥∥∥∥

Lp

= C5

∥∥∥∥∥S∗r

∥∥∥∥∥
f λ(·)
pq

Now, applying lemma 2.3, we obtain that

‖TψS‖Ḟλ(·)
pq
≤ C6‖TψS‖ ˙f λ(·)

pq

and this proves the boundness of the operator

Tψ : ˙f λ(·)
pq −→ Ḟλ(·)

pq

Finally, the identity

Tψ` o S` = id

is proved by Frezier-Jawerth on S′/P (Bownik 2000). In addition, it is also verified for Ḟλ(·)
pq ⊂ S′/P. The

theorem is therefore proved (if lemmas 2.3 and 2.4 are verified).

Proof of lemma 2.3
This lemma is based on two results:

Lemma 2.5. (Feffermann-Stein). Let 1 < p < ∞, 0 < q < ∞, then∥∥∥∥∥( ∞∑
i=1

|M fi|q
) 1

q
∥∥∥∥∥

Lp

≤ Cp,q

∥∥∥∥∥( ∞∑
i=1

| fi|q
) 1

q
∥∥∥∥∥

Lp

where M is maximum operator Hardi-Littlewood, defined by

M f (x) = sup
Q3x

1
|Q|

∫
Q
| f (y)|dy

where the upper corner is taken for all cubes (not necessarily dyadic cubes) containing points x and having
side ‖−`‖ to axes of coordinates.

Lemma 2.6. ( Frazier-Jawerth). Let 1 < a ≤ r ≤ ∞, δ > nr
a . Let us fixe µ, ν ∈ Z, µ ≤ ν, for any dyadic cube Q

with `(Q) = 2−ν and ∀x ∈ Q. then{ ∑
p:`(p)=2−1

|Sp|
r

1 + `(p)−1|xp − xq|
δ

} 1
r

≤ C
[
M

( ∑
`(p)=2−p

|Sp|
aχp

)
(x)

] 1
a
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where C depends on n and δ − nr
a .

Let us now start to prove Lemma 2.3.

Proof of lemma 2.3.
Let us put r = min{p, q}, ε = −1 + δ

n > 0. If a = r
1+ ε

2
=⇒ 0 < a < r, δ > nr

a
and according to Frazier-Jawerth lemma (and µ = ν), we have that{ ∑

Q:d(Q)=2−ν

[
(Sr)

(`)
Q χ̃(x)

]q} 1
q by de f inition (S∗ν)Q

≤ 2ν
n
2

[ ∑
p:d(p)=2−ν

|Sp|
r

1 + `(p)−1|xp − xQ|

] q
r

≤ ((11)∀x ∈ R, except one term with Q : Q 3 x , 0)
≤ (by Frazier − Jawerth lemma)

≤ C2ν
n
2

[
M

( ∑
`(p)=2−ν

|Sp|
qχp

)
(x)

] q
a

= C
[
M

( ∑
`(p)=2−ν

|Sp|
qχ̃p

)a] q
a

The last inequality comes from the case that the sum p : `(p) = 2−ν for any x only one term is not zero such
that

2ν
n
2

( ∑
`(p)=2−ν

|Sp|χp(x)
)a

= 2ν
n
2

∑
`(p)=2−ν

|Sp|
aχp(x)

Consider that

2ν
n
2 χp(x) = χ̃p, f or `(p) = 2−ν

So, ∥∥∥∥∥S∗p

∥∥∥∥∥ ˙f λ(·)
pq

=

∥∥∥∥∥{∑
ν∈Z

[X(2ν)]q
∑

Q:`(Q)2−ν

[
(S∗p)Qχ̃Q

]q} 1
q
∥∥∥∥∥

Lp

≤ c
∥∥∥∥∥{∑
ν∈Z

[
M

( ∑
p:`(p)=2−ν

|Sp|χ̃p

)a] q
a
} 1

q
∥∥∥∥∥

Lp

= c
∥∥∥∥∥{∑
ν∈Z

[
M

( ∑
p:`(p)=2−ν

λ(2ν)[|Sp|χ̃p]
)a] q

a
} 1

q
∥∥∥∥∥

Lp

Noting

fν =
∑

p:d(p)=2−ν
[λ(2ν)|Sp|χ̃p]a. (24)

Then,∥∥∥∥∥S∗p

∥∥∥∥∥ ˙f λ(·)
pq

≤ c
∥∥∥∥∥{∑
ν∈Z

[
M fν

] q
a
} a

q
∥∥∥∥∥

Lp

= c
∥∥∥∥∥{∑
ν∈Z

[
M fν

] q
a
} a

q
∥∥∥∥∥

Lp
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Applying theorem Feffermann-Stein ( q/a > 1 replaces q and p/a replaces p), then∥∥∥∥∥S∗p

∥∥∥∥∥ ˙f λ(·)
pq

≤ c1

∥∥∥∥∥{∑
ν∈Z

[
fν
] q

a
} a

q
∥∥∥∥∥

Lp

= c1

∥∥∥∥∥{∑
ν∈Z

[
fν
] q

a
} 1

q
∥∥∥∥∥

Lp

f rom (24)
= c1

∥∥∥∥∥{∑
y∈Z

( ∑
p:d(p)=2−ν

[λ(2ν)|Sp|χ̃p]
)q} 1

q
∥∥∥∥∥

Lp

= c1

∥∥∥∥∥S
∥∥∥∥∥ ˙f λ(·)

pq

In summary, we get that∥∥∥∥∥S∗r

∥∥∥∥∥ ˙f λ(·)
pq

≤ c1

∥∥∥∥∥S
∥∥∥∥∥ ˙f λ(·)

pq

The inverse inequality is clear and automatic because (S∗r) ≥ |SQ| for all dyadic cubes Q. Thus, Lemma 2.3
is proven.

Proof of Lemma 2.4.
This proof is based on two supplementary lemmas.

Lemma 2.7. Let f ∈ S′ , sup F f (ξ) ⊂ {ξ : |ξ| ≤ 2}. Let also γ ∈ Z, γ ≥ 0. For dyadic cube let put a = {aQ}Q, b =
{bQ}Q, where

aQ = sup
y∈Q

[ f (y)], bQ = max{inf
y∈Q
| f (y)| : Q̄ ⊂ Q, `(Q̄) = 2−γ`(Q)}

Let 0 < r < ∞ : `(Q) = 1 and γ sufficient close. Then,

(a∗r)Q ' (b∗r)Q

with constant which does not depend on f and Q (Bownik 2000). Let us denote for f ∈ S′/P and dyadic
cube Q,

inf
Q3γ

= |Q|
1
2

max
{

inf
y∈Q
|(ϕ̃ν ∗ f )(y)| : Q̃ ⊆ Q`(Q̃) = 2−γ`(Q)

}
Then, let’s deduct the sequence of numbers:

inf
y∈Q

=
{

inf
y∈Q

( f )
}

Q

responding all cubes Q.

Lemma 2.8. For f ∈ S′/P, 0 < p < ∞, λ(t) > 0, λ(τ) ≈ λ(t), ∀t > 0, τ ∈ [t, 2t]. Then∥∥∥∥∥ inf
γ

( f )
∥∥∥∥∥ ˙f λ(·)

pq

≤ Cγ,n,p

∥∥∥∥∥ f
∥∥∥∥∥

Ḟλ(·)
pq

Proof. Let K be a dyadic cube, ` = {tk}k. Let define by formula

`k = |K|
1
2 inf

y∈K

∣∣∣∣∣ϕ̃µ−γ ∗ f
∣∣∣∣∣(y), f or `(k) = 2−µ (25)
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Then, for 0 < r < ∞, for dyadic cube Q, we have

inf
Q,γ

( f ) · χ̃Q(x) ≤ Cn,γ2
γa
r

∑
K⊆Q

(`∗r)χ̃K(x), (26)

where (26) means that

`(k) = 2−γ`(Q) (27)

(See definition (20), δ from (20), but for ` on the place S′ ). Let put r = min{p, q} and get∥∥∥∥∥ inf
γ

( f )
∥∥∥∥∥ ˙f λ(·)

pq

by de f
=

∥∥∥∥∥{∑
y∈Z

[λ(2ν)]q
∑

Q:`(Q)2−ν

[
inf
Q,γ

( f )χ̃Q(x)
]q} 1

q
∥∥∥∥∥

Lp

by (27)
= Cn,r2γδ/r

∥∥∥∥∥{∑
y∈Z

[λ(2ν)]q
∑
`(a)2−ν

[ ∑
K⊆Q:`(k)=2−γ−ν

`∗rK(∗)χ̃J(x)
]q} 1

q
∥∥∥∥∥

Lp

= ((∗) for x only one term is different from 0)

= Cn,r2γδ/r
∥∥∥∥∥{∑

y∈Z

[λ(2ν)]q
∑

`(k)2−γ−ν
(`∗r)

q
kχ̃

qk(x)
} 1

q
∥∥∥∥∥

Lp

= Cn,r2γδ/r
∥∥∥∥∥{∑
µ∈Z

[λ(2µ−γ)]q
∑
`(k)2−ν

(`∗r)
q
kχ̃

qk(x)
} 1

q
∥∥∥∥∥

Lp

(λ(2µ−γ)≈λ(2µ),∀µ∈Z)
≤ C̄

∥∥∥∥∥{∑
µ∈Z

[λ(2µ)]q
∑
`(k)2−µ

(t∗r)
q
kχ̃

qk(x)
} 1

q
∥∥∥∥∥

Lp

= C̄
∥∥∥∥∥t∗r

∥∥∥∥∥ ˙f λ(·)
pq

≤ (by lemma 2.3)

≤ C̄
∥∥∥∥∥t
∥∥∥∥∥ ˙f λ(·)

pq

So, ∥∥∥∥∥ inf
γ

( f )
∥∥∥∥∥ ˙f λ(·)

pq

≤ C̄
∥∥∥∥∥t
∥∥∥∥∥ ˙f λ(·)

pq

=

∥∥∥∥∥{∑
µ∈Z

[λ(2µ)]q
∣∣∣∣∣(ϕ̃µ−γ ∗ f )(x)

∣∣∣∣∣q} 1
q
∥∥∥∥∥

Lp

'

(
λ(2µ−γ)

)
' 2(2µ),∀µ ∈ Z

'

∥∥∥∥∥{∑
µ∈Z

[λ(2µ−γ)]q
∣∣∣∣∣(ϕ̃µ−γ ∗ f )(x)

∣∣∣∣∣q} 1
q
∥∥∥∥∥

Lp

µ−γ=ν
=

∥∥∥∥∥{∑
µ∈Z

[λ(2ν)]q
∣∣∣∣∣(ϕ̃ν ∗ f )(x)

∣∣∣∣∣q} 1
q
∥∥∥∥∥

Lp

'

∥∥∥∥∥ f
∥∥∥∥∥

Ḟλ(·)
pq
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Hence, Lemma 2.8 is proved. Now, let us prove Lemma 2.4.

Proof of Lemma 2.4

The inequality∥∥∥∥∥ f
∥∥∥∥∥

Ḟλ(·)
pq

≤

∥∥∥∥∥ sup( f )
∥∥∥∥∥ ˙f λ(·)

pq

follows immediately from definition. Let us prove the inverse inequality. Applying Lemma 2.3 to each
function (ϕ̃ ∗ f )(2νx), we have the inequality(

sup( f )∗r
)

Q
< C1

(
inf
γ

( f )∗r
)

Q
, f or r = min(p, q), `(Q) = 2−ν (28)

But then, we have∥∥∥∥∥ sup( f )
∥∥∥∥∥ ˙f λ(·)

pq

≤

∥∥∥∥∥ sup( f )∗r

∥∥∥∥∥ ˙f λ(·)
pq

by (28)
≤ C1

∥∥∥∥∥ inf( f )∗r

∥∥∥∥∥ ˙f λ(·)
pq

by Lemma 1
≈

∥∥∥∥∥ inf
γ

f (x)
∥∥∥∥∥ ˙f λ(·)

pq

By applying Lemma 2.8, we obtain∥∥∥∥∥ sup( f )
∥∥∥∥∥ ˙f λ(·)

pq

≤

∥∥∥∥∥ f
∥∥∥∥∥

Ḟλ(·)
pq

which proves lemma 2.4.

3. Conclusion

This paper has dealt with homogeneous and non-homogeneous Lizorkin-Triebel spaces with generalized
smoothness Ḟλ(.)

pq (Rn) and Fλ(.)
pq (Rn). In particular the Lizorkin-Triebel spaces of differential functions with

generalized smoothness on Rn have been considered. We have discussed the discretization of norms
in homogeneous Lizorkin-Triebel spaces and established the relationship between these spaces and their
discrete analogues by generalizing the known results of Frazier-Jawerth and Bownik(Frazier et al.1991,
Bownik 2000).
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