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Abstract. In this paper, we introduce projective inertial parallel subgradient extragradient-line algo-
rithm for solving variational inequalites of L-Lipschitz continuous and monotone mappings which L is
unknown. We prove a strong convergence result under some mild conditions in Hilbert space. We also
present some numerical examples in Euclidean space R3 compared with Parallel-Viscosity-Type Subgradi-
ent Extragradient-Line Method. Finally, we deblur the Grey and RGB images from common types of blur
matrixes Gaussian blur, Out of focus blur and Motion blur using our proposed algorithm and show the
better efficeincy when the number of types of blur matrixes is large.

1. Introduction and Definitions

We consider the classical variational inequality problem (VIP) in a real Hilbert space H which is to find
a point x∗ ∈ C such that

〈Bx∗, x − x∗〉 ≥ 0, ∀x ∈ C, (1)

where C is a nonempty closed and convex subset of H and B : H → H is a mapping. Let us denote the
solution set of VIP (1) by VI(C,B). It is well known that x∗ solves the VIP (1) if and only if x∗ solves the fixed
point equation

x∗ = PC(x∗ − λBx∗), λ > 0,

where λ is any positive real number. Many problems in the real-world can formulated in the form of the
VIP (1), such as economics, engineering mechanics, signal processing, image recovery, transportation, and
others (see, for example [3, 6, 9, 13, 14]). Several numerical methods have been constructed for solving
variational inequalities and related optimization problems, in [1, 2, 15, 20, 22, 25–29] and the references
cited therein.
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One of the important methods for solving VIP is the extragradient method (EGM) introduced by
Korpelevich [10] in 1976 for solving the saddle point problems and then extended to solve the VIPs. The
extragradient method was stated as follows:

x1 ∈ C,
yk = PC(xk − λBxk),
xk+1 = PC(xk − λByk),

(2)

where λ ∈ (0, 1
L ) and PC denotes the metric projection from H onto C. This method converges if B is

L-Lipschitz continuous and monotone operator.
In 2011, Censor et al. [27] improved the extragradient method (2) by introducing the subgradient

extragradient method (SEGM), in which the second projection onto C is replaced by a projection onto a
specific constructible half-space. Their algorithm is of the form

x1 ∈ C,
yk = PC(xk − λBxk),
Tk = {w ∈ H : 〈xk − λBxk − yk,w − yk〉 ≤ 0},
xk+1 = PTk (xk − λByk),

(3)

where λ ∈ (0, 1
L ). The subgradient extragradient method for solving VIP (1) has received great attention by

many authors (see, e.g., [7, 18] and the references therein).
Motivated and inspired by the results of Alvarez and Attouch in [8], and of Censor et al. in [27], used

the inertial technique with the SEGM. The method have been called the inertial subgradient extragradient
method, that is, for any initial x0, x1 ∈ H, the sequence {xk} is generated by

wk = xk + αk(xk − xk−1),
yk = PC(wk − λBwk),
Tk = {x ∈ H|〈wk − λBwk − yk, x − yk〉 ≤ 0},
xk+1 = PTk (wk − λByk),

(4)

where λ > 0, αk ≥ 0. Under suitable conditions, they proved the weak convergence of {xk} to an element of
VI(C,B).

Recently, Censor, Gibali and Reich [23, 24] introduced the common solutions to variational inequality
problem (CSVIP), which consists of finding common solutions to unrelated variational inequality. The
general form of the CSVIP is the following: Let C be a nonempty closed and convex subset of H. Let
Bi : H→ H, i = 1, 2, ...,N be mappings. The CSVIP is to find x∗ ∈ C such that

〈Bix∗, x − x∗〉 ≥ 0, ∀x ∈ C, i = 1, 2, ...,N. (5)

If N = 1, CSVIP (5) becomes VIP (1).
Very recently, using a modified viscosity-type subgradient extragradient-line method, Suantai et al. [19]

introduced the parallel viscosity-type subgradient extragradient-line method (PVSEGM) for solving the
VIP. The strong convergence theorem was proved when each of the operator Ai is Lipschitz continuous
monotone mapping that the Lipschitz constant is unknow. They introduced the following algorithm:

x1 ∈ H,
yi

k = PC(xk − λi
kBixk), λi

k = ρlik ,

(lik is the smallest nonegative integer li such that λi
k‖Bixk − Biyi

k‖ ≤ µ‖xk − yi
k‖),

zi
k = PTi

k
(xk − λi

kByi
k),

Ti
k = {z ∈ H : 〈xk − λi

kBixk − yi
k, z − yi

k〉 ≤ 0},

xk+1 = α0
k f (xk) +

N∑
i=1

αi
kzi

k, k ≥ 1,

(6)
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where ρ, µ ∈ (0, 1), {αk}
∞

k=1 ⊆ (0, 1), lim
k→∞

α0
k = 0,

∞∑
k=1

α0
k = ∞, and they proved that the sequence {xk}

∞

k=1

generated by (6) converges strongly to x∗ ∈ VI(C,B). The benefit of the PVSEGM was presented to solve
the problem of multiblur effects in an image restoration. As a result, the resulting image quality can be
improved sharper by using the PVSEGM in the resolution of common resolution VIP problems.

Motivated and inspired by the works in the literature, we study strong convergence of the algorithm for
solving common solution of variational inequality problem (5). The algorithm is generated by the hybrid
inertial techniques and a parallel subgradient extragradient-line method. Several numerical experiments
are implemented to support the theoretical results. Our numerical results have illustrated the better
convergence of the new algorithms over the PVSEGM method of Suantai et al. [19]. Finally, we present a
solution to the problem of multiblur effects in an image is solved by applying our algorithm.

2. Main result

In this section we present a new algorithm for solving the CSVIP (5). Let C be a nonempty closed and
convex subset of a real Hilbert space H. Let Bi : H → H be monotone and Lipschitz continuous on H with

the constant Li but Li is unknown for all i = 1, 2, ...,N. Moreover, we denote Ψ :=
N⋂

i=1

VI(C,Bi) , ∅. Suppose

{xk}
∞

k=1 is generated in the following algorithm:

Algorithm 2.1. Initialization: Given γ > 0, µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.

Iterative Steps: Calculate xk+1 as follows:
Step 1. Set wk = xk + αk(xk − xk−1) and compute

yi
k = PC(wk − τ

i
kBiwk), ∀k ≥ 1,

where τi
k = γ`

i
k and `i

k is the smallest nonnegative integer such that

τi
k ‖ Biwk − Biyi

k ‖≤ µ ‖ wk − yi
k ‖ . (7)

Step 2. Compute

zi
k = PTi

k
(wk − τ

i
kBiyi

k),

where Ti
k := {x ∈ H|〈wk − τi

kBiwk − yi
k, x − yi

k〉 ≤ 0}.
Step 3. Compute z̄k, i.e.

z̄k = ar1max{‖zi
k − xk‖ : i = 1, 2, ...,N}. (8)

Step 4. Compute

xk+1 = PCk+1 x1,

where Ck+1 := {z ∈ Ck : ‖z̄k − z‖ ≤ ‖wk − z‖}.
Again set k := k + 1 and go to Step 1.

Theorem 2.2. Assume that condition
∞∑

k=1

αk ‖ xk−xk−1 ‖< ∞ holds. Then the sequences {xk} generated by Algorithm

2.1 converge strongly to z ∈ PΨx1.
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Proof Claim 1. We prove that the sequence {xk} is well defined and lim
k→∞
‖xk − x1‖ exists. Since C = C1, C1 is

closed and convex. Assume that Ck is closed and convex. By Lemma 1.3 in [4] we have Ck+1 is closed and
convex. Let x∗ ∈ Ψ and hi

k = wk − τi
kBiyi

k, ∀k ≥ 1, i = 1, 2, ...,N, we have

‖zi
k − x∗‖2 = ‖PTi

k
(hi

k) − hi
k‖

2 + 2〈PTi
k
(hi

k) − hi
k, h

i
k − x∗〉 + ‖hi

k − x2
‖. (9)

Since x∗ ∈ Ψ ⊆ C ⊆ Ti
k and by the characterization of the metric projection PTi

k
, we obtain

2‖hi
k − PTi

k
(hi

k)‖2 + 2〈PTi
k
(hi

k) − hi
k, h

i
k − x∗〉 = 2〈hi

k − PTi
k
(hi

k), x∗ − PTi
k
(hi

k)〉 ≤ 0. (10)

This implies that

‖hi
k − PTi

k
(hi

k)‖2 + 2〈PTi
k
(hi

k) − hi
k, h

i
k − x∗〉 ≤ −‖hi

k − PTi
k
(hi

k)‖2. (11)

By the inequalities (9), (10) and the definition of Algorithm 2.1, we obtain

‖zi
k − x∗‖2 ≤ ‖hi

k − x∗‖2 − ‖hi
k − zi

k‖
2

= ‖(wk − x∗) − τi
kBiyi

k‖
2
− ‖(wk − zi

k) − τi
kBiyi

k‖
2

= ‖wk − x∗‖2 − ‖wk − zi
k‖

2 + 2τi
k〈x
∗
− zi

k,Biyi
k〉. (12)

By the monotonicity of the operator Bi, we have

0 ≤ 〈Biyi
k − Bix∗, yi

k − x∗〉

= 〈Biyi
k, y

i
k − x∗〉 − 〈Bix∗, yi

k − x∗〉

≤ 〈Biyi
k, y

i
k − x∗〉

= 〈Biyi
k, y

i
k − zi

k〉 + 〈Biyi
k, z

i
k − x∗〉.

Thus

〈x∗ − zi
k,Biyi

k〉 ≤ 〈Biyi
k, y

i
k − zi

k〉. (13)

Using (13) in (12), we obtain

‖zi
k − x∗‖2 ≤ ‖wk − x∗‖2 − ‖wk − zi

k‖
2 + 2τi

k〈Biyi
k, y

i
k − zi

k〉

= ‖wk − x∗‖2 − ‖wk − yi
k‖

2
− ‖yi

k − zi
k‖

2 + 2〈wk − τ
i
kBiyi

k − yi
k, z

i
k − yi

k〉. (14)

Observe that

〈wk − τ
i
kBiyi

k − yi
k, z

i
k − yi

k〉 = 〈wk − τ
i
kBiwk − yi

k, z
i
k − yi

k〉 + 〈τ
i
kBiwk − τ

i
kBiyi

k, z
i
k − yi

k〉

≤ 〈τi
kBiwk − τ

i
kBiyi

k, z
i
k − yi

k〉. (15)

Using the inequality (15) in (14) and the existence of the step size τi
k of Lemma 3.1 in [30] , we have

‖zi
k − x∗‖2 ≤ ‖wk − x∗‖2 − ‖wk − yi

k‖
2
− ‖yi

k − zi
k‖

2 + 2〈τi
kBiwk − τ

i
kBiyi

k, z
i
k − yi

k〉

≤ ‖wk − x∗‖2 − ‖wk − yi
k‖

2
− ‖yi

k − zi
k‖

2 + 2τi
k‖Biwk − Biyi

k‖‖z
i
k − yi

k‖

≤ ‖wk − x∗‖2 − ‖wk − yi
k‖

2
− ‖yi

k − zi
k‖

2 + 2µ‖wk − yi
k‖‖z

i
k − yi

k‖

≤ ‖wk − x∗‖2 − ‖wk − yi
k‖

2
− ‖yi

k − zi
k‖

2 + µ(‖wk − yi
k‖

2 + ‖zi
k − yi

k‖
2)

= ‖wk − x∗‖2 − (1 − µ)(‖wk − yi
k‖

2 + ‖yi
k − zi

k‖
2)

≤ ‖wk − x∗‖2. (16)

This implies that ‖z̄k − x∗‖ ≤ ‖wk − x∗‖, so x∗ ∈ Ck, ∀k ∈ N. This shows that {xk} is well-defined.
From xk = PCk x1 and xk+1 ∈ Ck, for all k ≥ 1, we get

‖xk − x1‖ ≤ ‖xk+1 − x1‖, ∀k ≥ 1. (17)
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On the other hand, as Ψ ⊂ Ck, we obtain

‖xk − x1‖ ≤ ‖x∗ − x1‖, ∀k ≥ 1. (18)

From (17) and (18) that the sequence {xk} is bounded and nondecreasing. Therefore
lim
k→∞
‖xk − x1‖ exists.

Claim 2. Show that xk → υ ∈ C as k→∞. For m > r, by the definition of Cr, since xm = PCm x1 ∈ Cm ⊂ Cr, so
by the property of the metric projection PCr [11], we have

‖xm − xr‖
2
≤ ‖xm − x1‖

2
− ‖xr − x1‖

2.

Since lim
r→∞
‖xr − x1‖ exists, we have ‖xm − xr‖ → 0, as m, r → ∞ this means that {xk} is a Cauchy sequence.

Hence, there exists υ ∈ C such that xk → υ as k→∞. Therefore,

lim
k→∞
‖xk+1 − xk‖ = 0. (19)

Claim 3. Show that lim
k→∞
‖zi

k − xk‖ = lim
k→∞
‖xk − yi

k‖ = lim
k→∞
‖yi

k − zi
k‖ = 0, ∀i = 1, 2, ...,N. From the definition of

Ck and xk+1 ∈ Ck+1 ⊂ Ck, we have

‖z̄k − xk+1‖ ≤ ‖xk+1 − wk‖

≤ ‖xk+1 − xk‖ + ‖xk − wk‖

= ‖xk+1 − xk‖ + αk‖xk − xk−1‖.

From (19) and condition in Theorem 2.2, we obtain

lim
k→∞
‖z̄k − xk+1‖ = 0.

This the triangle inequality ‖z̄k − xk‖ ≤ ‖z̄k − xk+1‖ + ‖xk+1 − xk‖ implies that

lim
k→∞
‖z̄k − xk‖ = 0. (20)

From the definition of zi
k and (20), we get

lim
k→∞
‖zi

k − xk‖ = 0, ∀i = 1, 2, ...,N. (21)

From (16) and wk = xk + αk(xk − xk−1), we have

‖zi
k − x∗‖2 ≤ ‖xk + αk(xk − xk−1) − x∗‖2 − (1 − µ)(‖xk + αk(xk − xk−1) − yi

k‖
2 + ‖yi

k − zi
k‖

2)

= ‖(xk − x∗) + αk(xk − xk−1)‖2 − (1 − µ)(‖(xk − yi
k) + αk(xk − xk−1)‖2 + ‖yi

k − zi
k‖

2)

≤ ‖xk − x∗‖2 + 2αk〈xk − xk−1,wk − x∗〉
−(1 − µ)(‖xk − yi

k‖
2 + 2αk〈xk − xk−1,wk − yi

k〉 + ‖y
i
k − zi

k‖
2)

= ‖xk − x∗‖2 − (1 − µ)(‖xk − yi
k‖

2 + ‖yi
k − zi

k‖
2) + 2αk〈xk − xk−1,wk − x∗〉

−2αk(1 − µ)〈xk − xk−1,wk − yi
k〉. (22)

From (22), for each c ∈ Ψ, we obtain

(1 − µ)‖xk − yi
k‖

2
≤ ‖xk − c‖2 − ‖zi

k − c‖2 + 2αk〈xk − xk−1,wk − c〉

−2αk(1 − µ)〈xk − xk−1,wk − yi
k〉. (23)

From (21), (23) and the boundedness of {wk}, {xk}, {yi
k}, {z

i
k} and condition in Theorem 2.2, we have

lim
k→∞
‖xk − yi

k‖ = 0, ∀i = 1, 2, ...,N. (24)
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Using the equation (21) and (24), we obtain

lim
k→∞
‖yi

k − zi
k‖ = 0, ∀i = 1, 2, ...,N. (25)

Claim 4. Show that υ ∈ Ψ and υ = PΨx1. Now, xk − yi
k → 0 implies that yi

k → υ and since yi
k ∈ C, we then

obtain υ ∈ C. For all x ∈ C and using the property of the projection PC, we have (Since Bi is monotone)

0 ≤ 〈yi
k − wk + τi

kBiwk, x − yi
k〉

= 〈yi
k − wk, x − yi

k〉 + 〈τ
i
kBiwk, x − xk〉 + 〈τ

i
kBiwk, xi

k − yi
k〉

≤ 〈yi
k − xk, x − xi

k〉 + τ
i
k〈Bix, x − xk〉 + τ

i
k〈Bixk, xi

k − yi
k〉

+〈αk(xk − xk−1), x − yi
k〉 + τ

i
k〈Biαk(xk − xk−1), x − xk〉

+τi
k〈Biαk(xk − xk−1), xk − yi

k〉. (26)

Taking the limit as k→∞ in(26), we obtain (recall that inf
k≥1
τkr > 0 by Remark 3.2 in [21])

0 ≤ 〈Biυ, x − υ〉, ∀x ∈ C.

This implies that υ ∈ VI(C,Bi) for all i = 1, 2, ...,N. It follows from (18) that, for x∗ ∈ Ψ ‖υ − x1‖ ≤ ‖x∗ − x1‖.
This implies that υ = PΨx1. The proof is completed.

We give the following numerical example to illustrate Theorem 2.2.

Example 2.3. Let B1,B2,B3 : R3
→ R3 be defined by B1x =

 2 −1 1
−1 2 −1
1 −1 2

 x, B2x =

 6 −3 3
−3 6 −3
3 −3 6

 x and

B3x =

 10 −5 5
−5 10 −5
5 −5 10

 x for all x = (x1, x2, x3) ∈ R3. Let C = {x ∈ R3
|x2

1 + x2
2 + x2

3 ≤ 4}. The stopping criterion

is defined by ‖xk − xk−1‖ < 10−5. We choose parameters

αk =


0.2 if xk , xk−1 and k ≤ 1000

1
k2‖xk−xk−1‖

if xk , xk−1 and k > 1000
0 Otherwise,

γ = 0.45 and µ = 0.35 for our algorithm, and choose α0
k = 1 − 3k

3k+1 , α1
k = k

3k+1 , α2
k = k

3k+1 , α3
k = 1 − α0

k − α
1
k − α

2
k

ρ = 0.2 and µ = 0.1 for PVSEGM.

Table 1: Comparison of the number of iterations in Theorem 2.2 and Theorem 1 [19]
of Example 2.3 by choosing x0 = (−2.15,−4.35, 1.12) and x1 = (6.13,−5.24,−1.19).

Our Algorithm PVSEGM
Inputting (α , 0)

CPU Time Iter.No. CPU Time Iter.No.
B1 0.0000122 47 0.000012 263
B2 0.0000125 61 0.0000159 310
B3 0.0000242 71 0.0000234 263

B1,B2 0.0000228 47 0.0000291 275
B1,B3 0.0000441 47 0.0000195 263
B2,B3 0.0000448 56 0.0000213 258

B1,B2,B3 0.0000502 44 0.0000228 258
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Figure 1: The error plotting ‖xk − xk−1‖ for Table 1 in Example 2.3.

From Table 1 and Figure 1, we see that the common solution of two or more inputting Bi gives the number
of iterations smaller than inputting one and the comparison between our Algorithm and PVSEGM and the
inertial term (αk , 0) can speed up the convergence of the algorithm. We see that our Algorithm get the
good CPU Time and number of iterations more than PVSEGM.

3. Application to image restoration problems

Image restoration is the process of recovering a degraded image that is blurred and noisy image. The
image restoration problem can be formulated in the linear equation system as follows:

b = Ax + ω, (27)

where x ∈ Rn×1 is an original image, b ∈ Rm×1 is the unknown image, ω is additive noise and A ∈ Rm×n

is the blurring matrix. For solving the problem of image recovery (27) is an approximation of the original
image x. In some case, finding x = A−1(b − ω) maybe a hard task, thus finding the solution x by mean of
convex minimization can overbear such hard, which is called a least squares (LS) problem as follows:

min
x

1
2
‖b − Ax‖22, (28)

where‖.‖ is l2-norm defined by ‖x‖2 =
√∑n

i=1 |xi|
2. The solution of (28) can be approximated by many well

known iteration methods [5, 12, 16, 17].

min
x∈Rn

1
2
‖A1x − b1‖

2
2,min

x∈Rn

1
2
‖A2x − b2‖

2
2, ...,min

x∈Rn

1
2
‖ANx − bN‖

2
2, (29)

where x is the original true image, Ai is the blurred matrix, bi is the blurred image by the blurred matrix
Ai for all i = 1, 2, ...,N. For Algorithm 2.1 can apply to solve the problem (29), we know that AT

i (Aix − bi) is
Lipschitz continuous for each i = 1, 2, ...,N. This algorithm is generated as follows:
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Algorithm 3.1. Initialization: Given γ > 0, µ ∈ (0, 1). Let x0, x1 ∈ H be arbitrary.

Iterative Steps: Calculate xk+1 as follows:
Step 1. Set wk = xk + αk(xk − xk−1) and compute

yi
k = PC(wk − τ

i
kAT

i (Aiwk − bi)), ∀k ≥ 1,

where τi
k = γ`

i
k and `i

k is the smallest nonnegative integer such that

τi
k ‖ AT

i (Aiwk − bi) − AT
i (Aiyi

k − bi) ‖≤ µ ‖ wk − yi
k ‖ . (30)

Step 2. Compute

zi
k = PTi

k
(wk − τ

i
kAT

i (Aiyi
k − bi)),

where Ti
k := {x ∈ H|〈wk − τi

kAiwk − yi
k, x − yi

k〉 ≤ 0}.
Step 3. Compute z̄k, i.e.

z̄k = ar1max{‖zi
k − xk‖ : i = 1, 2, ...,N}. (31)

Step 4. Compute

xk+1 = PCk+1 x1,

where Ck+1 := {z ∈ Ck : ‖z̄k − z‖ ≤ ‖wk − z‖}.
Again set k := k + 1 and go to Step 1.

We will present the advantages of our Algorithm 3.1 in images corrupted by the following three blur
types:
(I) Gaussian blur of filter size 9 × 9 with standard deviation σ = 4 (blur matrix A1).
(II) Out of focus blur (Disk) with radius r = 6 (blur matrix A2).
(III) Motion blur specifying with motion length of 21 pixels (len = 21) and motion orientation 11◦ (θ = 11)
(blur matrix A3).

We will show the original RGB and grey images in the following figure 2-3.

Figure 2-3: The matrix size of RGB and grey images are 277 × 370 × 3 and 277 × 370, respectively.

Three different types of blurred RGB and grey images degraded by the blurring matrices A1, A2 and A3 are
shown in figures 4-9.
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Gaussian Blurred Image Out of Focus Blurred Image Motion Blurred Image

Gaussian Blurred Image Out of Focus Blurred Image Motion Blurred Image

Figure 4-9: The degraded RGB and grey images by blurred matrices A1, A2 and A3, respectively.

We apply the PVSEGM and our Algorithm 3.1 to obtain the solution of the deblurring problem (VIP)
with the three blurring matrices A1, A2 and A3. The results of the PVSEGM and our Algorithm 3.1 are
considered in following seven cases:
Case I: Inputting A1 on the PVSEGM and Algorithm 3.1,
Case II: Inputting A2 on the PVSEGM and Algorithm 3.1,
Case III: Inputting A3 on the PVSEGM and Algorithm 3.1,
Case IV: Inputting A1 and A2 on the PVSEGM and Algorithm 3.1,
Case V: Inputting A1 and A3 on the PVSEGM and Algorithm 3.1,
Case VI: Inputting A2 and A3 on the PVSEGM and Algorithm 3.1,
Case VII: Inputting A1,A2 and A3 on the PVSEGM and Algorithm 3.1.
The following parameters are used for our algorithm:

αk =


0.2 if xk , xk−1 and k ≤ 10, 000

1
k2‖xk−xk−1‖

if xk , xk−1 and k > 10, 000
0 Otherwise,

γ = 0.2 and µ = 0.3. We choose µ = 0.95, ρ = 0.5, α0
k = 1− 3k

3k+1 , α1
k = k

3k+1 , α2
k = k

3k+1 and α3
k = 1− α0

k − α
1
k − α

2
k

for PVSEGM.
Figures 10-15 show the reconstructed RGB and grey images with 10000 iterations. It comprises RGB

and gray image quality restored, and PSNR.

Case I

PSNR = 48.49763

Case II

PSNR = 50.17639

Case III

PSNR = 53.55071
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Case I

PSNR = 35.95345

Case II

PSNR = 37.92625

Case III

PSNR = 42.21131

Figure 10-15: The reconstructed RGB and grey images with their PSNR for Case I - Case III using the
proposed our Algorithm 3.1 presented on 10000th iterations, respectively.

Later in figures 16-21, we can see that the image quality restored using our algorithms for solving
common problem resolution (VIP) problems with (N = 2) has been improved when compare with the
previous results in Figures 10-15.

Case IV

PSNR = 57.88788

Case V

PSNR = 63.35813

Case VI

PSNR = 57.72298

Case V

PSNR = 46.08089

Case IV

PSNR = 42.12156

Case VI

PSNR = 47.87718

Figure 16-21: The reconstructed RGB and grey images with their PSNR for Case IV - Case VI using the
proposed our Algorithm 3.1 presented on 10000th iterations, respectively.

Finally, the common solution of the deblurring problem (VIP) with (N= 3) using the proposed algorithm
was also tested (Inputting A1, A2 and A3 in the proposed algorithm).

Case VII

PSNR = 72.89197

Case VII

PSNR = 50.73579
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Figure 22-23: The reconstructed RGB and grey images with their PSNR for Case VII using the proposed
our Algorithm 3.1 presented on 10000th iterations, respectively.

Figure 22 and 23 show the reconstructed RGB and grey images with thousand iteration. The quality of
the recovered RGB and grey images obtained by this algorithm were the highest compared to the previous
two algorithms.

Figures 24-37 show the reconstructed RGB and grey images using the proposed algorithm in obtaining
the common solution of the following problem with the same PSNR.

Case I

PSNR = 48 (10000
th

 Iteration)

Case II

PSNR = 48 (5238
th

 Iteration)

Case III

PSNR = 48 (1088
th

 Iteration)

Case IV

PSNR = 48 (688
th

 Iteration)

Case V

PSNR = 48 (894
th

 Iteration)

Case VI

PSNR = 48 (1115
th

 Iteration)

Case VII

PSNR = 48 (337
th

 Iteration)

Figure 24-30: The reconstructed RGB images of all cases being used our Algorithm 3.1 with PSNR = 48.
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Case I

PSNR = 35 (10000
th

 Iteration)

Case II

PSNR = 35 (2112
th

 Iteration)

Case III

PSNR = 35 (251
th

 Iteration)

Case IV

PSNR = 35 (735
th

 Iteration)

Case V

PSNR = 35 (204
th

 Iteration)

Case VI

PSNR = 35 (255
th

 Iteration)

Case VII

PSNR = 35 (274
th

 Iteration)

Figure 31-37: The reconstructed grey images of all cases being used our Algorithm 3.1 with PSNR = 35.

Table 2: Comparison of the number of iterations in RGB images.
PSNR of 10000th Number of Iterations 43 PSNR

Inputting
Our Algorithm PVSEGM Our Algorithm PVSEGM

A1 48.49763 45.10671 455th 2743th

A2 50.17639 43.30487 1419th 8691th

A3 53.55071 47.71041 147th 821th

A1,A2 57.88788 50.47587 203th 873th

A1,A3 63.35813 55.76737 138th 375th

A2,A3 57.72298 51.32098 146th 585th

A1,A2,A3 72.89197 56.62458 136th 400th

From Table 2 we will compared our algorithm with PVSEGM, when PSNR of 10000th and number of
iterations 43 PSNR of RGB images. Moreover, the Cauchy error, the Image error and the peak signal-to-noise
ratio (PSNR) for recovering processes of the degraded RGB images by using the proposed method within
the first 10000th iterations are shown in figures 38-40.
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Figure 38-40: Cauchy error, Figure error and PSNR quality plots of the proposed iteration in all cases of
RGB images.

Table 3: Comparison of the number of iterations in grey images.
PSNR of 10000th Number of Iterations 34 PSNR

Inputting
Our Algorithm PVSEGM Our Algorithm PVSEGM

A1 35.95345 34.42142 2184th 7088th

A2 37.92625 35.31389 1110th 5215th

A3 42.21131 37.58995 132th 1901th

A1,A2 42.12156 39.05422 461th 1108th

A1,A3 46.08089 42.89091 138th 542th

A2,A3 47.87718 42.95463 212th 699th

A1,A2,A3 50.73579 45.43944 158th 482th

From Table 3 we will compared our algorithm with PVSEGM, when PSNR of 10000th and number of
iterations 34 PSNR of grey images. Moreover, the Cauchy error, the Image error and the peak signal-to-noise
ratio (PSNR) for recovering processes of the degraded grey images by using the proposed method within
the first 10000th iterations are shown in figures 41-43.
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Figure 41-43: Cauchy error, Figure error and PSNR quality plots of the proposed iteration in all cases of
grey images.

4. Conclusions

In this paper, we propose projective inertial parallel subgradient extragradient-line algorithm for solving
variational inequalites. Under some suitable conditions imposed on parameters, we have proved the strong
convergence of the algorithm. A numerical example illustrating the proposed algorithm performance in
comparison with PVSEGM, see Table 1 and Figure 1. Our algorithm can solve image recovery under
unknown situation of blur matrix type, to demonstrate the computational performance see in Figures 10-23
and Figures 24-37. Finally, we apply our proposed algorithm to recover RGB image, when PSNR of 10000th

and number of iterations 43 PSNR and grey image, when PSNR of 10000th and number of iterations 34
PSNR compared to PVSEGM, see in Figures 38-43. Our algorithm is more efficient than PVSEGM see in
Table 2 and 3.
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