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Abstract. In this paper we discuss about the ap−Henstock-Kurzweil integrable functions on a topological
vector spaces. Basic results of ap−Henstock-Kurzweil integrable functions are discussed here. We discuss
the equivalence of the ap−Henstock-Kurzweil integral on a topological vector spaces and the vector valued
ap−Henstock-Kurzweil integral. Finally, several convergence theorems are studied.

1. Introduction

A further approach to the problem of the primitives was introduced in 1957 by J. Kurzweil and in
1963 by R. Henstock, independently. They defined a generalized version of the Riemann integral that
is known as the Henstock-Kurzweil integral, also abbreviated as the HK-integral. The advantage of the
HK-integral is that, it is very similar in construction and in simplicity to the Riemann integral and it
has the power of the Lebesgue integral. Moreover, in the real line, the HK-integral solves the problem
of the primitives. The definition of the HK-integral is constructive, as in the Riemann integral, and the
value of the HK-integral is defined as the limit of Riemann sums over suitable partitions of the domain
of integration. The main difference between the two definitions is that, in the HK-integral, a positive
function, called gauge, is used, instead of the constant utilized in the Riemann integral to measure the
fineness of a partition (one can see [1, 3–6, 9, 13]). This gives a better approximation of the integral near
singular points of the function. For integration of approximate derivative the situation turned out to
be more complicated. Most of researchers effort in this field was exerted into finding relations between
approximate Perron-type integrals and the Denjoy-Khintchine integral and its approximately continuous
generalizations. The approximately continuous Perron integral (AP-integral) was introduced by Burkill
[2]. Park et al. [12] studied the convergence theorem for the AP-integral based on the condition UAP and
pointwise boundedness. Park et al. [11] defined the AP-Denjoy integral and show that the AP-Denjoy
integral is equivalent to the AP-Henstock-Kurzweil integral and the integrals are equal. Skvortsov and
Sworowski [14] brought to attention on the known results which are stronger than those contained in the
work of [11]. They show that some of them can be formulated in terms of a derivation basis defined by
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a local system of which the approximate basis is known to be a particular case. They also consider the
relation between the σ−finiteness of variational measure generated by a function and the classical notion
of the generalized bounded variation. For a wide class of bases, Riemann-type integral is equivalent to the
appropriately defined Perron-type integral (see [10]). Skvortsov et al. [15] say only that Burkill’s ap−integral
is covered by ap−Henstock-Kurzweil integral. Shin et al. [16] introduced the concept of approximately
negligible variation and give a necessary and sufficient condition that a function F be an indefinite integral
of an ap−Henstock integrable function f on [a, b]. They characterized absolutely ap−Henstock integrable
functions by using the concept of bounded variation. Yoon [17], studied about vector valued ap−Henstock-
Kurzweil integrals. They discussed some of its properties, and characterize ap−Henstock integral of vector
valued functions by the notion of equiintegrability. It is known that for Banach valued function Henstock-
Lemma fail for Henstock-Kurzweil integral but Henstock-Lemma holds for a locally convex spaces (see
[7]). Yoon [17], has not discussed about Henstock-Lemma for their integrals. This is an open area till now.
We motivate from the article [7], that vector valued concept of the Henstock-Kurzweil integral is not at all
sufficient for overall studies of the Henstock-Kurzweil integral. We introduce the concept of ap−Henstock-
Kurzweil integrals on topological vector spaces and investigates several convergence theorems in this
settings.

2. Preliminaries

Let X be a Hausdorff topological space. We say that X is a topological vector space (in short TVS) if X is
a real vector space and the operations, vector addition and scalar multiplication, are continuous.

Definition 2.1. Let X be a non empty set. A family F = {Aν : ν ∈ N} of subsets of X is a filter in X if the
following are satisfied:

1. For every ν ∈N, Aν , ∅.
2. For A,B ∈ F then A ∩ B ∈ F.
3. If A ∈ F, B ⊆ X and A ⊆ B then B ∈ F.

The filter F converges to x ∈ X if for every θ−nbd U (θ is zero vector of X) there exists A ∈ F such that
A − x ⊆ U.We say F is Cauchy if for every θ−nbd U there exists A ∈ F such that A − A ⊆ U.

Definition 2.2. Given a measurable set E ⊂ [a, b], a set valued function∆ : E→ 2[a,b] is an ap θ−nbd function
(ANF) on E if for every x ∈ E, there exists an ap θ−nbd Ux ⊂ [a, b] of x such that ∆(x) = Ux.

Definition 2.3. Let f : [a, b] → X, F : [a, b] → X and let E ⊂ [a, b] be a measurable. F is said to satisfy the
approximate strong Lusin conditions on E(F ∈ ASL(E)) if for every Z ⊂ E of measure zero and for every
ε > 0 there exists an ANF ∆ on E such that

S(|F|,P) −A) ∈ U

for a θ−nbd U.

Let I denote all non degenerated closed intervals of [a, b] and λ be the Lebesgue measure on [a, b].We
denote an interval function F : I → R with the end point F(t) = F([a, t]), t ∈ [a, b]. That is, F([e, f ]) =
F( f ) − F(e), [e, f ] ∈ I. Throughout the paper measurable functions are mean by λ−measurable.
Recalling when X is a Banach space the ap−Henstock-Kurzweil integral is as follows

Definition 2.4. ([17, Definition 2.1]) A function f : [a, b] → X is ap−Henstock integrable on [a, b] if there
exists a vector A ∈ X with the following property: for each ε > 0 there exists a choice S on [a, b] such that
||S( f ,P) − A|| < ε whenever P is a tagged partition of [a, b] that is subordinate to S. The vector A is called

the ap−Henstock integral of f on [a, b] and is denoted by (ap)
∫ b

a f .
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3. Basic properties of ap−Henstock-Kurzweil integral on topological vector spaces

An approximate θ−nbd of x ∈ [a, b] is a measurable set Sx ⊂ [a, b] containing x as a point of density. Let
E ⊂ [a, b]. For every x ∈ E ⊂ [a, b], choose an approximate θ−nbd Sx ⊂ [a, b] of x. Then S = {Sx : x ∈ E} is a
choice on E.We assume each point of Sx is a point of density of Sx.
A tagged interval ([u, v], x) is said to be fine to the choice S = {Sx} if u, v ∈ Sx and x ∈ [u, v]. A tagged sub
partition P = {([ui, vi], ti) : 1 ≤ i ≤ n} of [a, b] is a finite collection of non overlapping tagged interval in [a, b]
such that ti ∈ [ui, vi] for i = 1, 2, . . . ,n, then we say P is S−fine. If P is S−fine and ti ∈ E for each 1 ≤ i ≤ n,
then P is (S,E)−fine. If P is S−fine and [a, b] =

⋃n
i=1[ui, vi], then we say P is S−fine tagged partitions of [a, b].

Definition 3.1. (1) f : [a, b] → R is approximately continuous at c ∈ [a, b] if there exists a measurable
θ−nbd U ⊂ [a, b] with density 1 at c such that f (x) − f (c) ∈ U whenever |x − c| < δ.

(2) We say f is approximately differentiable at c if there exists a real number A and a measurable θ−nbd
U ⊂ [a, b] such that the density of U at c is 1 and f (x)− f (c)

x−c − A ∈ U.

For a tagged partition P = {([ui, vi], ti) : 1 ≤ i ≤ n} of [a, b] we define the Riemann sum as

S( f ,P) =
n∑

i=1

f (ti)(vi − ui) if it exists.

Definition 3.2. A function f : [a, b] → X is ap−Henstock-Kurzweil integrable on [a, b] if there exists an
A ∈ X such that for any θ−nbd U of [a, b] there exists a gauge δ on [a, b] whenever

P = {([xi−1, xi], ti) : 1 ≤ i ≤ n}

is S−fine of [a, b],we have
S( f ,P) −A ∈ U.

We callA is the ap−Henstock-Kurzweil integral of f on [a, b]. HereA = (ap)
∫ b

a f .

Let us consider AP([a, b],X) be the set of all ap−Henstock-Kurzweil integrable X−valued functions
on [a, b]. The function f is ap−Henstock-Kurzweil integrable on a measurable set E ⊆ [a, b] if fχE is
ap−Henstock-Kurzweil integrable on [a, b],where χE is the characteristic functions on E. In this settings the
Henstock-Kurzweil integrable functions are certainly the ap−Henstock-Kurzweil integrable.

Definition 3.3. If f ∈ AP([a, b],X) and u ∈ [a, b], then F(u) =
∫ u

a f is called ap−primitive of the ap−Henstock-
Kurzweil integral f .

If P = {([xi−1, xi], ti)}ni=1 is any S−fine tagged partition on [a, b] then we denote

F(P) =
n∑

i=1

F([xi−1, xi]).

Proposition 3.4. Every given function f : [a, b]→ X have at most one ap−Henstock-Kurzweil integral on [a, b].

Proof. Suppose f is ap−Henstock-Kurzweil integrable on [a, b]. If possible, let us consider A1 and A2 are
the ap−Henstock-Kurzweil integral of f with A1 , A2. Let U1 and U2 be disjoint θ−nbds of A1 and A2,
respectively. The fact from the θ−nbd, U1−A1 and U2−A2 are θ−nbd. Say W1 = U1−A1 and W2 = U2−A2,
then for every S−fine tagged partition P1 and P2 of [a, b] with P1 is δ1−fine and P2 is δ2− fine tagged on [a, b]
we have

S( f ,P1) −A1 ∈W1 (1)
S( f ,P2) −A2 ∈W2. (2)

Let δ(x) = min(δ1(x), δ2(x)) for all x ∈ [a, b] and P be a S−fine tagged partitions of [a, b].Clearly P is δ1, δ2−fine.
Hence, S( f ,P) ∈W1 +A1 = U1 and S( f ,P) ∈W2 +A2 = U2. This is a contradiction. So,A1 = A2.
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Proposition 3.5. If X be a topological vector space. If α is a real number and f , 1 ∈ AP([a, b],X) then α f , f + 1 ∈
AP([a, b],X) with

(ap)
∫ b

a
α f = α(ap)

∫ b

a
f

and

(ap)
∫ b

a
( f + 1) = (ap)

∫ b

a
f + (ap)

∫ b

a
1.

Proof. Let us assume (ap)
∫ b

a f = A. If α = 0, then (ap)
∫ b

a α f = α(ap)
∫ b

a f .Assume α , 0, let U be θ−nbd then
there exists a S−fine partition P of [a, b] such that

S( f ,P) − A ∈
U
α
.

Thus,

S(α f ,P) − αA = α(S( f ,P)) − α f
= α(S( f ,P) −A)
∈ U.

Hence α f ∈ AP([a, b],X) and (ap)
∫ b

a α f = α(ap)
∫ b

a f .

For the second part, let (ap)
∫ b

a f = A1 and (ap)
∫ b

a 1 = A2. If U be θ−nbd then there exists a θ−nbd V (say)
such that V + V ≤ U. Consequently, S( f ,P1) − A1 ∈ V for a S−fine partition P1 on [a, b]. With the similar
fashion for a S−fine tagged partition P2 on [a, b],we have S( f ,P2)−A2 ∈ V. If P = min(P1, P2), then we have

S( f + 1,P) = S( f ,P) + S(1,P).

Thus,

S( f + 1,P) − (A1 +A2) = S( f ,P) −A1 + S(1,P) −A2

∈ V + V ⊆ U.

Hence f + 1 ∈ AP([a, b],X) and (ap)
∫ b

a f + 1 = (ap)
∫ b

a f + (ap)
∫ b

a 1.

Proposition 3.6. Let X be a topological vector space. If f ∈ AP([a, b],X) and f ∈ AP([b, c],X) then f ∈ AP([a, c],X)
and

(ap)
∫ c

a
f = (ap)

∫ b

a
f + (ap)

∫ c

b
f .

Proposition 3.7. (Cauchy’s criterion) Let X be a complete topological vector space. Then f ∈ AP([a, b],X) if and
only if for every θ−nbd U there exists a S−fine gauge δ on [a, b] such that

S( f ,P1) − S( f ,P2) ∈ U

for each pair S−fine partitions P1 and P2 of [a, b].

Proof. Let us assume (ap)
∫ b

a f = A. If U is a θ−nbd then there exists a θ−nbd V such that V − V ⊆ U. From
the definition of the ap−Henstock-Kurzweil integral S( f ,P) − A ∈ V for a S−fine partition P of [a, b]. Now
for P1, P2 as S−fine partitions of [a, b],we have

S( f ,P1) − S( f ,P2) = (S( f ,P) −A)) − (S( f ,P2) −A2)
∈ V − V ⊆ U.
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Let Aδ = {S( f ,P) : P is S-fine tagged partition of [a, b]}. Also, assume

A = {Aδ : δ − is S-fine tagged on[a, b]}.

Then clearly A is filter base in X. From the completeness of X we get A → A for some A ∈ X. If A is
ap−Henstock-Kurzweil integrable then our claim will over. Since A → A then Aδ − A ⊆ U. Thus if P is
S−fine partition on [a, b] then we have S( f ,P) −A ∈ U. So, f ∈ AP([a, b],X).

Theorem 3.8. Let X be a complete topological vector space. A function f : [a, b]→ X is in AP([a, b],X) if and only
if the following conditions are assure:
For each θ−nbd U there exists a S−fine gauge δ on [a, b] such that if P = {([xi−1, xi], ti)}ni=1 is a S−fine tagged partition
of [a, b], also there exist open sets Ui : i = 1, 2, ..,n with

∑n
i=1 Ui ⊆ U and a function F : [a, b]→ X such that

F(xi) − F(xi−1) − (xi − xi−1) f (ti) ∈ Ui f or all i. (3)

Proof. We assume f ∈ AP([a, b],X) and F(x) = (ap)
∫ x

a . If U is θ−nbd then there exists a S−fine gauge δ, a
S−fine tagged partition P = {(xi−1, xi], ti)}ni=1 of [a, b] such that F(b) − S( f ,P) ∈ U. Now,

F(b) − S( f ,P) =
n∑

i=1

(F(xi) − F(xi−1) − (xi − xi−1) f (ti)).

Now from the given fact
n∑

i=1
Ui ⊆ U, clearly we get

F(b) − S( f ,P) ∈ Ui ∀ i.

Conversely, f : [a, b] → X assure the equation (3) for each θ−nbd U there exists a S−fine gauge δ on [a, b]
such that if P = {([xi−1, xi], ti)}ni=1 is a S−fine tagged partition of [a, b], also there exist open sets Ui : i = 1, 2, ..,n
with

∑n
i=1 Ui ⊆ U. For,

F(b) − F(a) − S( f ,P) =
n∑

i=1

(F(xi) − F(xi−1 − (xi − xi−1) f (ti)) − F(a)

=

n∑
i=1

(F(xi) − F(xi−1 − (xi − xi−1) f (ti))

∈

n∑
i=1

Ui ⊆ U.

Hence f ∈ AP([a, b],X).

Theorem 3.9. (Saks-Henstock Lemma) Let f : [a, b] → X be ap−Henstock-Kurzweil integrable on [a, b] and
F(x) = (ap)

∫ x

a f for each x ∈ [a, b], ε > 0. Suppose S is a choice on [a, b] such that for a θ−nbd U gives S( f ,P)−F(P) ∈
U. If P0 = {(J j, t j)}sj=1 is any S−fine tagged sub-partition of [a, b] then

S( f ,P0) − F(P0) ∈ U

Moreover
s∑

j=1

(S( f ,P0) − (ap)
∫

J j

f ) ∈ U.

Proof. The proof of the result follows from Theorem 3.8.
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Now we discuss the topological vector space valued ap−Henstock-Kurzweil integrals are equivalent as
the Banach valued ap−Henstock-Kurzweil integrals that discussed by Ju Han Yoon [17].

Theorem 3.10. Let (X, ||.||) be a Banach space. Then the ap−Henstock-Kurzweil integral are equivalents to the
ap−Henstock-Kurzweil integrals for a topological vector spaces. That is, Definition 2.4 and Definition 3.2 are
equivalent.

Proof. Definition 2.4 implies Definition 3.2: Let U be θ−nbd, then there exists ε > 0 such that Bε ⊆ U,where

Bε = {x ∈ X : ||x|| < ε}.

Suppose f satisfies Definition 2.4, then there exists a vector A ∈ X with the following property:: for each
ε > 0 there exists a choice S on [a, b] such that

||S( f ,P) −A|| < ε

whenever P is S−fine tagged partition of [a, b]. Thus

S( f ,P) −A ∈ Bε ⊆ U.

Therefore f satisfies Definition 3.2.
Conversely, assume f satisfies Definition 3.2. Let ε > 0, then for a S−fine partition P on [a, b] we have

S( f ,P) −A ∈ Bε.

Thus ||S( f ,P) −A|| < εwhenever P is S−fine partition on [a, b]. This completes the proof.

4. Convergence theorem on ap−Henstock-Kurzweil integrals and its relation to topology

In the literature the Denjoy convergence theorem generalizes the Vitali Convergence Theorem. The Per-
ron convergence theorem generalizes the Lebesgue Dominated Convergence Theorem. The ap−Henstock-
Kurzweil convergence theorem generalized Dominated convergence theorem, also the convergence theo-
rem for the ap−Henstock-Kurzweil integral based on the condition UAP and pointwise boundedness. Here
we study the Dominated Convergence Theorem for the apHenstock-Kurzweil integral and the convergence
theorem for the apHenstock-Kurzweil integral based on the condition uniformly apHenstock-Kurzweil
integrals and the pointwise boundedness.

Definition 4.1. Let f : [a, b] → X be measurable function. Let { fk} be a sequence of integrable function
defined on [a, b]. The sequence { fk} is said to be ap−Henstock-Kurzweil equi-integrable on [a, b] if { fk} is
ap−Henstock-Kurzweil integrable on [a, b] if for each ε > 0 there exists a choice S such that

S( fk,P) − (ap)
∫ b

a
fkdµ ∈ U

hold for each S−fine partition P = {([xi−1, xi], ti)}ni=1 of [a, b], a θ−nbd U and n ∈N.

It is observe that if ( fn) be a pointwise bounded sequence of function fn : [a, b]→ X and let E be subset
of [a, b] such that λ(S \ E) = 0. Then the sequence ( fn) is ap−Henstock-Kurzweil integrable if and only if
fn.χE is ap−Henstock Kurzweil integrable.

Theorem 4.2. Let { fk}k be a non-decreasing sequence of ap−Henstock-Kurzweil integrable functions on [a, b] and let
f = lim

k
fk. If lim

k→∞
(ap)
∫ b

a fk < ∞ then f is ap−Henstock-Kurzweil integrable on [a, b] and (ap)
∫ b

a f = lim
k→∞

(ap)
∫ b

a fk.
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Proof. From the definition of ap−Henstock-Kurzweil equi-integrability of { fk}, for each ε > 0 there exists a
choice S and a θ−nbd U such that

S( fk,P) − (ap)
∫ b

a
fk ∈ U

for each S−fine partition P = {([xi−1, xi], ti)}ni=1 of [a, b] and n ∈ N. Let P be fixed. Since lim
n→∞

fk(x) = f (x) then
there is m0 ∈N such that

S( fk,P) − S( fm,P) ∈ U ∀ k,m > m0.

This implies (ap)
∫ b

a fk − (ap)
∫ b

a fm ∈ U, therefore (ap)
∫ b

a fk of elements of [a, b] is Cauchy and lim
k→∞

(ap)
∫ b

a fk =

A ∈ X exists. This implies

(ap)
∫ b

a
fk −A ∈ U

for m1 ∈ N with k > m1. Let any S−fine partition P[a,b] = {([a, b], t)} of [a, b] and since lim
k→∞

fk(x) = f (x)

then there exists m2 > m1 such that S( fm2 ,P[a,b]) − S( f ,P) ∈ U then S( f ,P[a,b]) − A ∈ U. Therefore f is
ap−Henstock-Kurzweil integrable on [a, b], and

lim
k→∞

(ap)
∫ b

a
fk = (ap)

∫ b

a
f .

Definition 4.3. (1) Let { fk}, {Fk} be sequences of functions defined on [a, b] and let E ⊂ [a, b] be a
µ−measurable set. Then { fk} is said to be uniformly µAP-Henstock-Kurzweil integrable on [a, b] if
for every ε > 0 there exists a (ANF) S on [a, b] such that

S( fk − Fk,P) −A ∈ U

for all k whenever P is S−tagged partitions where Fk is the primitive of fk for each k and U is a θ−nbd.
We denote it as λ −UAP([a, b]).

(2) {Fk} is said to satisfy the uniformly approximate strong Lusin condition on E (i.e., Fk ∈ λ − ASL(E)) if
for every E1 ⊂ E with λ(E1) = 0 and for every ε > 0 there exists an (ANF) S on E such that

S(|Fk|,P) −A ∈ U

whenever P belongs in a S−fine tagged partition P1 of E1 and U is a θ−nbd.

Now we discuss about µAP-Henstock-Kurzweil equi-integrability and uniformly strong Lusin condition
(in short ASL).

Theorem 4.4. Let { fk} be a sequence of functions fk : [a, b] → X and let f : [a, b] → X be any function. If the
followings are holds:

1. { fk} → f (x) a.e. on [a, b],
2. { fk} is ap-Henstock-Kurzweil equi-integrable,

this implies the followings are equivalent:

(a) { fk} is pointwise bounded,
(b) {Fk} is ASL.

Proof. The proof follows from the same technique as used in [8, Lemma 2.2].

Lemma 4.5. Let { fk} be a sequence of measurable functions defined on [a, b] satisfying the following conditions
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1. fk(x)→ f (x) a.e. on [a, b] as k→∞.
2. {Fk} ∈ λ − ASL([a, b]), where Fk is the primitive of fk.
3. { fk} ∈ λ −UAP([a, b]),

then f ∈ AP([a, b],X) and (ap)
∫

[a,b] f = lim
k→∞

(ap)
∫

[a,b] fk.

Proof. The proof is similar as [12, Theorem 3.1].

Theorem 4.6. Let { fk} be a sequence of measurable functions on [a, b] with the followings:

1. { fk} is pointwise bounded on [a, b].
2. { fk} ∈ λ −UAP([a, b]).

then {Fk} ∈ λ − ASL([a, b]), where Fk is the primitive of fk.

Proof. Let Y ⊂ [a, b] of λ(Y) = 0. Let ε > 0. For each i, consider the set Yi = {x ∈ Y : i − 1 ≤ sup
k
λ( fk(x)) < i}.

Choose an open set Oi such that Yi ⊂ Oi and λ(Oi) <
εi
i . As { fk} ∈ λ − UAP([a, b]) then there exists an ANF

S′ on [a, b] and a θ−nbd U such that

S( fk − Fk,P) − (ap)
∫

[a,b]
f ∈ U

for all k whenever P is a S−fine partition of [a, b]. Let δ(x) > 0 on Yi so that (x − δ(x), x + δ(x)) ⊂ Oi when
x ∈ Yi. Let S(x) be defined on [a, b] as

S(x) =
{

S′(x) ∩ (x − δ(x), x + δ(x) i f x ∈ Yi, i = 1, 2, ..,
S′(x) i f x ∈ [a, b] \

⋃
Yi

Let Pi = {([a, b], x) ∈ P : x ∈ Yi} then P =
⋃

i Pi where Pi is in a S−fine partition as well as S′−fine partitions.
By using Saks-Henstock Lemma, we have

S(|Fk|,P) −A ∈ U.

So, {Fk} ∈ λ − ASL([a, b]).

Corollary 4.7. Let { fk} be a sequence of measurable functions defined on [a, b] with the following conditions:

1. fk(x)→ f (x) a.e. on [a, b] as n→∞.
2. { fk} is pointwise bounded on [a, b].
3. { fk} ∈ µ −UAP(Q).

then f ∈ AP([a, b],X)) and (ap)
∫

[a,b] f = lim
n→∞

(ap)
∫

[a,b] fk.

From these above results we can find the following theorem as:

Theorem 4.8. Let { fk} be a sequence of µ−measurable functions on [a, b] with the following

1. fk(x)→ f (x) a.e. on [a, b] as k→∞.
2. { fk} is uniformly bounded on [a, b].

then f ∈ AP([a, b],X)) and (ap)
∫

[a,b] f = lim
n→∞

(ap)
∫

[a,b] fk.

Proof. As | fk(x)| ≤ L for all k and x ∈ [a, b] with a positive constant L. Since fk(x) → f (x) a.e. on [a, b] as
k → ∞. This implies fk and f are measurable and bounded a.e. on [a, b], hence ap−Henstock-Kurzweil
integrable on [a, b]. Now from (2), { fk} is uniformly bounded on [a, b]. Using the Corollary 4.7, we get the
complete proof.
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