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Abstract. In this paper, we investigate a quasilinear Schrödinger problem under Dirichlet boundary condi-
tion in a regular domain with asymptotically linear nonlinearities. We use Cerami version of the mountain
pass theorem to prove the existence of solution without using the Ambrosetti-Rabionovitz condition or any
of its refinements. Then, we prove that the same techniques work when the nonlinearity is superlinear and
subcritical at infinity.

1. Introduction and main results

In this paper, we consider the following quasilinear elliptic problem{
−∆v + σ(x)v = h(x, v) in Ω

v = 0 on ∂Ω,
(1)

where Ω ⊂ RN, N > 2, is a regular bounded domain inRN and σ ∈ C(Ω) is a positive function. The equation
(1) arises in models of combustion [10, 11], describing the thermal explosions [10] and the nonlinear heat
generation [14]. Also, We find them in the description of the gravitational equilibrium of polytropic stars
[7, 12], in the study of electromagnetic radiation, seismology and acoustics.
The results of the study of the problem (1) differs according to the type of the nonlinearities h(x, t), the
diffusion source. In this paper, we are interested to study the case when the function h(x, t) is not necessarily
linear but asymptotically linear, that is

lim
t→+∞

h(x, t)
t

= α < ∞.

In the beginning Mironescu and Rădulescu, in [18], supposed that σ(x) ≡ 0 and h(x, t) depends only on t and
has the form h(x, t) = λ f (t) where λ is a positive parameter and f is a positive convex C1 function satisfying

lim
t→+∞

f (t)
t

= a < ∞,
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and they proved that there exists a critical valueλ∗ > 0 such that the problem has a positive solution ifλ < λ∗

and it does not have positive solutions if λ > λ∗. When λ = λ∗, the sign of the value l := limt→+∞( f (t) − at)
determines whether or not a branch of unstable positive solutions exists.
After that, in [2] with the same type of nonlinearities, Abid et al. consider the problem (1) when σ(x) = const.
and generalized the results of [18]. Also, with these type of nonlinearities many problems have been treated
and we can refer to [1–3, 6, 15–18, 21, 22] and the references therein.
For a more large class of asymptotically linear nonlinearities and for the case when h(x, t) depends on x and
t, we suppose that

(H1) h(x, t) is a nonnegative continuous function on Ω ×R and h(x, t) ≡ 0 for t ≤ 0 and x ∈ Ω.

(H2) lim
t→0

h(x, t)
t

= p(x), lim
t→+∞

h(x, t)
t

= α ∈ (0,∞) uniformly in a.e.x ∈ Ω, and ‖p(x)‖∞ < ν1, where ν1 > 0 is the

first eigenvalue of (−∆ + σ(x),H1
0(Ω)).

(H3) The function
h(x, t)

t
is nondecreasing with respect to t > 0, for a.e. x ∈ Ω.

This type of conditions was first introduced by Zhou in [27] in order to study equation (1) when σ(x) ≡ 0
and then they are used in [25, 26] for some elliptic problems.
In this paper, we consider the case when σ(x) is a positive continuous function and we prove the following
theorem.

Theorem 1.1. Assume (H1) and (H2) hold, then we have.
(i) If α < ν1 and (H3) holds, then the problem (1) does not have a positive solution.

(ii) If α > ν1, then the problem (1) has a positive solution.
(iii) If α = ν1 and (H3) holds, then (1) has a positive solution v ∈ H1

0(Ω) if and only if there exists a constant c0 > 0
such that v = c0φ1 and h(x, v) = ν1v a.e. in Ω, where φ1 is a positive eigenfunction associated to ν1.

For the proof of the existence of nontrivial solution, we use the variational method. We use a mountain pass
theorem and we prove the compactness condition without using the Ambrosetti-Rabionovitz condition
(AR) [4, 19]: There exists a constant µ > N and a constant T > 0 such that for all |t| ≥ T and x ∈ Ω,

0 < µ
∫ t

0
h(x, s)ds ≤ h(x, t)t.

Since the condition (AR) gives

lim
t→+∞

H(x, t)
t2 = +∞,

for

H(x, t) =

∫ t

0
h(x, s)ds (2)

and so lim
t→+∞

h(x, t)
t

= +∞. Therefore, we can not suppose and use such condition for the asymptotically

linear nonlinearities.
For other conditions imposed to solve the compactness problem, we can refer to [8, 9, 13, 20, 23, 24, 27] and
the references therein.

The techniques that we use in the proof of the Theorem 1.1 are still valid when the nonlinearities are
superlinear and subcritical. More precisely, we prove the following second result.

Theorem 1.2. Suppose that (H1), (H2) and (H3) hold and α = +∞.

If lim
t→+∞

h(x, t)
tr−1 = 0 uniformly in x ∈ Ω, for some real r with r ∈ (2, 2∗). Then the problem (1) has a positive solution,

where

2∗ =

{
2N

N−2 i f N > 2
+∞ i f N ≤ 2.
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Through this paper, the constants C,C1,C2, · · · , may change from line to another.

2. Preliminaries and variational setting

Let Ω be a bounded open domain in RN, N ≥ 2. For v ∈ Lp(Ω), 1 ≤ p < ∞, we denote

‖v‖p =
( ∫

Ω

|v|p dx
) 1

p

the well known Lebesgue norm in the space Lp(Ω). When v ∈ H1
0(Ω), we set

‖v‖ =
( ∫

Ω

|∇v|2 dx
) 1

2

the standard norm in H1
0(Ω) and we define

‖v‖σ =
( ∫

Ω

[|∇v|2 + σ(x)v2] dx
) 1

2 (3)

the norm coming from the inner product

〈u, v〉σ =

∫
Ω

[∇u.∇v + σ(x)uv]dx. (4)

In this paper, we consider the following definition of solutions (weak solutions) for the problem (1).

Definition 2.1. A function v ∈ H1
0(Ω) is called a solution of the problem (1) if∫

Ω

∇v∇φdx +

∫
Ω

σ(x)vφdx =

∫
Ω

h(x, v)φdx, (5)

for all φ ∈ H1
0(Ω).

Since the equation (1) has variational form, let I be the functional defined on H1
0(Ω) by

I(v) =
1
2

∫
Ω

[|∇v|2 + σ(x)v2]dx −
∫

Ω

H(x, v)dx (6)

where the function H(x, s) is given by (2).
To prove the existence of nonzero critical point of I, we use the following different version of the mountain
pass theorem introduced in [9].

Theorem 2.2. [9] Let X be a real Banach space and I ∈ C1(X,R) a functional satisfying

(i) There exist δ, τ > 0 such that ∀v ∈ ∂B(0, δ),I(v) ≥ τ.
(ii) There exists x1 ∈ X such that ‖x1‖ > δ and I(x1) < 0.

(iii) max{I(0),I(x1)} < τ.

Let c be the number characterized by
c := inf

γ∈Γ
max
t∈[0,1]
I(γ(t)),

where Γ := {γ ∈ C([0, 1],X); γ(0) = 0 and γ(1) = x1} the set of continuous paths joining 0 and x1 in X.
Then, c ≥ τ and there exists a sequence (vn) in X satisfying the Cerami conditions:

I(vn)→ c as n→ +∞ (7)

and

(1 + ‖vn‖)‖I′(vn)‖∗ → 0 as n→ +∞. (8)
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In the Theorem 1.1, we consider φ1 a normalised positive eigenfunction associated to ν1, the first eigenvalue
of the operator −∆ + σ(x) with Dirichlet boundary condition on the open domain Ω, that is

−∆φ1 + σ(x)φ1 = ν1φ1 in Ω
φ1 = 0 on ∂Ω∫

Ω
φ2

1dx = 1.
(9)

3. Proof of the Theorem 1.1

The proof of the Theorem 1.1 will be given in many steps. After introducing the EnergyI by the formula
(6), we have interest to use the norm ‖u‖σ given by (3). So, the first elementary result is the following.

Lemma 3.1. The space H1
0(Ω) endowed with the norm ‖v‖σ is a Hilbert space.

Proof. Recall that (H1
0(Ω), ‖.‖) is a Hilbert space. For v ∈ H1

0(Ω), we have

‖v‖ ≤ ‖v‖σ.

Since σ+ = supx∈Ω σ(x) > 0, by using the Poincaré inequality, the two norms are equivalent and so
(H1

0(Ω), ‖.‖σ) is a Banach space. From (3) and (4), the space (H1
0(Ω), ‖.‖σ) is a Hilbert space.

�
Next, we prove the first geometric property of the functional I.

Lemma 3.2. Suppose that (H1) and (H2) hold, then we have.

(i) There exist δ > 0 and τ > 0 such that ∀v ∈ ∂B(0, δ),I(v) ≥ τ.
(ii) When ν1 < α, I(tφ1)→ −∞ as t→ +∞.

Proof. (i) Let ε > 0, there exists C = C(ε) ≥ 0 such that for all t ≥ 0 and for all q ≥ 1, we have

h(x, t) ≤ (‖p(x)‖∞ + ε)t + C|t|q (10)

and then

H(x, t) ≤
1
2

(‖p(x)‖∞ + ε)t2 + C|t|q+1. (11)

Let 1 < q < 2∗ − 1, by Sobolev embedding theorem ‖v‖q+1
q+1 ≤ C1‖v‖

q+1
σ , for some positive constant C1. From

(3) and (6), we get

I(v) =
1
2
‖v‖2σ −

∫
Ω

H(x, v) dx. (12)

By (11), we get

I(v) ≥
1
2
‖v‖2σ −

1
2

(‖p(x)‖∞ + ε)‖v‖22 − C‖v‖q+1
q+1.

So,

I(v) ≥
1
2
‖v‖2σ −

1
2

(‖p(x)‖∞ + ε)‖v‖22 − C2‖v‖
q+1
σ

and then,

I(v) ≥
1
2

(1 −
‖p(x)‖∞ + ε

ν1
)‖v‖2σ − C2‖v‖

q+1
σ . (13)
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If we consider ε > 0 such that ‖p(x)‖∞ + ε < ν1, then we can choose ‖v‖σ = δ small enough in order to have
I(v) ≥ τ for some τ > 0 sufficiently small.

(ii) Suppose that ν1 < α < +∞. Let t > 0 and consider

I(tφ1) =
t2

2

∫
Ω

[|∇φ1|
2 + σ(x)|φ1|

2]dx −
∫

Ω

H(x, tφ1) dx. (14)

From (9), we obtain

I(tφ1) =
t2

2
ν1 −

∫
Ω

H(x, tφ1) dx. (15)

Then, by the use of the Fatou’s Lemma,

lim
t→∞

I(tφ1)
t2 ≤

1
2
ν1 −

∫
Ω

lim
t→∞

H(x, tφ1)
(tφ1)2 φ2

1 dx.

Since h(x, t) is asymptotically linear, we get

lim
t→∞

H(x, t)
t2 =

α
2
· (16)

Therefore,

lim
t→∞

I(tφ1)
t2 ≤

1
2

(ν1 − α). (17)

Then, lim
t→∞
I(tφ1) = −∞.

�
Proof of the Theorem 1.1

(i) Assume that 0 < α < ν1 and (H1) − (H3) hold. Suppose that v ∈ H1
0(Ω) is a positive solution of the

problem (1). In this case, from the conditions (H1) − (H3), we get∫
Ω

[|∇v|2 + σ(x)v2]dx =

∫
Ω

h(x, v)vdx ≤
∫

Ω

αv2dx. (18)

So, ν1 ≤ α and this contradicts the hypothesis of this first case. Then, Theorem 1.1 (i) is proved.

(ii) Assume that ν1 < α and (H1) − (H2) hold.
The functional I introduced by (6) is C1 and satisfies I(0) = 0.
By Lemma 3.2, there exist δ > 0, τ > 0 and there exists x1 ∈ H1

0(Ω) such that ‖x1‖ > δ and I(x1) < 0. Since

max{I(0),I(x1)} < τ,

by the Theorem 2.2, there exists a sequence (vn) ⊂ H1
0(Ω) verifying (7) and (8). The idea is to prove that the

sequence (vn) has a convergent subsequence in H1
0(Ω) to a nonzero function v and then v will be a critical

point ofI and so a nontrivial solution of the problem (1). After that, by the maximum principle, the solution
v will be positive.

From (7) and (8), we get

I(vn) =
1
2
‖vn‖

2
σ −

∫
Ω

H(x, vn) dx→ c as n→ +∞ (19)



A. El-Abed et al. / Filomat 36:2 (2022), 629–639 634

and

‖I
′(vn)‖∗ → 0 as n→ +∞. (20)

If the sequence (vn) is bounded in H1
0(Ω), then there exists v ∈ H1

0(Ω) and a subsequence still denoted (vn)
satisfying

vn ⇀ v weakly in H1
0(Ω) as n→ +∞

vn → v strongly in L2(Ω) as n→ +∞

vn(x)→ v(x) a.e in Ω as n→ +∞.

From (20), for all φ ∈ H1
0(Ω) we have∫

Ω

[∇vn.∇φ + σ(x)vnφ]dx −
∫

Ω

h(x, vn)φ dx→ 0 as n→ +∞, (21)

that is

−∆vn + σ(x)vn − h(x, vn)→ 0 in H−1
0 (Ω). (22)

where H−1
0 (Ω) the dual space of H1

0(Ω).
Note that by (H2), h(x, vn) → h(x, v) in L2(Ω) and since the dual space of L2(Ω) is the space L2(Ω) and
L2(Ω) ↪→ H−1

0 (Ω), we have

−∆vn + σ(x)vn → h(x, v) in H−1
0 (Ω). (23)

Therefore, by using the fact that the operator L = −∆ + σ(x) is an isomorphism from H1
0(Ω) to H−1

0 (Ω), we
get

vn → L−1(h(x, v)) in H1
0(Ω). (24)

From (24) and the uniqueness of the limit, we deduce that the sequence (vn) converges to the function v in
H1

0(Ω). The sequence (vn) induced by the Theorem 2.2 is relatively compact and the limit of its convergent
subsequence is a critical point of the functional I.

To finish the proof of the part (ii), we have to prove that (vn) is bounded in H1
0(Ω). For this, we argue

by contradiction and we suppose that (vn) is not bounded in H1
0(Ω). So, up to a subsequence, ‖vn‖σ → +∞.

Let

zn =
vn

‖vn‖σ
, tn = ‖vn‖σ. (25)

Since zn is bounded in H1
0(Ω), there exists z ∈ H1

0(Ω) such that

zn ⇀ z weakly in H1
0(Ω),

zn → z strongly in L2(Ω),

and
zn(x)→ z(x) a.e in Ω.

We claim that

−∆z + σ(x)z = α z+ in Ω. (26)
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For the proof of the claim (26), we divide (21) by tn = ‖vn‖σ we get∫
Ω

[∇zn.∇φ + σ(x)znφ]dx −
∫

Ω

h(x, vn)
‖vn‖σ

φ dx→ 0 for all φ ∈ H1
0(Ω). (27)

That is,

−∆zn + σ(x)zn −
h(x, vn)
‖vn‖σ

→ 0 in H−1
0 (Ω). (28)

Since
h(x, vn)
‖vn‖σ

=
h(x, vn)

vn
zn

and vn = ‖vn‖σzn. Then, limn→+∞ vn = +∞ if z(x) > 0 and so by using conditions (H1) and (H2), we get

lim
n→+∞

h(x, vn)
vn

zn = αz+

in {x ∈ Ω/zn(x)→ z(x) and z(x) , 0}.

If zn(x)→ z(x) and z(x) = 0, from (H1) we deduce that
h(x, vn)

vn
zn converges to zero. Thus

h(x, vn)
vn

zn converges to αz+ a.e. in Ω.

Now, the sequence zn → z in L2(Ω). By Theorem IV.9 in [5], the sequence (zn) is dominated in L2(Ω), up to
a subsequence.

Therefore,
h(x, vn)

vn
zn is dominated and then converges to αz+ in L2(Ω).

Since L2(Ω) ↪→ H−1
0 (Ω), from (28), we get the equation (26) and so the claim is proved.

Therefore,{
−∆z + σ(x)z = αz+ in Ω

z = 0 on ∂Ω.
(29)

By the maximum principle, z > 0 and then z = z+ satisfies the problem (29).
It follows that z = cφ1, for some constant c > and α = ν1, which contradicts the fact that ν1 < α < ∞.

(iii) Let α = ν1. Suppose that v is a positive solution for the problem (1). If we take φ = φ1 in (5), we
obtain∫

Ω

[∇v.∇φ1 + σ(x)v.φ1] dx =

∫
Ω

h(x, v)φ1dx. (30)

Conversely, consider the equation (9) and take v as a test function, we obtain∫
Ω

[∇v.∇φ1 + σ(x)v.φ1] dx = α

∫
Ω

vφ1dx. (31)

So, ∫
Ω

(h(x, v) − αv)φ1dx = 0.

Now, from (H1) − (H3) and the fact that φ1 > 0, we get h(x, v) = αv a.e. in Ω. Hence, h(x, v) = ν1v a.e. in Ω
and the result follows from the fact that the eigenvalue ν1 is simple.
Conversely, If α = ν1, h(x, v) = ν1v and v = c0φ1 for some constant c0 > 0. Then, v is an eigenfunction
satisfying (9) and so a solution of the problem (1).

�
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4. Proof of the Theorem 1.2

We start by proving the geometric properties for the functional I introduced by (6).

Lemma 4.1. Suppose that (H1)− (H3) hold, α = +∞ and the function h(x, t) is subcritical at t = +∞ uniformly on
x a.e. in Ω. We have:

(i) There exist δ, β > 0 positive constants such that I(v) ≥ β for all v ∈ H1
0(Ω) with ‖v‖ = δ.

(ii) lim
t→+∞

I(tφ1) = −∞.

Proof. (i) In this subcritical case, the condition

lim
t→+∞

h(x, t)
tr−1 = 0 for some r ∈ (2, 2∗) (32)

and the first part of the condition (H2) gives that for any ε > 0, there exists C = C(ε) ≥ 0 such that for all
t ∈ R and x ∈ Ω

H(x, t) ≤
1
2

(‖p(x)‖∞ + ε)t2 + C|t|r, (33)

and so
I(v) ≥

1
2
‖v‖2σ −

1
2

(‖p(x)‖∞ + ε)‖v‖22 − C‖v‖rr.

Since 2 < r < 2∗, by Sobolev embedding theorem we have ‖v‖rr ≤ C1‖v‖rσ, for some constant C1 > 0 and then

I(v) ≥
1
2
‖v‖2σ −

1
2

(‖p(x)‖∞ + ε)‖v‖22 − C2‖v‖rσ. (34)

We know that one characterization of ν1 is that ν1‖v‖22 ≤ ‖v‖
2
σ, for all v ∈ H1

0(Ω) and so

I(v) ≥
1
2

(1 −
‖p(x)‖∞ + ε

ν1
)‖v‖2σ − C2‖v‖rσ. (35)

Now, we can choose ε > 0 in (35) such that ‖p(x)‖∞ + ε < ν1 and ‖v‖ = δ small enough in order to have
I(v) ≥ β for β > 0 sufficiently small.

(ii) Since the positive function φ1 is in C(Ω). Let Ω0 ⊂ RN be an open domain such that Ω0 ⊂ Ω0 ⊂ Ω and
let γ > 0 be a number satisfying φ1(x) ≥ γ > 0 for all x ∈ Ω0. From (H3), we obtain

0 ≤ 2H(x, t) ≤ th(x, t), (36)

and then the function
H(x, t)

t2 is nondecreasing with respect to t > 0 for a.e. x ∈ Ω0.

α = +∞ implies that

lim
t→+∞

H(x, t)
t2 = +∞.

So, for all x ∈ Ω0 and t > 0,

H(x, tφ1(x))

t2φ2
1(x)

≥
H(x, tγ)

t2γ2 . (37)

For all B > 0, there exists t1 verifying for all t ≥ t1 and for all x ∈ Ω0

H(x, tφ1(x))

t2φ2
1(x)

≥ B. (38)
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I(tφ1)
t2 =

1
2

∫
Ω

[|∇φ1|
2 + σ(x)φ2

1]dx −
∫

Ω

H(x, tφ1)
(tφ1)2 φ2

1 dx. (39)

So,

I(tφ1)
t2 ≤

1
2

∫
Ω

φ2
1dx −

∫
Ω0

H(x, tφ1)
(tφ1)2 φ2

1 dx. (40)

From (38) and (40) we get
I(tφ1)

t2 ≤
1
2
ν1

∫
Ω

φ2
1dx − B

∫
Ω0

φ2
1 dx,

and so
I(tφ1)

t2 ≤
1
2
ν1 − Bγ2

|Ω0|.

We can choose B > 0 large enough such that

I(tφ1)
t2 ≤ −C < 0,

where C > 0 is a positive constant. Therefore

lim
t→+∞

I(tφ1) = −∞.

�
Before starting the proof of the second existence result Theorem 1.2, we recall the following result which
the proof is similar to [27, Lemma 2.3].

Lemma 4.2. Let I the functional defined by (6). Suppose that (H3) holds and

〈I
′(vn), vn〉 → 0 as n→ +∞.

Then, (vn) has a subsequence, still denoted (vn), satisfying for all t > 0 and for all n > 0

I(tvn) ≤
1 + t2

2n
+ I(vn).

Proof of the Theorem 1.2

Suppose that α = +∞, the conditions (H1) − (H3) hold and h(x, t) is subcritical at +∞ uniformly a.e.
on x ∈ Ω. From Lemma 4.1 and Theorem 2.2, there exists a sequence (vn) satisfying the Cerami conditions
(7) and (8) and so (19) and (20). We have only to prove that the sequence (vn) is bounded in H1

0(Ω) and the
rest will be the same as in the proof of the Theorem 1.1 (ii).
Suppose that (vn) is not bounded in H1

0(Ω), then up to a subsequence ‖vn‖σ → +∞, when n→ +∞. Let d > 0
be a positive number and set

zn =
vn

d‖vn‖σ
, tn =

1
d‖vn‖σ

· (41)

So, there exists z ∈ H1
0(Ω) such that, up to a subsequence zn ⇀ z weakly in H1

0(Ω), zn → z strongly in L2(Ω)
and zn(x)→ z(x) a.e in Ω.
As consequence,

z+
n → z+ in L2(Ω),

where z+
n =

zn + |zn|

2
and

z+
n → z+ a.e. in Ω.
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From the formula (6)

I(zn) =
1
2
‖zn‖

2
σ −

∫
Ω

H(x, zn)dx.

From the condition (H1), we get

I(zn) =
1
2
‖zn‖

2
σ −

∫
Ω

H(x, z+
n )dx. (42)

Let Ω+ = {x ∈ Ω; z+(x) > 0}. For x ∈ Ω+,

v+
n (x) = dz+

n (x)‖vn‖σ → +∞

and so, for any B > 0, there exists n1 = n1(x) > 0 such that for all n ≥ n1, we have

h(x, v+
n (x))

v+
n (x)

≥ B. (43)

Also, z+
n (x)→ z+(x) then there exists n2 = n2(x) > 0 such that for all n ≥ n2, we have

z+
n (x) ≥

z+(x)
2
· (44)

From (42) and (43), we get
h(x, v+

n (x))
v+

n (x)
(z+

n (x))2
≥ B

(z+(x))2

4
·

So, for n large enough and for all x ∈ Ω+,

lim
n→+∞

h(x, v+
n (x))

v+
n (x)

(z+
n (x))2

≥ B
(z+(x))2

4
· (45)

From (21), by taking the test function φ = vn, we get

‖vn‖
2
σ −

∫
Ω

h(x, vn)vn dx→ 0,

hence

1
d2 −

∫
Ω

h(x, vn)
vn

(zn)2 dx→ 0. (46)

From (46) and the condition (H1), we obtain

lim
n→+∞

∫
Ω

h(x, v+
n )

v+
n

(z+
n )2 dx =

1
d2 · (47)

Therefore,

1
d2 ≥ lim

n→+∞

∫
Ω+

h(x, v+
n )

v+
n

(z+
n )2 dx

≥

∫
Ω+

lim
n→+∞

h(x, v+
n (x))

v+
n (x)

(z+
n (x))2

By (45), we have then

1
d2 ≥

B
4

∫
Ω+

(z+(x))2 dx (48)
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and this is for all B > 0. So, |Ω+| = 0 and then z+
≡ 0.

From (42), we obtain

lim
n→+∞

I(zn) =
1

2d2 · (49)

On the other hand, by the Lemma 4.2 and up to a subsequence, we get

I(zn) = I(tnvn) ≤
1

2n
(1 + t2

n) + I(vn). (50)

From (19), (41),(49) and (50)
1

2d2 ≤ c

for all d > 0. This is impossible and so the sequence (vn) is bounded in H1
0(Ω) and Theorem 1.2 follows. �
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