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Abstract. On categorical algebras, we define an idempotent filter as an analogous version of Gabriel’s. We
also construct topologies on 2-crossed modules of algebras and categorical algebras.

1. Introduction

Before Poincare, the only relevant topological concept was the Euler characteristic of surfaces whose
name comes from Euler’s article [10] on what is now known as the Euler polyhedron formula. Poincare
[16] revealed his ambition of developing an n-dimensional geometry in his first major topology paper,
the Analysis situs which was followed by five additional papers between 1899 and 1904 [17–21]. These
publications established the area of algebraic topology by providing the first systematic study of topology
and revolutionizing the topic by utilizing algebraic structures to identify between non-homeomorphic
topological spaces. That is Poincare’s methods gave rise to algebraic topology.

Topology is an abstraction of the concept of all coverings, which is a “Grothendieck topology” at one
level and a ”topology on a topos” at a higher degree of abstraction. It is known that there is a bijection
between left exact radicals and hereditary torsion theories in the classical case of Grothendieck categories,
which is a certain form of localization. Both classes are in bijection with right Gabriel topologies in the case
of categories of modules. One of the goals of this work is to develop a categorical algebra equivalent of this
bijection.

Crossed modules [25] were introduced by Whitehead as models for the connected homotopy 2-types.
Categorical algebras are well known at least as an analogue of categorical groups in another category. A
description of categorical algebras in Shammu’s Ph.D. thesis [24] is implicit in more general expositions
of categorical objects by Ellis[9] and Porter [23]. Some light on homotopy 2-types was also shed by Baez,
Crans and Lauda [5, 6] which categorifies 2-groups and Lie 2-algebras.

In his work [24] Shammu constructed a topology on XMod/R, crossed R-modules, and proved that given
a localization on XMod/R a topology can be constructed as defined by Barr-Wells [7]. Similarly to Shammu,
we construct a topology on categorical algebras and 2-crossed (C → R)-modules of algebras. 2-crossed
modules introduced by Conduche [8] as a model for homotopy 3-types. Later commutative algebra case for
2-crossed modules was defined by Ellis [9]. In his studies, Arvasi showed connections between 2-crossed
modules and homotopy 3-types by simplicial methods. For more information on homotopy 3-types see
[1, 4].
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In this paper, we construct a topology on X2Mod/C→R and a topology on categorical algebras analogous
to that given by Shammu for XMod/R. We also show that crossed filters in categorical algebras implies any
localization in Cat/C0 gives a topology.

2. Preliminaries

Let R be a commutative ring with identity. By an R-algebra we mean a unitary R-bimodule A endowed
with an R-bilinear associative multiplication A×A −→ A, (a, a′) 7→ aa′. In this work, we call an algebra as a
commutative algebra over a ring k such that a multiplicative identity is not required.

As an algebraic model of homotopy 2-types, the notion of crossed module was introduced by Whitehead
in [25]. Porter investigated the commutative algebra analogue of crossed modules in [23]. We refer to an
action of r ∈ R on c ∈ C by r · c throughout this text. Let R be a k-algebra with identity and C be a k-algebra
such that R acts on C. A pre-crossed module of algebras is a k-algebra homomorphism ∂ : C −→ R,
∂(r · c) = r∂c for all c ∈ C, r ∈ R and a crossed module if in addition, for all c, c0 ∈ C, ∂c · c0 = cc0. The second
condition is called the Peiffer identity. The triple (C,R, ∂) is used to denote a crossed module.

A morphism of crossed modules from (C,R, ∂) to (C′,R′, ∂′) is a pair of k-algebra morphisms, Φ : C −→
C′andΨ : R −→ R′ such that Φ(r · c) = Ψ(r) ·Φ(c) and ∂′Φ(c) = Ψ∂(c).

A subcrossed module of a crossed module (C,R, ∂) is a crossed module (C′,R, ∂′) such that C′ is an
subalgebra of C and ∂′ = ∂|C′ : C′ −→ R, the restriction of ∂ to C′. We denote the category of crossed
modules by XMod. Note that in the case of a morphism (Φ,Ψ) between crossed modules with the same
base R where Ψ is identity morphism on R, we say that Φ is a morphism of crossed R-modules such that
Φ ◦ ∂′ = ∂. Thus we get a subcategory XMod/R of XMod.

Next, we recall some basic definitions from (cf.[7, 11]).

Definition 2.1. Let C be a small category with pullbacks. Given an object X of C, a subobject is an
equivalence class of monomorphisms i : S ↪→ X where

i � i′ ⇔ ∃φ : S→ S′

is an isomorphism such that i = i′φ.
LetSubX be the set of all subobjects of X. It is possible to extend functor Sub : X→ Sub(X) to Sub : Cop

→

Set. That is, if f : X→ X′ is a morphism and if i′ : S′ → X′ is a subobject of X′ then in a pullback diagram

S //

i
��

S′

i′
��

X
f
// X′

the morphism i is also a monomorphism. Namely when i′ : S′ → X′ is an element of Sub(X′) then the
pullback of i′ along f , i : S → X, is an element of Sub(X) which can be seen as Sub f maps f : S′ → X′ to
i : S→ X.

Definition 2.2. Let R be a ring. A nonempty set E of right ideals of R will be called an idempotent filter on
R [11] if the following conditions hold.

F1 If I a right ideal in R contains some J ∈ E then I ∈ E,

F2 If I ∈ E, then for all a ∈ R, (I.a) = {x ∈ R|ax ∈ I} is in E,

F3 If I is a right ideal of R and there is an element J of E such that (I.J) ∈ E for all j ∈ J, then I ∈ E.

Definition 2.3. A topology on a categoryCwith pullbacks is a natural endomorphism τ of the contravariant
subobject functor, Sub, which is
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1. idempotent: τ ◦ τ = τ,
2. inflationary: A′ ⊆ τ(A′), for any subobject A′ of an object A (where τ(A′) means τA(A′)),
3. order-preserving: If A0 and A1 are subobjects of A and A0 ⊆ A1, then τ(A0) ⊆ τ(A1).

A subobject A0 of A will be called τ − closed [7] in A if τA(A0) = A0.

A closure operator on a topological space is very similar to a topology on a category. However, a
topology on a category does not preserve finite unions. In this manner, the terms dense and closed are
therefore deceptive. However, because it is common in the literature, we keep these terms.

The simplest object of a categorical structure is known as the trivial object. The singleton set {∗} is an
algebra over any ring k with respect to the multiplication defined as k∗ = k for every k ∈ k and the addition
∗ + ∗ = ∗which makes it a trivial algebra. 0 is commonly used to represent trivial algebras (instead of {0}).

We recall the following result from Shammu [24] for a topology over crossed R-modules of algebras.

Proposition 2.4. ([24]) Given an idempotent filter F on R there exists a topology τ on the category XMod/R such
that τ−dense subobjects of (R, 0) are the ideals in F.

3. A topology on categorical algebras

In this section, we give a construction of a topology on categorical algebras. Recall that the categorical
algebra is a category object (internal category [13]) in the category of R-algebras which consists of an object of
objects C0, an object of morphisms C1 together with source and target morphisms s, t : C1 → C0, a morphism
e : C0 → C1 that assigns identities and a composition morphism ◦ : C1 × C1 → C1 satisfying the standard
axioms for categories. In particular, a categorical algebra is a diagram

C1 × C1
◦ // C1

s //
t

// C0

e

__

of R-algebras in which C1 is a small category over C0 with source, target and identity maps s,t,e respectively,
such that se = te = IC0 . If x, y ∈ C0, for an arrow from x to y is represented by a : x → y, then s(a) = x and
t(a) = y. A composition of two arrows a and b is denoted by a ◦ b, if s(a) = t(b). Then, we have t(a ◦ b) = t(b)
and s(a ◦ b) = s(b). Also this composition must be an algebra morphism. This is true if the interchange law
for addition and multiplication

(a ◦ b) + (c ◦ d) = (a + c) ◦ (b ◦ d)

and

(a ◦ b) . (c ◦ d) = (a.c) ◦ (b.d)

are satisfied whenever a◦b and c◦d are defined. We will denote such a categorical algebra as (C1,C0, s, t, e, o).
A morphism ( f1, f0) : (C1,C0, s, t, e, o) −→ (B1,B0, s′, t′, e′, o′) of categorical algebras

C1

t

��

s

��

f1 // B1

s′

��

t′

��
C0 f0

//

e

EE

B0

e′

YY

is a pair of algebra morphisms f1 and f0 compatible with source, target and identity maps. That is
f0s = s′ f1, f0t = t′ f1 and e′ f0 = f1e. These definitions give us the category Cat of categorical algebras.
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Note that if f = ( f1, f0) is a categorical algebra morphism between categorical algebras with the same
base C0, i.e. f0 is identity on C0, then the following triangle

C1

t

��@
@@

@@
@@

@@
@@

@@
@@

@@
@

s

��@
@@

@@
@@

@@
@@

@@
@@

@@
@

f1 // B1

s′

��~~
~~
~~
~~
~~
~~
~~
~~
~~

t′

��~~
~~
~~
~~
~~
~~
~~
~~
~~

C0

e

VV

e′

HH

commutes. Since the composition of two morphisms of categorical algebras over C0 is a morphism of
categorical algebras we get a subcategory Cat/C0 of Cat.

Definition 3.1. A subcategorical algebra, (L1,L0, s′, t′, e′, o) of a categorical algebra (C1,C0, s, t, e, o) is a cate-
gorical algebra such that L1,L0 are subalgebras of C1 and C0 respectively, and the morphisms s′, t′ and e′are
the restrictions of s, t and e, respectively.

We know that the category of crossed modules and cat-groups are natural equivalent due to the Brown-
Spencer theorem [14]. The algebra adaptation of this result has been proved by Porter in [23]. In this section,
we will give a construction of a topology on the category of categorical algebras.

Proposition 3.2. The category Cat/C0 has pullbacks.

Proof. We will construct the pullback object along with a morphism in the category Cat of categorical
algebras which is a more general case.

Let (C1,C0, s, t, e, o) be a categorical algebra and f :D −→ C0 is a morphism of algebras as follows:

C1

s

��

t

��
D

f
// C0

e

YY

Define

f ∗ (C1) = {(d, c1, d1) ∈ D × C1 ×D : s (c1) = d, t (c1) = d1}

t∗ (d, c1, d1) = d1 , s∗ (d, c1, d1) = d , e∗ (d) =
(
d, e f (d) , d

)
. The composition a ◦ b can be given by

a ◦ b = (d, c1, d1) ◦
(
d′, c′1, d

)
=
(
d′, c1 ◦ c′1, d1

)
Next, we show that the interchange law holds for f ∗ (C1) . For xi =

(
di, ci, d′i

)
and i = 1, 2, 3, 4 we obtain

(x1 · x2) ◦ (x3 · x4) =
(
d3d4, (c1 ◦ c2) · (c3 ◦ c4) , d′1d′2

)
(x1 ◦ x3) · (x2 ◦ x4) =

(
d3d4, (c1 · c3) ◦ (c2 · c4) , d′1d′2

)
since (C1,C0, s, t, e, o) is a categorical algebra (c1 ◦ c2) · (c3 ◦ c4) = (c1 · c3)◦ (c2 · c4). Thus interchange law holds
for f ∗ (C1). We also obtain:

t∗ (x1 ◦ x2) = t∗
(
d2, c1 ◦ c2, d′1

)
= d′1 = t∗ (x1)
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s∗ (x1 ◦ x2) = s∗
(
d2, c1 ◦ c2, d′1

)
= d2 = s∗ (x2)

s∗e∗ (d) = d = t∗e∗ (d) = id (d) .

Then ( f ∗ (C1) ,C0, s∗, t∗, e∗, o) is a categorical algebra. Define 1 : f ∗ (C1) −→ C1 by (d, c1, d1) 7→ c1 , then 1 is a
homomorphism and we have

f s∗ = s1 , f t∗ = t1.

Given any categorical algebra (K1,D, s1, t1, e1, o) and a morphism σ : K1 −→ C1, such that f t1 = tσ and
f s1 = sσ, we get the universal morphism Φ : K1 −→ f ∗ (C1) by defining k 7→ (s1 (k) , σ (k) , t1 (k)) . We can
illustrate this situation by the following diagram:

K1

Φ

!!

σ

��s1

��2
22
22
22
22
22
22
22
22
22
22
22

t1

��2
22
22
22
22
22
22
22
22
22
22
22

f ∗(C1)

t∗

��

s∗

��

1 // C1

s

��

t

��
D

e

PP

f0
//

e∗

YY

C0

e

YY

Since the identity morphism is an algebra homomorphism taking D = C0 and f = Id we get pullback
object in Cat/C0 .

Proposition 3.3. Let F be an idempotent filter on C0, then there exists a topology τ on the category Cat/C0 such that

τ − dense subobjects of (C0, 0) are in F where (C0, 0) = C0
s
⇒

t
0 with s(a) = t(a) = 0.

Proof. Consider the subcategorical algebra L1
s′

⇒
t′

C0 of C1
s
⇒

t
C0 for x, y ∈ C0. Define

L̃1(x, y) = {c1 ∈ C1(x, y) : (L, c1) ∈ F}

where

(L1(x, y) : c1) = {c0 ∈ C0 : c1 ◦ c0 ∈ L1(xc0, yc0)}.

1- L̃1(x, y) ⊆ C1(x, y).
2- To show that the composition is well defined, we will show that c1 ◦ c′1 ∈ L̃1(x, z) for c1 ∈ L̃1(x, y) and

c′1 ∈ L̃1(y, z). If c1 ∈ L̃1(x, y), then we obtain

c1 ∈ L̃1(x, y)(L1(x, y) : C1) = {c0 ∈ C0 : C1.C0 ∈ L1(xc0, yc0)} ∈ F,

and if c′1 ∈ L̃1(y, z) we get,

c′1 ∈ L̃1(y, z)(L1(y, z) : C1) = {c0 ∈ C0 : C′1.C0 ∈ L1(yc0, zc0)} ∈ F,

that is

c1 ◦ c′1 ∈ L̃1(x, z)⇔ (c1 ◦ c′1).c0 ∈ L1(xc0, zc0).
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Since

(c1.c0) ◦ (c′1.c0) = (c1 ◦ c′1).c0

we have

c1 ◦ c′1 ∈ L̃1(x, z)

which shows that (L̃1,C0) is a subcategory of (C1,C0). Moreover, the sets L̃1(x, y) are sub-R-modules of
C1(x, y). For c, c′ ∈ L̃1(x, y) we have

(L1(x, y) : c + c′) = {c0 ∈ C0 : (c + c′).c0 ∈ L1(xc0, yc0)}
= (L1(x, y).c) ∩ (L1(x, y).c′) ∈ F,

for c ∈ L̃1(x, y), r ∈ C0,

c ∈ L̃1(x, y)⇒ (L1(x, y).c) = {c0 ∈ C0 : c.c0 ∈ L1(xc0, yc0)} ∈ F

((L1(x, y) : c) : r) = {c′0 ∈ C0 : r ◦ c′0 ∈ (L1(x, y) : c)}
= {c′0 ∈ C0 : c ◦ (r ◦ c′0) ∈ L1(xrc′0, yrc′0)}
= {c′0 ∈ C0 : (c ◦ r) ◦ c′0 : c ◦ r ∈ L1(xr, yr)}
⇒ (L1(x, y) : c ◦ r) ∈ F

⇒ c ◦ r ∈ L̃1(x, y).

Thus L̃1(x, y) is a sub-R-module of C1(x, y). Next, we will show that L̃1(x, x) is a subalgebra of C1(x, x). For
c, c′ ∈ L̃1(x, x) since (L1(x).c) ⊆ (L1(x) : cc′) by F3, (L1(x) : cc′) is in F. Consequently, (L̃1,C0) is a subcategorical
algebra of (C1,C0). Now we will show that τ : Sub→ Sub given by

τ(L1) = L̃1

gives a topology on Cat/C0 . First, we will prove (ii) and (iii).
(ii) Let y : a→ b ∈ L1(a, b) since L1(a, b) ⊆ C1(a, b), then we have

(L1(a, b) : y) = {x ∈ C0 : y.x ∈ L1(ax, bx)} = C0

If y is in L1(a, b) for each x in C0, then y.x is in L1(ax, bx). So

L1(a, b) ⊆ L̃1(a, b) = {c ∈ C1(a, b) : (L1(a, b) : c) ∈ F}

that is we get L ⊆ τ(L).
(iii) Let L1,L′1 be two subcategorical algebras of C1 such that L1 ⊆ L′1. For x ∈ τ(L1(a, b)) = L̃1(a, b), we

have

(L1(a, b) : x) = {c ∈ C1(a, b) : c ◦ x ∈ L1(ax, bx)}

where (L1(a, b) : x) ⊆ (L′1(a, b) : x) which implies

(L1(a, b) : x) = {c ∈ C1(a, b) : c ◦ x ∈ L′1(ax, bx)},

then we have

x ∈ L̃1(a, b) = τ(L1(a, b))

for all a, b ∈ C0.
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(i) To prove that τ is idempotent, we need only check that τ ◦ τ(L1(a, b)) ⊆ τ(L1(a, b)). Let c ∈ τ2(L1(a, b)),
then (L̃1(a, b) : c) ∈ F where

(L̃1(a, b) : c) = {c0 ∈ C0 : c ◦ c0 ∈ L̃1(ac0, bc0)}.

For x ∈ (L̃1(a, b) : c), c ◦ x ∈ L̃1(ax, bx) = τ(L1(ax, bx)), i.e. (L1(a, b) : c ◦ x) ∈ F, then we get

(L1(a, b) : c ◦ x) = ((L1(a, b) : c) : x) ∈ F.

Thus by axiom F3, we obtain (L̃1(a, b) : c) ∈ F. Therefore c ∈ τ(L1) = L̃1 and so τ2(L1 ⊆ τ(L). We get that τ
gives a topology on Cat/C0. Finally, we will show that I ∈ F if and only if τ(I) = Ĩ = C. Suppose I ∈ F, then

τ(I) = Ĩ = {r ∈ C0 : (I : r) ∈ F} = C0

since for each r ∈ C0, (I : r) ∈ F. Conversely, suppose τ(I) = Ĩ = C0, then for all r ∈ C0, we have

(I : r) = {c0 ∈ C0 : r.c0 ∈ I},

since for each c0 ∈ C0 and each r ∈ I, r.c0 is in I and I ∈ F.

4. Free categorical algebra with same base

Using the universal morphism, we can give the free categorical algebra definition as follows: Let
(C1,C0, s, t, e) be an object in Cat/C0 and φ : X −→ C0 be a map from a set X to C0. We say (C1,C0, s, t, e) is a
free categorical algebra if there is a map ψ : X −→ C1 such that sψ = φ, tψ = φ, eφ = ψ for any categorical
algebra

(
C′1,C0, s′, t′, e′

)
in Cat/C0 and a function ψ′ : X −→ C1 with sψ′ = φ, tψ′ = φ and eφ = ψ′, there is a

unique morphism ω : C1 −→ C′1 such that ωψ = ψ′. We show this diagrammatically as :

C1

s
  A

AA
AA

AA

t   A
AA

AA
AA

ω

��

X φ
//

ψ
??��������

ψ′ ��>
>>

>>
>>

> C0

C′1

t′
??~~~~~~~~ s′

??~~~~~~~~

Proposition 4.1. A free categorical algebra on
(
X, f
)

exists in Cat/C0 and is uniquely determined up to isomorphism.

Proof. Let C0 be an algebra and f : X −→ C0 be a function from a set X to C0. Define C1 = C0 < x > as the
free monoid algebra on X. That is an element c in C0 < x > has the form

c =
∑

cixic′i c jx jc′j...cmxmc′m

where x’s ∈ X and the c’s and c′’s ∈ C0. The function f induces morphisms s1 : C1 −→ C0 and t1 : C1 −→ C0
of algebras defined on the generators by s1 (x

¯
) = t1 (x

¯
) = f (x). Let P be the subcategorical algebra Kers1.

Since s1 (P) = t1 (P) = 0, taking C (x) = C1/P we obtain induced morphisms

ε1, ε2 : C (x) −→ C0

then it is easily checked that (C (x) ,C0, ε1, ε2, ex) is a categorical algebra.
Suppose that (C,C0, s, t, e) be a categorical algebra with a morphism ω : X −→ C0 then sω = f = tω , then

there exists a unique morphism ω̄ : C (x) −→ C0, therefore (C (x) ,C0, ε1, ε2, ex) is the required free categorical
algebra.
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Definition 4.2. Let C0 be an algebra. For each x ∈ C0, we take the symbol x
¯

and form the singly generated
free categorical algebra (C1 (x

¯
) ,C0, sx, tx, ex) on ({x

¯
}, ωx) , where ωx takes

x
¯
7→ x ∈ C0 and

sx (x
¯
) = tx (x

¯
) = ωx (x

¯
) = x

then an element (x
¯
) ∈ C1 (x

¯
) will have the form

x
¯

: x −→ x

for some x ∈ C0.

Next, we obtain the coproduct in the category of categorical algebras to get a topology from a localization.

Proposition 4.3. Let (A,C0, s1, t1, e1) and (B,C0, s2, t2, e2) be any two objects in Cat/C0 . Then (A ⋉ B,C0, s∗, t∗, e∗)
is an object in Cat/C0 . Where A ⋉ B is the semidirect product of categorical algebras A and B.

Proof. For injections i1 : A −→ A ⋉ B and i2 : B −→ A ⋉ B take an element
(
α, β
)
∈ A ⋉ B and c ∈ C0. If we

define the morphisms

s∗
(
α, β
)
= s∗ (α, 0) .s∗

(
0, β
)
= s1
(

f
)
.s2
(
1
)

t∗
(
α, β
)
= t∗ (α, 0) .t∗

(
0, β
)
= t1
(

f
)
.t2
(
1
)

e∗ (c) = (i1 ◦ e1 (c) , i2 ◦ e2 (c))

then the proof is clear.

Proposition 4.4. For (A,C0, s1, t1, e1), (B,C0, s2, t2, e2)∈ Cat/C0 , the categorical algebra (A ⋉ B,C0, s∗, t∗, e∗) together
with the morphisms i1 and i2, is the coproduct of the categorical algebras (A,C0, s1, t1, e1) and (B,C0, s2, t2, e2).

Proof. Let (X,C0, sx, tx, ex) be any categorical algebra in Cat/C0 and f1 : A −→ X , f2 : B −→ X be two
morphisms of categorical algebras. Then there is a map ω : A ⋉ B −→ X given by

ω (a, b) = f1 (a) + f2 (b)

is the necessary unique morphism of categorical algebras for the diagram

A
i1 //

f1 ""E
EE

EE
EE

EE
A ⋉ B

ω

��

B
i2oo

f2||yy
yy
yy
yy
y

X

to commute.

Proposition 4.5. The category Cat/C0 has a set of generators.

Proof. Let Γ be the full subcategory of Cat/C0 such that

Γ = {
(
C (x) ,C0, sx,tx, ex, ◦

)
∈ Cat/C0 : C (x) free on ωx : X −→ C0 and X finite set}

Let (A,C0, sa, ta, ea) and (B,C0, sb, tb, eb) be any two objects in Cat/C0 and h : (A,C0, sa, ta, ea) −→ (B,C0, sb, tb, eb)
be any morphism of categorical algebras which is not an isomorphism. For a,b ∈ B such that b < Imh.
Let y1 = sb (b) and y2 = tb (b). Form the singly generated categorical algebras

(
C{y

¯ 1
},C0, sy1 , ty1 , ey1

)
and(

C{y
¯ 2
},C0, sy2 , ty2 , ey2

)
where

sy1

(
y
¯ 1

)
= ty1

(
y
¯ 1

)
= ωy1

(
y
¯ 1

)
= y ∈ C0,
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sy2

(
y
¯ 2

)
= ty2

(
y
¯ 2

)
= ωy2

(
y
¯ 2

)
= y ∈ C0.

Let us define the morphisms

1i : C{y
¯ i
} −→ B

by 1i

(
y
¯ i

)
= b for i = 1, 2. If 1i factors through a morphism ni:C{y

¯
i} −→ A, then hni = 1i for i = 1, 2. This

shows that b ∈ Imh. Hence morphisms 1i does not factor through h.

Proposition 4.6. For (C{x
¯
},C0, sx, tx, ex) and

(
C{y},C0, sy, ty, ey

)
in Γ , f : C{x

¯
} −→ C{y} exists if and only if x = c.y

for some c ∈ C0.

Proof. If f exists then f sy = sx and f ty = tx for some c ∈ C0. Thus the images of sx and tx are the subsets of
image of sy and ty, respectively. For example, for x

¯
∈ {x

¯
}, we have x = c.y for some c ∈ C0.

On the other hand, suppose that x = c.y for some c ∈ C0, define f : C{x
¯
} −→ C{y}. It is obvious by

defining

f (tx
¯
) = f

(
c
¯
y
¯

)
= tcy

¯
,

then f is a morphism of categorical algebras.

Definition 4.7. ( [15]) A subcategory A of B is called reflective in B if the inclusion functor a : A→ B has a
left adjoint functor i : B→ A called reflector.

Definition 4.8. A localization (L, i) on Cat/C0 is a full reflective subcategory L such that the reflector i :
Cat/C0 → L is left exact.

Lemma 4.9. If

B0 //

��

A0

��
B

f
// A

is a pullback diagram then the morphism τB (B0) −→ τA (A0) making the diagram

τB(B0) //

��

τA(A0)

��
B

f
// A

commutative is unique [7].

Proposition 4.10. A localization (L, i) on the category Cat/C0 will give us a topology τ on Cat/C0 .

Proof. Define for each (C,C0, s, t, e, ◦) in Cat/C0 a function τ : Sub(C) −→ Sub(C) in the following way:
For a subcategorical algebra (C′,C0, s′, t′, e′, ◦) of (C,C0, s, t, e, ◦) , τC(C′) is the inverse image of i (C′) along

ηC : C −→ i (C′) and the following diagram is a pullback diagram since i is left exact the upper and lower
morphisms are

τC(C′) //

��

C

ηC

��
i(C′) // i(C)
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monomorphism. Next, we will show that τC is a topology on Cat/C0 .
i. Consider the following diagram

τC(τC(C′′)) //

��

τC(C′)

��

// C

ηC

��
i(C′′) // i(C′) // i(C)

where (C′′,C0, s′′, t′′, e′′, ◦) is a subcategorical algebra of (C′,C0, s′, t′, e′, ◦). Since the pullback of a pullback
is a pullback we get τ2

C(C′) = τC(C′).
ii. The universal property of η′C and the inclusion of C′ in C implies C′ ⊂ τC(C′) for a subcategorical

algebra (C′,C0, s′, t′, e′, ◦) of (C,C0, s, t, e, ◦) ,.
iii. Let A0 and A1 be two subobjects of C such that A0 ⊂ A1. Using Lemma 4.9 we get a commutative

diagram

τC(A0) //

��

τC(A1)

ηC

��
C C

Since τC(A0) and τC(A1) are in Sub(C) the vertical arrows are monomorphism. That is top arrow is also a
monomorphism. Then we get τC(A0) ⊂ τC(A1).

Now we will define a localizing system F for the category of categorical algebras using the subobjects
of members Γ1, the set of singly generated free categorical algebras where Γ1 = {C1 (x

¯
) : x ∈ C0} and

Sub (Γ1) be the set of all subobjects of (C1 (x
¯
) ,C0, sx, tx, ex, ◦). Given a morphism f : C1 (x

¯
) −→ C1

(
y
¯

)
of categorical algebras we have Ims (x) = Imt (x) ⊂ Ims

(
y
)
= Imt

(
y
)

,i.e {x} ⊂ {y} and hence x = c.y
for some c ∈ C0. Therefore f will looks like multiplication by c, i.e, tc

¯
y
¯
7→ tcy

¯
∈ C1

(
y
¯

)
. We will write

αx
c : f : C1 (c

¯
x
¯
) −→ C1 (x

¯
) .

Definition 4.11. A categorical idempotent filter for Cat/C0 is a family

F = {Fx : x ∈ C0}

where Fx is a nonempty family of subobjects of (C1 (x
¯
) ,C0, sx, tx, ex, ◦) satisfying

Cif1 . If S ∈ Fx and S′ is any subobject of (C1 (x
¯
) ,C0, sx, tx, ex, ◦) with S ⊂ S′ then S′ ∈ Fx,

Cif2 . If S,S′ ∈ Fx then S ∩ S′ ∈ Fx,
Cif3 . If S ∈ Fx, then for c ∈ C0 ,

(
αx

c
)−1 (S) ∈ Fcx,

Cif4 . For each S ∈ Fx and T ∈ Fy define f : C1

(
x
¯
+y

¯

)
−→ C1

(
x
¯
,y
¯

)
by f

(
x
¯
+y

¯

)
=x

¯
+y

¯
then the inverse image

of S ◦ T along f is Fx
¯
+y

¯
,

Cif5 . Let S be a subcategorical algebra of (C1 (x
¯
) ,C0, sx, tx, ex, ◦) if there exists T ∈ Fx such that for each

t
¯
= tx

¯
∈ T,
(
αx

t

)−1
(S) ∈ Ftx then S ∈ Fx.

Proposition 4.12. A topology τ on Cat/C0 gives a categorical idempotent filter F on Cat/C0 .

Proof. Let Fx = {S¯
∈ Sub(C (x

¯
)) : τC1(x

¯
) (S

¯
) = C (x

¯
)}, i.e, Fx consists of all theτ−dense subobjects of (C (x

¯
) ,C0, sx, tx, ex, ◦).

Take F = {Fx : x ∈ C0}. We will show the categorical idempotent filter axioms.
Cif1 . Let S

¯
′
∈ Sub (C1 (x

¯
)) and S

¯
⊂S

¯
′ for a S

¯
∈ Fx then τC1(x

¯
) (S

¯
) = C1 (x

¯
) ⊂ τC1(x

¯
) (S

¯
′). Therefore we get

τC1(x
¯
) (S

¯
′) = C1 (x

¯
). This shows that S

¯
′
∈ Fx

Cif2 . Let S
¯
,T
¯
∈ Fx . Since τC1(x

¯
) (S

¯
∩ T

¯
) = τC1(x

¯
) (S

¯
) ∩ τC1(x

¯
) (T

¯
) = C1 (x

¯
) ∩ C1 (x

¯
) = C1 (x

¯
) , S

¯
∩T

¯
∈ Fx.

Cif3 . Let T
¯
∈ Fx and f : C1 (x

¯
) −→ C1

(
y
¯

)
be a morphism of categorical algebras. Since τC1(x

¯
) ◦ f−1 (T

¯
) =

f−1
◦ τC1

(
y
¯

) = C1 (x
¯
) , f−1 (T

¯
) ∈ Fx.
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Cif4 . If we apply τ to

S
¯
oo S

¯
◦ T

¯

��

T
¯

oo

C1 (x
¯
)

OO

oo C1

(
x
¯
,y
¯

)
C1

(
y
¯

)
OO

oo

(1)

where S
¯
∈ Fx and T

¯
∈ Fy, we get a commutative triangle

C1 (x
¯
) //

##G
GG

GG
GG

GG
τ (S

¯
◦ T

¯
)

µ

��

C1

(
y
¯

)
oo

{{ww
ww
ww
ww

C1

(
x
¯
,y
¯

)
where C1

(
x
¯
,y
¯

)
= C1 (x

¯
) ◦ C1

(
y
¯

)
. Therefore there exists a unique map η : C1

(
x
¯
,y
¯

)
−→ τ (S

¯
◦ T

¯
) such that

µη = iC1

(
x
¯
,y
¯

). Since

µ ◦ i = i ◦ µ =
(
µ ◦ η

)
◦ µ = µ ◦

(
µ ◦ η

)
and µ is a monomorphism, we get η ◦ µ = i. Therefore µ is an isomorphism. Thus τ (S

¯
◦ T

¯
) = C1

(
x
¯
,y
¯

)
. Thus(

τC1

(
x
¯
+y

¯

) ◦ β−1
)

(S
¯
◦ T

¯
) =
(
β−1
◦ τC1

(
x
¯
,y
¯

)) (S
¯
◦ T

¯
) = C1

(
x
¯
,y
¯

)
so β−1 (S

¯
◦ T

¯
) ∈ Fx

¯
+y

¯
.

Cif5 . Let S
¯
∈ Sub (C1 (x

¯
)) and suppose there is an element T

¯
∈ Fx such that for each t

¯
∈T

¯
, < t

¯
>−1 (S) ∈ Fy

where y = sxt
¯
= txt

¯
, <t

¯
>: C1

(
y
¯

)
−→ C1 (x

¯
) and <t

¯
>−1is the ring of fractions. If <t

¯
>−1 (S) ∈ Fy then for all t

¯
∈T

¯
τC1

(
y
¯

) (< t
¯
>−1 (S)

)
= C1

(
y
¯

)
. So by Lemma 3.1 we get a pullback. Therefore for all c ∈ C1

(
y
¯

)
, <t

¯
> (c) ∈ τC1(x

¯
) .

Hence by Cif1 τC1(x
¯
) (S

¯
) ∈ Fx implies S

¯
∈ Fx. Therefore F is a categorial idempotent filter. As a result we show

that given a localization (L, i) on Cat/C0 gives a topology τ on Cat/C0 and τ gives a categorical idempotent
filter F on Cat/C0 Thus we obtain a categorical idempotent filter from a topology τ on Cat/C0

5. A topology on 2-crossed modules

Conduche defined the notion of a 2-crossed module as an algebraic model of homotopy 3-types and
showed how to obtain a 2-crossed module from a simplicial group [8]. The notion of a 2-crossed module for
commutative algebras was defined by Grandjean and Vale [12]. For more results about 2-crossed modules
of commutative algebras and simplicial commutative algebras see Arvasi and Porter [2, 3, 22].

We recall from [12], the definition of a 2-crossed module: A 2-crossed module of k-algebras consists of
a complex of C0-algebras

C2
∂2
−→ C1

∂1
−→ C0

with ∂2, ∂1 morphisms of C0-algebras, where the algebra C0 acts on itself by multiplication, such that

C2
∂2
−→ C1
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is a crossed module in which C1 acts on C2, (thus we require that for all x ∈ C2, y ∈ C1 and r ∈ R that
(xy)r = x(yr)), further, there is a C0-bilinear function

{ ⊗ } : C1 ⊗C0 C1 −→ C2

called a Peiffer lifting, which satisfies the following axioms:
PL1 : ∂2{y0 ⊗ y1} = y0y1 − y0·∂1(y1),
PL2 : {∂2(x1) ⊗ ∂2(x2)} = x1x2,
PL3 : {y0 ⊗ y1y2} = {y0y1 ⊗ y2} + ∂1y2·{y0 ⊗ y1},
PL4 : {y ⊗ ∂2(x)} + {∂2(x) ⊗ y} = ∂1(y)·x,
PL5 : {y0 ⊗ y1}·r = {y0·r ⊗ y1} = {y0 ⊗ y1·r},
for all x, x1, x2 ∈ C1, y, y0, y1, y2 ∈ C2 and r ∈ C0.
We simply denote such a 2-crossed module as (C2,C,R, ∂2, ∂) . A morphism of 2-crossed modules of

algebras can be defined in an obvious way. We thus define the category of 2-crossed module denoting it by
X2Mod. If we fix the pre-crossed module C −→ R we get a subcategory X2Mod/C→R.

Definition 5.1. Let {L,M,P, µ, ∂} be a 2-crossed module of algebras. If
(i) L′ is a subalgebra of L and M′ is a subalgebra of M,
(ii) µ′ = µ|L′ and ∂′ = ∂|M′ are the restrictions of µ and ∂, respectively,
(iii) the action of P′ on L′ and M′ is the restriction of the action of P on L and M,
(iv) { , } : M′

×M′
−→ L′ is the restriction of { , } : M ×M −→ L to M′

×M′,
then we call {L′,M′,P′, µ|L′ , ∂|M′ } is sub-2-crossed module of {L,M,P, µ, ∂}.

Using an idempotent filter on the algebra R, we will construct a topology on X2Mod /C−→R. The set

{L −→ R : L −→ R is the subcrossed module of C −→ R}

becomes a lattice by defining

L ∧ L′ = L ∩ L′

L ∨ L′ = < L ∪ L′ >

Let C2 −→ C −→ R be a 2-crossed module and B2 −→ C −→ R be a sub-2-crossed module of (C2,C,R, α, ∂)
as shown diagrammatically:

C2 // C // R

B2

β

??��������
f

OO

Let f : B2 −→ C2 be a morphism of 2−crossed modules. For any sub-2-crossed module (L,C,R) of
(C2,C,R, α, ∂), the pullback of f with the inclusion u : L −→ C given by the following diagram

B2 ×C2 L

p

��

// L

u
��

B2 f
// C2

becomes the sub-2-crossed module of (B,C,R), where B2 ×C2 L is defined by

B2 ×C2 L = {(b, x) ∈ B2 × L : f (b) = x}

and

B2 ×C2 L
γ
−→ C ∂

−→ R
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is a 2-crossed module where γ (b, x) = β (x) is called the inverse image of f . Thus we get the contravariant
functor

Sub : X2Mod/C→R −→ Lat

from the category of 2-crossed modules to that of lattices. Using the following definition, we can give the
main result of this section.

Definition 5.2. Given a crossed module of algebras (C,R, ∂) the set

F′ = {X −→ R : X is an ideal of C}

is called the pre-crossed idempotent filter.

Theorem 5.3. Let (C,R, ∂) be a crossed module of algebras and F′ be the pre-crossed idempotent filter of (C,R, ∂).
Then there exists a topology τ on the category X2Mod/C→R and the τ − dense subobjects of the trivial 2-crossed
module are in F′.

Proof. We denote the sub-2-crossed module
(
L,C1,R, α/L, ∂/L

)
of (C2,C1,R, α, ∂) by L. Define(

L : y
)
= {x ∈ R : y.x ∈ L}

and

L̃ = {c2 ∈ C2 : (L : c) −→ R ∈ F′}.

First, we will show that L is an ideal of C.
1. For c1, c2 ∈ C2, since (L : c1) and (L : c2) are in F′, the intersection (L : c1) ∩ (L : c2) ∈ F′. By condition F1

of an idempotent filter, we obtain (L : c1) ∩ (L : c2) ⊂ (L : c1 + c2) and (L : c1 + c2) ∈ F′.
2. For l ∈ L and r ∈ R, since R acts on L, we have

x ∈ ((L : l) : r) ⇔ r · x ∈ (L : l)
⇔ l · (r · x) ∈ (L : l)
⇔ l · (rx) ∈ (L : l)
⇔ l (rx) ∈ (L : l)
⇔ (lr) x ∈ (L : l)
⇔ (lr) · x ∈ (L : l)
⇔ x ∈ (L : l · r)

Thus, we have

((L : l) : r) = (L : l · r)

3. For c1, c2 ∈ C2, if x ∈ ((L : c1) : α (c2)) then α [(c2)] · x (L : c1), similarly we can obtain c1 · [α (c2)] x ∈ L and
(c1c2) · x ∈ L. Finally we obtain x ∈ (L : c1c2) . Thus,

(
L̃,C1,R

)
becomes a sub-2-crossed module. If we define

τ (L) = L̃

the operator

τ : Sub −→ Sub

gives a topology on X2Mod/C→R.
ii. For l ∈ L,

(L : l) = {x ∈ R : l · x ∈ L} = (C1 −→ R)
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since (C1 −→ R) is in F′, we can write l ∈ τ (L) . Thus

L ⊂ τ (L) .

iii. Let L and L′ be two sub-2-crossed modules of (C2,C1,R). Assume that

L ⊂ L′

for x ∈ τ (L) = L̃, (L, x) ∈ F′. We have

(L : x) ⊂ (L′ : x)

from the first condition F1 of an idempotent filter (L′ : x) ∈ F′. Thus x ∈ L̃′ = τ (L′). Consequently, we can
write

L ⊂ L′ ⇒ τ (L) ⊂ τ (L′) .

i. To show that τ is idempotent we need to show

τ (L) ◦ τ (L) ⊂ τ (L)

From (ii) we already know the fact that τ (L) is a subset of τ (L) ◦ τ (L) = τ2 (L).
Conversely, for c ∈ τ2 (L),

c ∈ τ2 (L)⇒ J = (τ (L) : c) ∈ F′.

Thus for x ∈ J, c · x ∈ τ (L) , we get

c · x ∈ τ (L)⇒ J = (L : cx) ∈ F′,

since

(L : cx) = ((L : c) : x) .

By condition F3, it is clear that (L : c) is in F′. Thus we have c ∈ τ (L). Finally, we have

τ (L) ◦ τ (L) ⊂ τ (L) .

Finally, we will show that

I ∈ F′ ⇔ τ (I) = (C1 −→ R) .

Let I ∈ F′. Then we have

τ (I) = Ĩ = {r ∈ R : (l : r) ∈ F′} = ∂ (c1) .

Conversely, if

τ (I) = Ĩ = (C1 −→ R) ,

then for all r ∈ R, we can write (l : r) ∈ F′. Since this result holds for all r ∈ R, we obtain that F′ is an
idempotent filter and I is in F.
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