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Closure Operators and Connectedness in Bounded
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Abstract. In this paper, we characterize both closed and strongly closed subobjects in the category
of bounded uniform filter spaces and introduce two notions of closure operators which satisfy weakly
hereditary, idempotent and productive properties. We further characterize each of T; (j = 0,1) bounded
uniform filter spaces using these closure operators and examine that each of them form quotient-reflective
subcategories of the category of bounded uniform filter spaces. Also, we characterize connected bounded
uniform filter spaces. Finally, we introduce ultraconnected objects in topological category and examine the
relationship among irreducible, ultraconnected and connected bounded uniform filter spaces.

1. Introduction

There are many basic concepts of analysis that are not available in General Topology such as uniform
convergence, uniform continuity, Cauchy continuity, Cartesian closedness, completeness, total bounded-
ness, hereditary of quotients, etc. Topologists have made several approaches to deal with this inadequacy
in the form of Kent convergence spaces [31]; quasiuniform spaces [22]; generalized topological spaces
[20]; seminearness spaces [30] and nearness spaces [26] but failed to overcome all the above mentioned
deficiencies. Then in the realm of Convenient Topology, a basic structure was introduced by Preuss in 1995,
named as semi-uniform convergence space that contains almost all the above mentioned concepts [38]. In
addition to it, Preuss defined pre-uniform convergence spaces by removing the symmetric condition from
semi-uniform convergence spaces [39]. This idea of Preuss was further extended by Leseberg [33, 34] in
2018 and 2019 in the form of bounded uniform filter spaces. Interestingly, not only PUConv; the category of
pre-uniform convergence spaces and uniformly continuous maps; are embedded in b-UFIL; the category
of bounded uniform filter spaces and bounded continuous maps; but also Born; the category of bornolog-
ical spaces and continuous maps; can easily be embedded in b-UFIL as its subcategories. Moreover, the
category b-UFIL forms a strong topological universe [33].

Closure operators are one of the foremost ingredients in not only Categorical Algebra but also in Cate-
gorical Topology. In the sense of Kuratowski closure operators, coreflections have been characterized in the
category Top are found to be much finer than the classical closure operators [25]. Epireflective subcategories
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has been defined in Top using closure operators by Hong [29] and Salbany [41]. Galois equivalence between
conclusive factorization systems in idempotent and weakly hereditary closure operators in Top is given
by Nakagawa [37]. Moreover, closure operators have played a vital role in defining diagonal theorems
(referred in [13, 15, 17, 23, 24, 27, 28, 42, 44]), i.e. generalization of the renowned fact that a space S is T5 if
and only if the diagonal Ag is closed in S X S. In a topological category, closure operators are defined by
Dikranjan and Guili [16] where the epimorphisms of the full-subcategories of a topological categories are
characterized by using them and suitable closure operators were formed in random topological categories
(see in [5, 6, 9, 21, 40]). Both in Topology and Algebra various examples can be found where closure
operators and their relations with other subcategories are studied inclusively [16, 19].

The notion of closedness and strongly closedness in arbitrary topological categories over sets were
investigated by Baran [2, 3]. In addition, by the assistance of closedness, the generalization of the classical
topological properties such as the notions of normal objects; Hausdorffness; compactness; perfectness;
connectedness; (completely) regular and soberness are characterized in any topological categories over sets
[2,4,6,8,10,11].

The aims of this paper are stated as under:

(i) to characterize both closed and strongly closed subobjects in the category b-UFIL and to prove that
they form favourable closure operators in the sense of [16] which satisfy the fundamental properties
such as (weakly) hereditary, idempotent and productivity.

(i) to characterize Ty and T; b-UFIL spaces with respect to these closure operators and examine that each

of these subcategories of Ty and T; b-UFIL spaces are quotient-reflective and discuss the relationship
among them.

(iii) to give characterization of both connected and strongly connected bounded uniform filter spaces in
the sense of Baran;

(iv) to introduce ultraconnected objects in topological category, and to characterize irreducible (resp.
ultraconnected) bounded uniform filter spaces and examine their relationship with connected objects.

2. Preliminaries

For arbitrary topological categories G and H, the functor § : G — H is said to be a topological functor
or the category G is said to be a topological category over H if (i) & is concrete (amnestic and faithful),
(if) & consists of small fibers, and (iii) every &-source has a unique initial lift, i.e., if for every source
(fi + X = (Xi, Gi))ier there exists a unique structure C on X such that g : (Y1) — (X, () is a morphism if and
only if for eachi € I, fio g : (Y,n) — (X;,(;) is a morphism. Moreover, a topological functor is called a
discrete (resp. indiscrete) if it has a left (resp. right) adjoint. In addition, a functor is called a normalized
topological functor if subterminals have a unique structure ([1, 39]).

A filter ¢ on A is a non-empty collection such that finite intersection of elements of ¢ is in ¢, and every
superset of a set in ¢ is in ¢. If @ € ¢ then ¢ is an improper filter otherwise it is a proper filter. We write ¥ (A)
for the set of all filters on A. Let v € A, then [v] =9 = [{v}]] = (W C A : v € W} is a filter on v. Similarly,
[U={WcA:W>U}isafilteron U C A.

Lemma 2.1. ([12]) Let A be any set, n and y be filters on A X A, and h : A — X be a function. Then:
i) (hxhy(nny)=hxhnnhxh)yyand (hxhnu (hxh)yy c (hxh)(nuUy).
(i) Ifn C y, then (h x h)yn C (h X h)y, and if y is a proper filter on X X X, then y C (hh™' X hh™1)y.

Definition 2.2. ([33]) Let X be any non-empty set, % c P(X) be a non-empty boundedness on X with
bounded subsets as elements and i C ¥ (X X X) be a non-empty set of uniform filters on cartesian product
of X with itself. A pair (©%,1)) is said to be a bounded uniform filter structure (or b-UFIL structure) on X
and the corresponding triplet (X, ®%, 1)) is known as bounded uniform filter space (or b-UFIL space) on X
if the following axioms hold:
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(b-UFIL 1): E’ C E € ©X implies E’' € ©%;
(b-UFIL 2): x € X implies {x} € ©%;
(b-UFIL 3): E € ©X\0 implies [E] X [E] € ¢;
(b-UFIL 4): ¢ e Y and ¢ Cc ¢’ € F(X x X) implies ¢’ € .
A b-UFIL space (X, %, 1) is a symmetric b-UFIL space provided that the following axiom holds:
(b-UFIL 5): ¢ € ¢ implies ¢! € ¢;

A symmetric b-UFIL space (X, ©%, ) is a symmetric bounded uniform limit space provided that the following
axiom holds:

(b-UFIL 6): c € Y and ¢’ € Y impliescN¢’ € Y;
A b-UFIL space (X, ©%, ) is a bornological b-UFIL space provided that the following axiom holds:
(b-UFIL 7): E,E' € ©X implying EUE € ©%, and ¢ € ¢ implies E X E" € ¢ for some E € ©%;

Let (X, ©%, ¥x) and (Y, oY, Yy) be a pair of b-UFIL spaces and & : X — Y be a map. Then £ is called
bounded uniformly continuous (or buc) map if E € ®% implies i(E) € ®"; and ¢ € ¢x implies (h X h)(c) € Vy;
where (h X h)(c) ={VcYxY:3AUec|hxhU] cV}with (hxh)[U] :={(hxh)(xy): (x,y) €U} =
{(h(x), h(y)) - (x, y) € U}

We denote b-UFIL as the category of b-UFIL spaces and buc maps. Similarly, sb-UFIL (respectively
LIMsb-UFIL) as the category of symmetric b-UFIL spaces (respectively the category of symmetric b-UFIL
limit spaces) and buc maps. Furthermore, BONb-UFIL is the category of bornological b-UFIL spaces and
buc maps.

Definition 2.3. (cf. [33])

(i) For given a family of b-UFIL spaces (Xj, @Xj,lpj) jel and maps (h]- X > Xj)jd. The initial b-UFIL
structure on X is represented by (©%,1)), where ©* := {E C X : Ij[E] € ©%), Vj € I} and ¢ :=
F(X?) : (h; x h)j)(c) € ¥j, Vj € I} with X* := X x X.

(ii) A b-UFIL structure on X is indiscrete if (©%, ) := (P(X), F (X?)).

(iii) For given a family of b-UFIL spaces (X;, ©%/,1;) )]{61 and maps (#; : X; — X)je. The final b-UFIL
structure on X is represented by (©%, 1), where © [EcX:3Jiel, HE € ©% : EChj[Ejl}uDX :=
Pyu{lal:aeXland Y :={ce F(X?):Fje,dcjep;: (h xh)(g])Cg}U{xxx xe XU P(Xz)

(iv) A b-UFIL structure on X is discrete if (©%, ¢) := (DX, i), where ;s := {% X  : x € X} U {P(X?)}.

Remark 2.4. 1. A bornological b-UFIL structure on X is discrete if (©%, V) = (Dbom, W4is), where D;f) =
{E c X : E is finite} [33].

2. The category PUConv is isomorphic to DISb-UFIL (category of discrete b-UFIL spaces and buc maps)
[33].

3. The category SUConv is isomorphic to DISsb-UFIL (category of discrete symmetric b-UFIL spaces
and buc maps) [33].
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3. Closed and strongly closed subsets of bounded uniform filter spaces

In this section, we define notion of closedness in b-UFIL spaces by characterizing closed and strongly
closed subobjects in the category b-UFIL.

Let X be any set and p € X. We define the wedge product of X at p as the two disjoint copies of X at p and
denoteitas X\, X. Fora pointx € X \/, X we write it as x; if x belongs to the first component of the wedge

product otherwise we write x, that is in the second component. Moreover, X? is the cartesian product of X.

Definition 3.1. (cf. [2])
(i) AmapA4, : XV, X — X2 is said to be principal p-axis map provided that

P j=1,
A ::{ E;,Z;; ;’=2,

(i) AmapV, : X/, X — Xis said to be fold map at p provided that

Vp(xj)=x, j=1,2.

Similarly, we define the infinite wedge product of X at p as the infinitely countable disjoint copies of X
identifying at p and denote it as \/,” X.
For a point x € V/,,’ X we write it as x; if it belongs to the i component of the infinite wedge product.

Definition 3.2. (cf. [2, 3])
(i) Amap Ay @V, X — X is said to be infinite principal p axis map provided that
A;"(x]-) =@p - ,p,\x/-/,p,...)l Viel
" place
(i) Amap Vy* 1V’ X — Xis said to be infinite fold map at p provided that
V;‘J(xj) =x, Vjel

Definition 3.3. (cf. [3]) Amap Q : §X = E — E/F, where F C E and E/F = (E\F) U {%]}, is said to be the
quotient map or the epi map provided that it identifies F to x and is identity at E\F.

Definition 3.4. (cf. [2,3]) Let § : G — Set be a topological functor and X € Obj(G) with §(X) = E and
p €L.

A ve
(i) {p} is closed provided that initial lift of §-source {\/;° E - §X® = E® and \/;° E . §DE = E} is
discrete.

(if) F c X is closed provided that {x} (image of F) is closed in X/F or F = 0.
(iii) F C X is strongly closed provided that X/F is Ty at % or F = 0.
(iv) If F = E = @ provided that F is both closed and strongly closed.

Remark 3.5. 1. In Top, all closed sets reduce to the classical closed sets, and set A is strongly closed
provided that A is closed and for a ¢ A there exists an open set N4 containing A such thata ¢ Ny [5].

2. In T; Top, then closed sets and strongly closed sets coincide with each other [5].
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3. In general, there is no relation between closed and strongly closed sets of an arbitrary topological
category [3].

Theorem 3.6. (cf. [32]) Let (X, ©%, 1)) be a b-UFIL space and p € X. Then (X, 0%, ) is Ty at p if and only if for all
x € X with x # p, the conditions below hold.

(i) {x,p} ¢ ©F,
(ii) [x] x[pl ¢ ¢ and [p] X [x] ¢ ¢,
(iti) ([x] x [x]) N ([p] % [p]) € .

Theorem 3.7. Let (X, ©%,1) be a b-UFIL space and p € X. Then {p} is closed in X if and only if for all x € X with
x # p, the conditions below hold.

(i) {x,p) ¢ O,
(i) [x]x[p] ¢ Yor[p]l x[x] ¢,
@iii) ([x] % [x]) n([p] x [p]) ¢ .

Proof. Let {p} be closed in X. We show that the above conditions (i) — (iv) hold. Let {x,p} € ®"»* for x # p
and W = {x1,x,} € ©"7%. Since Vi W = {x} € DX, and mAyW = mAXW = {x,p} € ©F, AXW = {p} € ©F
for k > 3, where m; : X* — X for k € I are the projection maps. By Definitions 2.2, 2.3, and 3.4(i), a
contradiction. Hence, {x, p} ¢ ©X.

Next, suppose that [x] X [p] € i for some x # p. Let ¢ = [x1] X [x2]. Clearly, (V;" X V;")g = [x] X [x] € Yais,
(nlA;" X nlA;")g = [x] X [p] € ¥, (nzA;" X nzA;")g = [p] X [x] € 1, and (nkA;" X nkA;")g = [p] X [p] € ¢ for
k > 3, a contradiction. It follows that either [x] X [p] ¢ ¢ or [p] X [x] & .

Further, suppose that ([x] x [x]) N ([p] X [p]) € ¢ for some x # p. Assume that ¢ = ([x1] X [x1]) N ([x2] X [x2]).
Since (V,” x V°)c = [x] X [x] € Yuis, (MA; X AP = (mA) X A )e = ([x] X [x]) N ([p] X [p]) € ¢, and
(nkA;" XRkA;")g = [pIX[p] € ¢ fork > 3, a contradiction to the closedness of {p}. Thus, ([x]x[x])N([p]X[p]) ¢ ¢.

Conversely, let us assume that the conditions (i) — (iv) hold. Let %X, E) be the initial structure induced
by Vp* 1 VX — (X, D%, ¢4is) and Ay 1 VX — (X¥,0%,9%), where (D, ¢45) and (©X7, ™) are discrete
b-UFIL structure on X and product b-UFIL structure on X*, respectively. We show that (@XV+X,1)) is a
discrete b-UFIL structure on V,;°X. Let W € ©""* and VW e DX,

If V;"’W =0, then W = 0.

Suppose VW # 0, it indicates that V)W = {x} for some x € X. If x = p, then W = {p}. Suppose
x # p. Then we show that W = {x;} for all j € I and the case W C {x1,x2,x3,...} can not happen. Let
W = {x1, x5} then, nkA;"W ={x,p} ¢ X (fork=1,2) by the assumption and by Definition 2.2(b-UFIL 1), any
set containing W can not be in ®"7*. Hence, W = {x;} (j € I) and consequently, ®"7* = D"»'¥, the discrete
b-UFIL structure on vy X.

Next, let ¢ € E By Definition 2.3(i), (V,;° X V}')c € DX and (A X A )c € 1 for k € I. We need to
show that ¢ = [x;] x [x;]1 (j € I), ¢ = [p] x [plor ¢ = [0] = P(V;"X)Z.

If (VX V°)c = [0], then ¢ = [0] = P(V;"X)Z.

Suppose (V;" X V;")g = [x] X [x] for some x € X. If x = p, since (V;")‘l{p} ={p; = ,p,p, ...} s0
c=I[ppp .- Nxlppp.. )l

If x # p, then (V;Q X V;")g = [x] x [x], then either {x;,x},,...,x;,} X {xj,x},,...,xj,} € cor {x1,xp,...} X
{X1,XZ,...} [Sen

If B={xj,xj,,...,xj,} X{xj,,Xj,,...,xj,} € ¢, there exists a finite subset Ny of ¢ so that ¢ = [Ng]. Clearly,
No € B = {xj,xj,,...,xj,} X {xj;,x),,...,x;,} and if j, # js (r,s = 1,2,...,m), then {{x;} X {x; }} # Np and
{fcr}x ), {2} x{xal, .. {xj, X, }} # No since in particular fork = 1, j» = 1,and js = 2, (m Ay Xm Ay ) ([x1]x
[xa]) = [xIx[p] & ¥, and (A X AS) ([ 1x [ DX DN -0 ([, 1xEx, D) = (X DN ApIXp) ¢ v,
using the second and the third conditions respectively.

If B = {x,xp,...} X {x1,x2,...} € ¢, there exists a finite subset Ny of ¢ so that ¢ = [Np]. Clearly,
No € B ={x1,x2,...} X {x1,%2,...}. The following cases for Ny can not happen.
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(@) {{xi} x {x;}, i,j € I} # N since (njA;" X njA;")(g) =[x] X [p] &€ ¥ or [p] X [x] & ¢ (for all j € I), using the
condition (ii).

(b) {x1,x2,...1x{x1,x2,...} # Nosince (eAy X AP ) ([x1 X [x2]) = (IXIX[xXDO([PIX [P DO (XX [PDN([P]X[x]) €
Y (for k € I). By Definition 2.2(b-UFIL 3) and the condition (i) of our supposition, if {x,p} ¢ @ then
[x, p] X [x, p] = ([x] X [x]) N ([p] X [p]) N ([x] X [p]) N ([p] X [x]) € ¢. Otherwise, [{x, p}] x [{x, p}] C [x] X [p]
and by Definition 2.2(b-UFIL 4), it concludes that [x] X [p] € 1, a contradiction to the condition (ii).

(c) Forr,s >1ands <7, {x;, X;41,...} X {Xs, Xs11,...} # Np as (njA;’f X n]-A;")(g) =([x]x[x) N (pl x[ph N
([x] x [p]) N ([p] x [x]) ¢ ¢ (for all j € I), by the similar argument as in above part (b).

(d) {{x;} x{xj}, j € I} # Np since (n]-A;" X T(]-A;O)(g) = ([x] x [x]) n ([p] x [p]) ¢ ¢ (for all j € I), using the
condition (iii).

(e) Forsome fixed r, {{x;}x{x;}, j € JU{{x;}x{xrr1}} # No or {{x;}x{x;}, j € BU{x )X {241}, {xra5} % {x:}} # No
or {{xj} X {xj}, j € I} U {x,} X {xpa}, {xra} X {22}, {2705} X {20} # No, since (A7 X AT)(C) =
([x] x [x]) N ([p] % [p]) ¢ ¢ (for all j € I), using the condition (iii).

Therefore, we must have ¢ = [x;] X [x;] (j € [) or ¢ = [0] or ¢ = [(p,p,p,..- )] X [(p,p.p,...)], and
consequently, by definitions 2.2, 2.3 and 3.4(i), the singleton {p} is closed in X. O

Theorem 3.8. Let (X, ©%,1)) be a b-UFIL space, 0 # F ¢ X, W € ©X and ¢ € 1. For every x,y € X with x ¢ F and
y€F,

(i) QW) 2 {x, x} ifand only if W 2 {x, y}.

)
(ii) (Qx Q)¢ C [x] x [*]ifand only if ¢ C [x] X [y] or ¢ U ([x] X [F]) is proper.
(iii) (Q X Q)c C [x] x [x] if and onl if ¢ C [y] X [x] or ¢ U ([F] X [x]) is proper.
)

(iv) (Q@xQ)c < (I X [x]) N ([x]x [x]) if and only if ¢ 0 (IF] X [F]) < (Ix] X [x]) N ([F] x [F]) and ¢ U ([F] X [F])
is proper,

where Q : X — X/F is a quotient map defined in Definition 3.3.

Proof. (i) Let {x, x} € Q(W). Then it follows that Q7' ({x, x}) € Q"1(Q(W)) C W and therefore, {x, y} € W, for
allx¢ Fand y € F.

Conversely, suppose that W 2 {x, y}, for all x ¢ F and y € F. By Definition 3.3, it follows that Q(W) 2
Qllx, 1)) = (x, ).

(ii) Let (QXx Q)c C [x] x[x] for¢c € Y and x ¢ F. If ¢ ¢ [x] X [y] and ¢ U ([x] X [F]) is improper
for some y € F, then U N ({x} X F) = 0 for some U € ¢. It follows that (x,z) ¢ U for all z € F, and
(OxQ)({x}x{z}) ¢ (QxQ)(U) € (QxQ)c, whichimplies that ({x}x{x}) ¢ (OxQ)c. Therefore, (QxQ)c ¢ [x]x[x],
a contradiction to the assumption. Thus, ¢ C [x] X [y] or ¢ U ([x] X [F]) is proper for all x ¢ F and y € F.

Conversely, assume that ¢ C [x] X [y] or ¢ U ([x] X [F]) is proper. We claim that (Q X Q)¢ C [x] X [*]. If
¢ € [x] X [y], then we get (Q x Q)c € (Qx Q)([x] X [y]) = (Q x Q([x] X [*].

If ¢ U ([x] X [F]) is proper, then V N (x X F) # @ forall V € ¢. Let M € (Q X Q)c. Then, there exists some
U € ¢ so that (QxQ)(U) € M. Hence, UN(xXF) # 0, as cU ([x] X [F]) is proper. It follows that for some y € F,
(Ix} x {y}) € U, and (Q x Q)({x} x {y}) € (Q x Q)(U) c M, which implies that ({x} X {*}) € M. Consequently,
M € ([x] X [*]) and hence, (Q X Q)¢ C [x] X [x].

(iii) The proof is similar as we have done above in part (ii).

(iv) Let (Q x Q)¢ c ([x] x [x]) N ([*] x [*]). We first show that ¢ U ([F] x [F]) is proper. As opposed,
assume that ¢ U ([F] X [F]) is improper, then U N (F X F) = 0 for some U € ¢. We note that (Q X Q)(U) €
(QxQ)c C ([x] x [x]) N ([*] x [*]) € ([*] x [*]), by the assumption. It follows that ({*} X {x}) € (Q x Q)(U).
Thus, for some ({a} X {b}) € U, we have (Q x Q)({a} X {b}) = {*} X {x} implying that ({a} x {b}) e UN (F X F), a
contradiction, and it shows that ¢ U ([F] X [F]) must be proper.
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Next, we show that ¢ N ([F] X [F]) € ([x] X [x]) N ([F] x [F]). Let U € ¢ N ([F] x [F]). We prove that
U’ e ([x] x [x]) N ([F] x [F]), because U € ¢ N ([F] x [F]) implies U € ¢ and F X F ¢ U’. By the assumption,
we get (Q x Q)U’) € (Qx Q) C ([x] X [x]) N ([x] x [x]) = (Q x Q)([x] x [x]) N (Q x Q)[F] x [F]) =
(Q x Q)((Ix] X [x]) N ([F] X [FD), hence (Q x Q)(U") € (Q x Q)(([x] x [x]) N ([F] x [F])). It follows that there
exists some V € ([x] X [x]) N ([F] X [F]) such that (Qx Q)(V) C (Qx Q)(U"). Further, V € ([x] X [x]) N ([F] X [F])
implies that V € ([x] X [x]) and V € ([F] X [F]), ie., VN(EFXF) # 0, and V € VN (F X F). Also, we
have V.c VN (FXF) = (Qx Q) QO xQ)V)) c (Qx Q) (QxQ)U")) c U'. Therefore, V c U and

€ ([x] x [x]) N ([F] x [F]) and thus by the arbitrariness of U’, ¢ N ([F] X [F]) € ([x] x [x]) N ([F] x [F]).

Conversely, let ¢ N ([F] x [F]) € ([x] x [x]) N ([F] x [F]) and ¢ U ([F] X [F]) is proper. We claim that
(QxQ)c C ([x] X [x]) N ([*] x [*]). First, we show that (Q X Q)¢ C ([*] X [*]). As opposed assume that
(QxQ)c ¢ ([*x]x[*]). Then there exists some M C (Q X Q)¢ such that ({x} X {x}) ¢ M. Since M C (Q X Q)g, it
follows that there exists some U € ¢ such that (Q x Q)(U) ¢ M. Hence, UN (F X F) # @, since ¢ U ([F] X [F]) is
proper, and we have (QxQ)(UN(FXF)) c (QxQ)(U) € M, whichimplies that ({x}x{*}) C M, a contradiction.
Thus, we must have (Q x Q)¢ C ([*] x [x]). Now, (Q x Q)(c N ([F] X [F])) = (Q x Q)c N (Q x Q)([F] x [F]) =
(Q@x Q)N ([*x]x[*]) = (QxQ)s. Also, c N ([F] x [F]) € ([x] X [x]) N ([F] x [F]) by the assumption, therefore
(Q%xQ)c =(QxQ)(cN(FIx[F]) € (QxQUIxI x [xD) N ([FI1 X [F])) = ([x] X [x]) N ([*] x [*]). O

Theorem 3.9. Let (X,©%,¢) be a b-UFIL space, O # F C X is closed if and only if for each x,y € X with x ¢ F,
y € Fand ¢ € 1, the conditions below hold:

(i) {x,y} ¢ ©F,
(ii) ¢ € [x] X [y] and ¢ U ([x] X [F]) is improper (or ¢ € [y] X [x] and ¢ U ([F] X [x]) is improper),
@iii) ¢ N ([FI X [F]) € ([x] % [x]) N ([F] X [F]) or ¢ U ([F] X [F]) is improper.

Proof. Let F be non-empty closed set. Then, by Definition 3.4, {*} is closed in X/F since F is nonempty.
By Theorem 3.7, for all x € X/F with x # %, {x,*} ¢ ©XF, [x] x [*x] € ¢ (or [*] x [x] ¢ ¥x/r), and
([x] x [x]) N ([*] X [*]) € ¥x/r, where (@X/F,1x/r) is the quotient b-UFIL structure on X/F induced by
Q: X — X/F. By Definition 2.3(ii), forall ¢ € ), x ¢ F,and W € ©X, we get Q(W) 2 {x, %}, (QXQ)c ¢ [x]X[*]
(or (@ x Q)¢ ¢ [*] x[x]) and (Q X Q)¢ ¢ ([x] X [x]) N ([x] x [*]) if and only if by Theorem 3.8, {x,y} ¢ W,
and it follows by Definition 2.2(b-UFIL 1) that {x, y} ¢ ©%, ¢ ¢ [x] X [y] and ¢ U ([x] X [F]) is improper (or
¢ € [yl x [x] and ¢ U ([F] X [x]) is improper), and ¢ N ([F] X [F]) € ([x] X [x]) N ([F] x [F]) or ¢ U ([F] X [F]) is
improper. [

Theorem 3.10. Let (X, ©%, ) be a b-UFIL space, @ # F C X is strongly closed if and only if for each x,y € X with
x ¢ F,y e Fandc €, the conditions below hold:

(i

) {x,y) ¢ ©F,
(ii) ¢ € [x] X [y] and ¢ U ([x] X [F]) is improper,
)

(iif) ¢ € [y] x [x] and ¢ U ([F] X [x]) is improper,
(iv) ¢ N([FTx [F]) € ([x] x [x]) N ([F] X [F]) or ¢ U ([F] X [F]) is improper.

Proof. Let F be strongly closed. Then, by Definition 3.4, X/F is T; at x since F is non-empty. By Theorem
3.6, for all x € X/F with x # %, {x, x} ¢ @%X/F, [x] X [x] ¢ ¥, [*] X [x] ¢ ¥x/r and ([x] X [x]) N ([*] X [*]) & ¥x/F,
where (©X/F, Yx/r) is the quotient b-UFIL structure on X/F induced by Q : X — X/F. By Definition 2.3(ii),
forallc € ¢, x ¢ Fand W € ©%, hence we get Q(W) 2 {x, %}, (Q x Q)¢ ¢ [x] X [*], (Q X Q)¢ ¢ [%] X [x], and
(Qx Q)¢ & ([x] X [x]) N ([*] x [*]) if and only if by Theorem 3.8, {x, y} ¢ W which concludes by Definition
2.2(b-UFIL 1) that {x, y} ¢ ©%, ¢ ¢ [x] x [y] and ¢ U ([x] X [F]) is improper, ¢ € [y] X [x] and ¢ U ([F] X [x]) is
improper, and ¢ N ([F] X [F]) € ([x] x [x]) N ([F] X [F]) or ¢ U ([F] X [F]) is improper. [

Theorem 3.11. 1. Let h : (X, ©%, Yx) = (Y, oY, Py) be a buc map between two b-UFIL spaces. If G C Y is
closed, then h™'(G) is closed in X.
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2. Let (X, 0%, 1) be a b-UFIL space. If F C X is closed and E C F is closed, then E C X is closed.
Proof. (1) Let G C Y be closed and for all x, y € X with x ¢ h™1(G), y € h"}(G) and ¢ € 1x, we show that
(i) {x v} & O
(ii) ¢ & [x] x [y] and ¢ U ([x] X [F"}(G)]) is improper (or ¢ & [y] X [x] and ¢ U ([h"1(G)] X [x]) is improper).
(iii) ¢ N ([N [FHG)D) € ([x] x [x]) N (G x [F71(G)]) or ¢ U ([h1(G)] x [h71(G)]) is improper.
Note that h(x), h(y) € Y, h(x) ¢ G, h(y) € G and (h X h)c € Py. Since G is closed, by Theorem 3.9, we have
(i) {h(x), h(y)} ¢ O

(ii) (hx h)c € [h(x)] x [A(y)] and (h x h)c U ([h(x)] x [G]) is improper (or (h X h)c € [h(y)] X [h(x)] and
(h x h)c U ([G] x [h(x)]) is improper).

(i) (h x h)c N ([G] x [G]) € ([h(x)] % [h(x)]) N ([G] x [G]) or (h x h)c U ([G] x [G]) is improper.

Suppose {h(x),h(y)} ¢ ©Y. Clearly, {x,y} ¢ ©X, otherwise, if W = {x,y} € ®%, then h(W) = h({x,y}) =
{h(x), h(y)} € Y, a contradiction.

Suppose (h x h)c € [h(x)] X [h(y)], then by Lemma 2.1, clearly it appears that ¢ € [x] X [y]. Next,
we conclude that ¢ U ([x] X [171(G)]) is improper. On contrary, suppose that it is proper. By Lemma 2.1,
(hxh)cU([h(x)IX[G]) € (ixh)cU([h(x)IX[A(E~H(G))]) € (hxh)cU(xh) (XX~ (G)])) € (hxh)(cU([xIX[FH(G)])),
and consequently (i X h)c U ([h(x)] X [G]) is proper, a contradiction. Thus, ¢ U ([x] X [k}(G)]) is improper. In
a similar manner, ¢ ¢ [y] X [x] and ¢ U ([h"1(G)] X [x]) is improper.

Suppose (h x h)c N ([G] X [G]) € ([h(x)] x [1(x)]) N ([G] x [G]), then clearly ¢ N ([i"(G)] x [17(G)]) &
([x] x [x]) N ([F"1(G)] X ["(G)]) by Lemma 2.1. Now we show that ¢ U ([h"1(G)] X [1"1(G)]) is improper.
As opposed assume that it is proper. Then, (h X h)c U ([G] X [G]) C (h x h)c U ([h(h™(G))] x [h(h™(G))]) €
(hxh)cU(hxh)([hYG)]x[h"HG)]) € (hxh)(cU ([h1(G)]x [F"1(G)])), and consequently (i x h)c U ([G] X [G])
is proper, a contradiction. Thus, ¢ U ([h1(G)] x [h™1(G)]) is improper.

(2) Let Fc X and E C F be closed, and forall x, y € X withx ¢ E, y € E, and ¢ € {x, we show that

(i) {x,y} ¢ ©F,
(ii) ¢ € [x] X [y] and ¢ U ([x] x [E]) is improper (or ¢ & [y] X [x] and ¢ U ([E] X [x]) is improper).
(iii) ¢ N ([ETx [E]) € ([x] % [x]) N ([E] X [E]) or ¢ U ([E] X [E]) is improper.

If x ¢ F. Since F C X is closed, then by Theorem 3.9, we have {x, y} ¢ 0%, ¢ ¢ [x] x [yl and ¢ U ([x] X [F])
is improper (or ¢ € [y] X [x] and ¢ U ([F] X [x]) is improper), and ¢ N ([F] X [F]) € ([x] % [x]) N ([F] x [F]) or
cU([F]X[F]) is improper. Consequently, since E C Fis closed, we get {x, y} ¢ ©%, ¢ ¢ [x]x[y] and cU([x]X[E])
is improper (or ¢ € [y] X [x] and ¢ U ([E] X [x]) is improper), and ¢ N ([E] X [E]) € ([x] X [x]) N ([E] x [E]) or
¢ U ([E] X [E]) is improper.

If x € F. Since the inclusion map i : (F, ©F,¢r) — (X, 0%, 1) is an initial lift and ¢ € Y. By Definition
2.3(i), it follows that (i X i)™'¢ € ¢r. Note that (i X i)™'¢c = ¢ U ([F] x [F]) and ¢ C (i x i)((i X i) *¢). Since E C F
is closed and x, y € F with x ¢ E, y € E, by Theorem 3.9

(1) {x’ ]/} ¢ ®X/

(i) (ixi)¢c ¢ [x]x[y] and consequently ¢ & [x] X [y], and (i xi)"'c U ([x] X [E]) = ¢ U ([x] X [E]) is improper
(or ¢ € [y] X [x] and ¢ U ([E] X [x]) is improper),

(iif) (ixi)~'e N ((E]x[E]) = ¢ N ([E]x [E]) & ([x] x [x]) N ([E] x [E]) or (i x )~'c U ([E]1 X [E]) = ¢ U ([E] X [E])
is improper.

Thus, E ¢ X is closed (since EC F). O
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Theorem 3.12. 1. Let h : (X,0%,1x) — (Y,0Y,¢y) be a buc map between two b-UFIL spaces. If G C Y is
strongly closed, then h™\(G) is strongly closed in X.

2. Let (X,©%,¢) be a b-UFIL space. If F C X is strongly closed and E C F is strongly closed, then E C X is
strongly closed.

Proof. The proof is analogous to the proof of Theorem 3.11 by using Theorem 3.10 instead of Theorem
39. O

4. Closure operators in bounded uniform filter spaces

Let G be a set based topological category, X € Obj(G) and C be the closure operator of G in the sense of
[16, 18].

Definition 4.1. Let (X, ©%, ) be a b-UFIL space and F C X.
(i) clPVFIL(F) = N{M c X : F ¢ M and M is closed} is known as the closure of F.

(ii) scl®VFIL(F) = n{M C X : F ¢ M and M is strongly closed} is known as the strong closure of F.

Theorem 4.2. scl"YIL(F) and cl>WIL(F) are (weakly) hereditary, idempotent and productive closure operators of
b-UFIL.

Proof. The proof is straightforward by combining Theorems 3.11, 3.12, Definition 4.1, and Theorems 2.3,
2.4, Proposition 2.5 and Exercise 2.D of [18]. O

For a topological category G and a closure operator C of G.
(i) Goc ={1X e G:ye C({x}) and x € C({y}) implies x = y with x, y € X}.
(i) Gic ={X € G: C({x}) = {x} for each x € X}.

Remark 4.3. For G = Top, C = K (the ordinary closure operator), Top,. reduces to T; space for j = 1,2
respectively.

Theorem 4.4. An object (X, ©%,1)) is in b-UFILy if and only if for all x,y € X with x # v, there exists F; C X
strongly closed subset of X such that x ¢ F1 and y € Fy, or there exists Fy C X strongly closed subset of X such that
y ¢ Fyand x € F,.

Proof. Suppose that (X, ®%,1)) € b-UFILgs and x, y € X with x # y. We get y ¢ scl({x}) and x ¢ scl({y}). If
x ¢ scl({y}), then it follows by Definition 4.1(ii) that there exists F; C X strongly closed subset of X such that
x ¢ F1 and y € Fy. Similarly, if y ¢ scl({x}), then again by Definition 4.1(ii) it follows that there exists F, C X
strongly closed subset of X such that y ¢ F, and x € F,.

Conversely, suppose the first condition hold, i.e., for all x, y € X with x # y, there exists F; C X strongly
closed subset of X such that x ¢ F; and y € F;. By Definition 4.1(ii), we get x ¢ scl({y}). If the later holds,
ie, forall x,y € X with x # y, there exists F, C X strongly closed subset of X such that y ¢ F, and x € F,.
Then again by Definition 4.1(ii), it results that y ¢ scl({x}) and consequently (X, oX, Y) € b-UFILysy. O

Theorem 4.5. An object (X, ©%, ) is in b-UFILq if and only if for all x, y € X with x # y, {x, y} ¢ ©%, there exists
F1 c X closed subset of X such that x ¢ F1 and y € Fi, or there exists Fy C X closed subset of X such that y ¢ F, and
x € F».

Proof. The proof is similar to the proof of Theorem 4.4 by using part (i) of Definition 4.1 instead of part
(ii). O
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Theorem 4.6. An object (X,0%,1) is in b-UFIL1yy if and only if for all x,y € X with x # y, {x,y} ¢ O,
[xIx [yl & ¢, [yl x [x] ¢ ¢ and ([x] < [x]) N ([y] x [y]) ¢ ¢

Proof. Suppose that (X, eX, V) € b-UFILysy and x, y € X with x # y. We get scl({x}) = {x} forall x € X. It
follows that {x} is strongly closed and consequently by Theorem 3.10, for any y € X with x # y, {x, y} ¢ ©%,
[x] X [y] & ¢, [y] X [x] &  and ([x] x [x]) " ([y] x [y]) & ¥ (for all x # y).

Conversely, suppose the condition hold, i.e., {x, y} ¢ ©%, [x] X [y] ¢ ¥, [y] x [x] & ¥ and ([x] X [x]) N ([y] X
[y]) ¢ ¢ (for all x # y). It follows that {x} is strongly closed by Theorem 3.7. Consequently, scl({x}) = {x} for
all x € X and hence (X, ®%,1) € b-UFILyyy. [

Theorem 4.7. An object (X, ©%,1)) is in b-UFILy if and only if for all x,y € X with x # y,
(i) {x,y} ¢ ©,
(i) [x] x [yl & ¢ (or [y] X [x] & ¥),
(iii) ([x]x [x]) 0 ([y] X [y]) ¢ ¢
Proof. The proof is analogous to the proof of Theorem 4.6 by using Theorem 3.9 instead of Theorem 3.10. [
Theorem 4.8. Let (X, ©%, 1)) be a b-UFIL space. Then the following are equivalent:
(i) (X,0%,)is Tp.
(ii) (X, 0%, 1) € b-UFIL,,.

(iii)  (a) {x,y} ¢ ©F,
(b) [x]Ix[yl ¢y (or [yl x[x] & ),
(¢) (xIx[xD Nyl x [y]) & .

Proof. The proof can be easily deduced from Definition 3.4, Theorem 3.9 and Theorem 4.4 of [32]. O
Theorem 4.9. Let (X, ©X, 1)) be a b-UFIL space. Then, for all x,y € X with x # y., the following are equivalent:
(i) (X,0%,¢)is T;.
(ii) (X,©%, 1) € b-UFIL;,.

(iii) (a) {x,y} ¢ ©F,
(b) [xIx[yl ¢,
(© [yl x[x]¢y,
(d) ([x]x [x]) N ([y] X [y]) & ¢.

Proof. The proof can be easily deduced from Definition 3.4, Theorem 3.10 and Theorem 4.6 of [32]. [

Remark 4.10. Each of the subcategories b-UFILyy, k = 0,1 and b-UFILyy, k = 0,1 are quotient-reflective
in b-UFIL, i.e., they are isomorphism-closed, full, closed under formation of finer structures, products and
subspaces.

Corollary 4.11. Let (X, ®%, 1)) be a bornological b-UFIL space. Then the following are equivalent:
(i) (X, ©%,¢)is To.
(ii) (X,©%,1) € BONb-UFIL,,.
(i) [x] % [y] ¢ ¥ (or [y] x [x] & ¢) and (1] X [x)) N (] X [y]) & . for all x, y € X with x # .
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Proof. The proof can be easily deduced from Definition 3.4 and Corollary 4.9 of [32]. [
Corollary 4.12. Let (X, ®%, 1) be a bornological b-UFIL space. Then the following are equivalent:
(i) (X, 0%, ¢)is T;.
(i) (X,©%,1) € BONb-UFIL.
(iii) [x] %[yl € ¥, [y] X [x] & ¢ and ([x] % [x]) N ([y] X [y]) & ¢, for all x, y € X with x # y.
Proof. The proof can be easily deduced from Definition 3.4 and Corollary 4.10 of [32]. O
Corollary 4.13. Let (X, ®%,1)) be a discrete symmetric b-UFIL space. Then the following are equivalent:
(i) (X, 0%, ) is Tp.
(ii) (X,©%,1)is T1.
(iii) (X, ©%,¢) € BONsb-UFIL,,.
(iv) (X, ©%,¢) € BONsb-UFILy.
(v) (X,0%, 1) € SUConvy.
(vi) [x]x [yl & ¢ and ([x] X [x]) N ([y] X [y]) & ¢, forall x,y € X with x # y.

7037

Proof. The proof can be easily deduced from Definition 3.4, Corollary 4.18 of [32] and Theorem 4.5 of

[12]. O

5. Connected and strongly connected bounded uniform filter spaces
Definition 5.1. (cf. [11]) Let § : G — Set be a topological functor, X € Obj(G) with F C X.
(i) Fis said to be open if and only if its complement F° is closed in X.

(ii) F is said to be strongly open if and only if its complement F° is strongly closed in X.
gly op y p gly

Theorem 5.2. Let (X, ©%, ) be a b-UFIL space, O # F C X is open if and only if for each x, y € X withx € F, y € F°,

and ¢ € P, the conditions below hold:
(i) {x,y) ¢ OX
(if) ¢ € [x] X [y] and ¢ U ([x] x [F°]) is improper (or ¢ € [y] X [x] and ¢ U ([F°] X [x]) is improper).
(i) ¢ N ([F]x[F]) € ([x] x [x]) N ([F] X [F<]) or ¢ U ([F°] x [F€]) is improper.

Proof. The proof can be easily deduced from Definition 5.1 and Theorem 3.9. O

Theorem 5.3. Let (X, ©%,¢) be a b-UFIL space, ® # F C X is strongly open if and only if for each x,y € X with

x € F, y € F°, and ¢ € 1, the conditions below hold:
(i) {x, v} ¢ %
(ii) ¢ & [x] X [yl and ¢ U ([x] X [F*]) is improper.
(iii) ¢ & [y] X [x] and ¢ U ([F°] X [x]) is improper.
iv) ¢ N([FT X [F]) & ([x] x [x]) N ([F] x [F°]) or ¢ U ([F°] X [F?]) is improper.

Proof. The proof can be easily deduced from Definition 5.1 and Theorem 3.10. O
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Definition 5.4. (cf. [11]) Let & : G — Set be a topological functor, X € Obj(G) with ¥(X) = B.

(i) X is said to be connected if and only if } and X are the only subsets of X that are both strongly open
and strongly closed.

(if) X is said to be strongly connected if and only if § and X are the only subsets of X that are both open
and closed.

Remark 5.5. 1. In Top the notion of strongly connectedness reduce to the usual connectedness [11].

2. In T; Top the notions of connectedness and strongly connectedness reduce to the usual connectedness
and coincide [11].

3. In general, there is no relation between connectedness and strongly connectedness [11].

Theorem 5.6. Let (X, ©%,1)) be a b-UFIL space, O # F C X be a proper subset of X. Then (X, ©X, ) is connected if
and only if one of the conditions below hold:

(i) for some x,y € X withx ¢ F, y € F, and ¢ € 1, either {x,y} € ®X, or ¢ C [x] x [y] or ¢ U ([x] X [F]) is proper
(or ¢ € [y] x [x] or ¢ U ([F] X [x]) is proper), or ¢ N ([F] X [F]) € ([x] x [x]) N ([F] x [F]) and ¢ U ([F] X [F]) is
proper.

(ii) for somex,y € X withx € F, y € F¢, and ¢ € 1, either {x, y} € ®%, or ¢ C [x] X [y] or ¢ U ([x] x [F¢]) is proper
(or ¢ C [yl x[x]or ¢ U([F¢]x [x]) is proper), or c N ([F] X [F°]) € ([x] X [x]) N ([F°] X [F°]) and ¢ U ([F°]x [F°])
is proper.

Proof. The proof can be easily deduced from Definition 5.4(ii) and Theorem 3.10. [

Theorem 5.7. Let (X, ©%, 1) be a b-UFIL space, 0 # F C X be a proper subset of X. Then (X,©%,1) is strongly
connected if and only if one of the conditions below hold:

(i) for some x,y € X withx ¢ F, y € F, and ¢ € 1, either {x,y} € ®%, or ¢ C [x] x [y] or ¢ U ([x] X [F]) is proper
and ¢ C [y] X [x] or ¢ U ([F] X [x]) is proper, or ¢ N ([F] X [F]) € ([x] x [x]) N ([F] X [F]) and ¢ U ([F] X [F]) is
proper.

(ii) for some x,y € X withx € F, y € F¢, and ¢ € 1, either {x, y} € ®%, or ¢ C [x] X [y] or ¢ U ([x] X [F°]) is proper
qnd ¢ C [yl x[x] or c U([F°] x [x]) is proper, or c N ([F] X [F°]) € ([x] X [x]) N ([F°] X [F°]) and ¢ U ([F°] X [F])
is proper.

Proof. The proof can be easily deduced from Definition 5.4(iii) and Theorem 3.9. [
Theorem 5.8. Let (X, ©, 1)) be a b-UFIL space. If (X, ©%, 1)) is strongly connected, then (X, ®%,) is connected.
Proof. The proof can be easily deduced from Theorems 5.6 and 5.7. [

Example 5.9. Let X = {k,I,m} and (©%,1) be a b-UFIL structure on X with ®X = {0, {k}, {I}, {m}} and ¢ =
{101, [k] x [k, [1] X [1], [m] x [m], [k] x [1], [k] X [m]}. Then, (X,©X,v) is connected but not strongly connected.

6. Irreducible and ultraconnected bounded uniform filter spaces

Irreducibility or hyperconnectedness is one of the important concept of Topology and Algebraic geom-
etry. The cofinite topology on any infinite set and the Zariski topology on a prime ideal both are irreducible
spaces. However, standard topology is not irreducible.

In 2020, T.M. Baran [7] extended the classical irreducibility of topology to set based topological category.

Definition 6.1. (cf. [7]) Let & : G — Set be a topological functor, X € Obj(G).
(i) Xis called irreducible if E and F are closed subobjects of X with X = EUF, then either E = X or F = X.
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(if) X is called strongly irreducible if E and F are strongly closed subobjects of X with X = E U F, then
either E= X or F = X.

Remark 6.2. (i) In Top the notion of irreducibility coincides with usual irreducibility [14].
(ii) In Top every irreducible space is connected but converse implication is not true in general [7].
(iif) In T1Top the notion of irreducibility and strongly irreducibility coincide [7].

The concept of ultraconnectedness is also one of the primary concept of Topology since it is stronger
than path-connectedness, and it has been studied by several authors under the name of strongly connected
[35, 36, 43].

We first introduce the notion of hyperconnectedness in a set-based topological category and exam-
ine the relationship among ultraconnectedness, strongly ultraconnectedness, connectedness and strongly
connectedness in a b-UFIL space.

Definition 6.3. Let § : G — Set be a topological functor, X € Obj(G).

(i) X is called ultraconnected if G and H are open subobjects of X with X = G U H, then either G = X or
H=X.

(if) Xis called strongly ultraconnected if G and H are strongly open subobjects of X with X = GU H, then
either G = Xor H = X.

Remark 6.4. In Top the notion of ultraconnectedness coincides with classical ultraconnectedness [36].

Theorem 6.5. Let (X, T) be a topological space.

(i) If (X, 7) is ultraconnected, then (X, t) is connected but in general the converse implication is not true.
(ii) In general, there is no relationship between irreducible and ultraconnected topological spaces.

Proof. (i) It follows from Theorem 1 of [36] but the converse is not true in general. For example, X = {k, [, m}
and t = {0, {k}, {k, I}, {k, m}, X} is connected but not ultraconnected.

(i) Let X = {kI,m} and 71 = {0,{k}, {k, I}, {k, m}, X}, and 72 = {0,{I},{m},{l, m}, X} be two topological
spaces on X. Then (X, 11) is irreducible but not ultraconnected. Similarly, (X, 7;) is ultraconnected but not
irreducible. O

Theorem 6.6. Let (X, ©%, 1)) be a b-UFIL space.

(i) If (X,©%,¢) is irreducible (resp. ultraconnected), then (X,0%,1) is strongly irreducible (resp. strongly
ultraconnected).

(i) If (X, ©%, 1) is irreducible (resp. ultraconnected), then (X, ®%,1)) is strongly connected.
(iii) If (X, ©X, 1) is strongly irreducible (resp. strongly ultraconnected), then (X, X, 1)) is connected.

Proof. (i) Let (X,©%,1)) be irreducible (resp. ultraconnected). Suppose E and F are two strongly closed
(resp. strongly open) subsets of X with E U F = X. By Theorems 3.9 and 3.10 (resp. Theorems 5.2 and 5.3),
E and F are closed (resp. open) subsets of X. Since (X, ®%, 1)) is irreducible (resp. ultraconnected) and by
Definition 6.1 (resp. Definition 6.3), E = X or F = X, and consequently, (X, ®%,1)) is strongly irreducible
(resp. strongly ultraconnected).

(ii) Let (X, ©%, ¢) be irreducible (resp. ultraconnected) but not strongly connected. By the Theorem 5.7,
there exists a non-empty proper subset F of X satisfying for every x,y € X withx ¢ F, y € F, and ¢ € ¢,
{x,y} ¢ ©%, ¢ ¢ [x] x [y] and ¢ U ([x] x [F]) is improper, ¢ & [y] X [x] and ¢ U ([F] X [x]) is improper, and
cN([FIX[F]) € ([x] % [x]) N ([F] X [F]) or ¢ U ([F] X [F]) is improper, and for all x, y € X withx € F, y € F°, and
ce, {x,y} ¢ ©X, ¢ ¢ [x] X [y] and c U ([x] X [F°]) is improper, ¢ & [y] X [x] and ¢ U ([F] x [x]) is improper, and
c N ([FTX[F]) € ([x] x [x]) N ([F°] X [F°]) or ¢ U ([F°] X [F¢]) is improper. By Theorem 3.9 (resp. by Theorem
5.2), F and F¢ are closed (resp. open) and F U F* = X, which leads to a contradiction.

(iii) The proof is analogous to the proof of (ii). O
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Example 6.7. Let X = {k,I,m,n} and (©%,1)) be a b-UFIL structure on X with % = {0, {k}, {I}, {m}, {n}} and

P = {[0], [k] x [k], [11x [1], [m] % [m], [n] X [n], [k] X [1], [k] X [m], [k] X [n], [1] X [nn], k] % [{2, m}], (1] [{1, n}], [k, 3]
[11, [tk, ] x [n], [tk, 1}] X [{L, n}]}. Then (X,®%,1)) is connected but neither strongly irreducible nor strongly
ultraconnected.
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