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Abstract. In this paper it is proved that local group structure of a local topological group which has a
universal cover lifts to any covering space.

1. Introduction

The theory of covering spaces is concerned with differential geometry, Lie group theory [5, 6, 11]
analysis and even algebra as well as topology. Covering spaces are also deeply intertwined with the study
of homotopy groups and, in particular, the fundamental group. If X is a connected topological space which
have a universal cover, x0 ∈ X, and G is a subgroup of the fundamental group π1(X, x0) of X at the point
x0, then we know from [12, Theorem 10.42] that there is a covering map p : (X̃G, x̃0) → (X, x0) of pointed
spaces, with characteristic G. In particular, If G is a singleton, then p becomes the universal covering map.
Moreover, if X is a topological group, then X̃G becomes a topological group such that p is a morphism of
topological groups.

In [7], it is proved that the ring structure of a topological ring lifts to a simply connected covering space.
This method is applied to topological R-modules in the case where the topological ring R is discrete and
obtain a more general result than the one for the topological group case in [10]. In [9], these results are
united to a large class of algebraic objects called topological groups with operations, including topological
groups.

On the other hand, the result of universal covers of nonconnected topological groups was first studied
in [13]. Also a similar algebraic result was given in [4] using crossed modules and group-groupoids which
are internal groupoids in groups. In [1], some results on the covering morphisms of internal groupoids in
groups with operations setting for an algebraic category C are given.

In [11] a local group is defined to be a set L with a partial composition defined on a subset U of L × L,
an identity e ∈ L and inverse map defined on a subset V of L provided with the associativity and inverse
axioms. The local group-groupoids are defined in [8] to be a local group object in the category of groupoids
or equivalently internal category in local groups and the notion of local topological group-groupoid is given
in Akız [2, Definition 2.6].

This study is based on the method given by Rotman in [12]. Let L and L̃ be connected topological
spaces and p : L̃ → L a simply connected covering. Let p : (̃L, ẽ) → (L, e) be a covering map such that L̃
is path connected and the characteristic group G of p is a subgroup of π1(L, e). Then we prove that the
multiplication map µ : U → L and inversion map i : V → L lift to L̃.
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2. Preliminaries

Throughout this study, all space X are assumed to be locally path-connected and semilocally 1-connected,
so that each path component of X admits a simply connected cover. A covering map p : X̃→ X of connected
spaces is called universal if it covers every covering of X in the sense that if q : Ỹ → X is another covering
of X then there exists a map r : X̃ → Ỹ such that p = qr (hence r becomes a covering). A covering map
p : X̃→ X is called simply connected if X̃ is simply connected. So a simply connected covering is a universal
covering.

Let X be a topological space admitting a simply connected cover. A subset U of X is called liftable if
it is open, path-connected and the inclusion U −→ X maps each fundamental group of U trivially. If U is
liftable, and q : Y −→ X is a covering map, then for any y ∈ Y and x ∈ U such that qy = x, there is a unique
map i : U −→ Y such that ix = y and qi is the inclusion U −→ X. A space X is called semi-locally simply
connected if each point has a liftable neighborhood and locally simply connected if it has a base of simply
connected sets. So a locally simply connected space is also semi-locally simply connected.

Let p : (X̃, x̃0) → (X, x0) be a covering map of pointed topological spaces. The subgroup p∗(π1(X̃, x̃0))
of π1(X, x0) is called characteristic group of p, where p∗ is the morphism induced by p (see [3, p.379] for
the characteristic group of a covering map in terms of covering morphism of groupoids). If characteristic
groups of two covering maps p : (X̃, x̃0)→ (X, x0) and q : (Ỹ, ỹ0)→ (X, x0) are equal, then we say p and q are
equivalent, and equivalently there is a homeomorphism f : (X̃, x̃0)→ (X, x0) such that q f = p.

We assume that X is a topological space with base point x0 and G a subgroup of π1(X, x0). Let P(X, x0) be
the set of all paths of α in X with initial point x0. We consider an equivalence relation defined on P(X, x0) by
α ≃ β if and only if α(1) = β(1) and [α • β−1] ∈ G. Then the equivalence class of α is denoted by ⟨α⟩G and the
set of all such equivalence classes of the paths in X with initial point x0 by X̃G. Define a function p : X̃G → X
by p(⟨α⟩G) = α(1). Let α0 be the constant path at x0 and x̃0 = ⟨α⟩G ∈ X̃G. If α ∈ P(X, x0) and U is an open
neighborhood of α(1), then a path of the form α • λ, where λ is a path in U with λ(0) = α(1), is called a
continuation of α. For an ⟨α⟩G ∈ X̃G and an open neighborhood U of α(1), let (⟨α⟩G,U) = {⟨α•λ⟩G : λ(I) ⊆ U}.
Then the subsets (⟨α⟩G,U) form a basis for a topology on X̃G such that the map p : (X̃G, x̃0) → (X, x0) is
continuous [12, p.259].

We prove the local case of the following result in Theorem 3.7.

Theorem 2.1. ([12, Theorem 10.34]) Let (X, x0) be a pointed topological space and G a subgroup of π1(X, x0). If X
is connected, locally path-connected, and semilocally simply connected, then p : (X̃G, x̃0)→ (X, x0) is a covering map
with characteristic group G.

Remark 2.2. Let X be a connected, locally path-connected, and semilocally simply connected topological
space and q : (X̃, x̃0) → (X, x0) a covering map. Let G be the characteristic group of q. Then the covering
map q is equivalent to the covering map p : (X̃G, x̃0)→ (X, x0) corresponding to G.

We obtain the following result from Theorem 2.1.

Theorem 2.3. ([12, Theorem 10.42]) Suppose that X is a connected, locally path-connected, and semilocally simply
connected topological group. Let 0 ∈ X be the identity element and p : (X̃, 0̃) → (X, 0) a covering map. Then the
group structure of X lifts to X̃, i.e. X̃ becomes a topological group such that 0̃ is identity and p : (X̃, 0̃) → (X, 0) is a
morphism of topological groups.

3. Universal covers of local topological groups

In this section we give the definition of local topological groups. Also we give the methods of Section 2
for local topological groups and obtain some properties.

Now we emphasis the definition given in [11, Definition 2].
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Definition 3.1. Let L be a set. A local group is a quintuple L = (L, µ,U, i,V), where

(1) a distinguish element e ∈ L, the identity element,
(2) a multiplication µ : U → L, (x, y) 7→ x◦y defined on a subsetU of L×L such that ({e}×L)∪(L×{e}) ⊆ U,
(3) an inversion map i : V → L, x 7→ x defined on a subset e ∈ V ⊆ L such that V × i(V) ⊆ U and

i(V) × V ⊆ U,
all satisfying the following properties:

(i) Identity: e ◦ x = x = x ◦ e for all x ∈ L
(ii) Inverse: i(x) ◦ x = e = x ◦ i(x), for all x ∈ V

(iii) Associativity: If (x, y), (y, z), (x ◦ y, z) and (x, y ◦ z) all belong toU, then

x ◦ (y ◦ z) = (x ◦ y) ◦ z.

From now on we denote such a local group by L.
Note that ifU = L × L and V = L, then a local group becomes a group. It means that the notion of local

group generalizes that of group. Now we give the following definition (see [11, Definition 5]):

Definition 3.2. Let (L, µ,U, i,V) and (̃L, µ̃, Ũ ,̃ i, Ṽ) be local groups. A map f : L → L̃ is called a local group
morphism if

(i) ( f × f )(U) ⊆ Ũ, f (V) ⊆ Ṽ, f (e) = ẽ,
(ii) f (x ◦ y) = f (x) ◦ f (y) for (x, y) ∈ U,

(iii) f (i(x)) = ĩ( f (x)) for x ∈ V.

We study on the topological version of Definition 3.1.

Definition 3.3. ([11]) Let L be a local group, if L has a topology structure such thatU is open in L × L, V is
open in L, the maps µ and i are continuous, then (L, µ,U, i,V) is called a local topological group.

It is obvious that ifU = L × L and V = L, then a local topological group L becomes a topological group.

Example 3.4. ([11, p.26]) Let X be a topological group, L be an open neighbourhood of the identity element
e. Then we obtain a local topological group takingU = (L × L) ∩ µ−1(L) and V = L ∩ L, where L = {x|x ∈ L}.

Here the group mulitlicationµ and the inversion i on X are restricted to define a local group multiplication
and inverse maps on L.

Further if we chooseU and V such that

({e} × L) ∪ (L × {e}) ⊆ U ⊆ (L × L) ∩ µ−1(L)

{e} ⊆ V ⊆ L ∩ i−1(L)

and

V × i(V)) ∪ (i(V) × V) ⊆ U

then we have a local topological group.

Definition 3.5. ([8, Definition 3.3]) Let (L, µ,U, i,V) and (̃L, µ̃, Ũ ,̃ i, Ṽ) be local topological groups. A con-
tinuous local group morphism f : L→ L̃ is called a local topological group morphism.

Theorem 3.6. If L is a local topological group, then the fundamental group π1(L, e) becomes a local group.
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Proof. Let L be a local topological group with identity e. Hence we have the maps µ : U → L, µ(x, y) = x ◦ y
and i : V → L, i(x) = x. Write L̃ for the fundamental group π1(L, e). Assuming (α(t), β(t)) ∈ U, the set Ũ of
the homotopy classes of the paths can be written by

Ũ = {([α], [β]) : α ◦ β is de f ined}

and considered as a subset of L̃ × L̃. Then one can define the maps

µ̃ : Ũ → L̃, ([α], [β]) 7→ [α ◦ β] (1)

and

ĩ : Ṽ → L̃, [α] 7→ [i(a)], (2)

where Ṽ is the set of homotopy classes of all paths in V.
Here since µ and i are continuous, then µ̃ and ĩ are well defined. Indeed, let α ≃ α′, β ≃ β′ where α ◦ β

and α′ ◦ β′ are defined. Since p1α ≃ p1α′, p2α ≃ p2α′ and p1β ≃ p1β′, p2β ≃ p2β′ for the projection maps p1
and p2, then p1(α) ◦ p1(β) ≃ p1(α) ◦ p1(β) and p2(α) ◦ p2(β) ≃ p2(α) ◦ p2(β). Hence we have p1(α ◦ β) ≃ p1(α′ ◦ β′)
and p2(α ◦ β) ≃ p2(α′ ◦ β′). Then α ◦ β ≃ α′ ◦ β′. Similarly, we assume that α ≃ α′. Since p1α ≃ p1α′ and
p2α ≃ p2α′, then α′ ≃ α.

In addition to these properties, the other details can be checked as follows:

(i) [1e] ◦ [α] = [1e ◦ α][α] = [α ◦ 1e][α] ◦ [1e]
(ii) Inverse: ĩ[α] ◦ [α] = [α] ◦ [α] = [α ◦ α] = [10] = [α ◦ α] = [α] ◦ [α] = [α] ◦ ĩ[α], for all [α] ∈ Ṽ, where
α ◦ α′ is defined,

(iii) Associativity: If ([α], [β]), ([β], [γ]), ([α ◦ β], [γ]) and ([(α], [β ◦ γ]) all belong to Ũ, then

[α] ◦ ([β] ◦ [γ]) = ([α] ◦ [β]) ◦ [γ].

So π1(L, 0) becomes a local group.

Here we give the interchange law in a local topological group L. Note that we denote the concatination
of the paths by • and the local group multiplication by ◦. Also we denote the inverse path of α by α−1 and
the local group inverse α by α. Assuming that α ◦ β, α′ ◦ β′ and (α • β) ◦ (α′ • β′) are defined, then we have
the interchange law

(α • β) ◦ (α′ • β′) = (α ◦ α′) • (β ◦ β′) (3)

where • denotes the composition of the paths. Also we obtain that

(α ◦ β)−1 = α−1
◦ β−1 (4)

where α−1 is the inverse path such that α−1(t) = α(1 − t) for t ∈ I. On the other hand we have that

(α)−1 = α−1 (5)

(α • β) = α • β (6)

when α(1) = β(0).
We now prove Theorem 2.3 for local topological groups.
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Theorem 3.7. Let L be a local topological group and let G be a subgroup of π1(L, e). Suppose that the underlying
space of L is connected, locally path-connected, and semilocally simply connected. Let p : (̃LG, x̃0) → (L, x0) be the
covering map corresponding to G as a subgroup of the additive group of π1(L, e) by Theorem 2.3. Then the operations
of L lift to L̃G, i.e. L̃G is a local topological group and p : L̃G → L is a morphism of local topological groups.

Proof. Let P(L, e) be the set of all paths in L with initial point e. We know from the Section 2 that L̃G is the
set of equivalence classes via G. We have the induced multiplication

µ̃ : Ũ → L̃G, (⟨α⟩G, ⟨β⟩G) 7→ ⟨α⟩G ◦ ⟨β⟩G = ⟨α ◦ β⟩G (7)

on the subset Ũ = ŨG of L̃G × L̃G such that ({⟨1e⟩} × L) ∪ (L × {⟨1e⟩}) ⊆ Ũ and inversion map

ĩ : Ṽ → L̃G, ⟨α⟩G 7→ ⟨α⟩G = ⟨α⟩G (8)

such that ⟨1e⟩ ∈ Ṽ = ṼG ⊆ L̃G such that Ṽ × i(Ṽ) ⊆ Ũ and i(Ṽ) × Ṽ ⊆ Ũ.
These maps are well defined. Indeed for (α, α1), (β, β1) ∈ U ⊆ L × L and (α • β, α1 • β1) ∈ U such that

α(1) = α1(1) and β(0) = β1(1), we have that

[(α ◦ β) • (α1 ◦ β1)−1] =[(α ◦ β) • (α−1
1 ◦ β

−1
1 )] (by 4)

=[(α • α−1
1 ) ◦ (α−1

1 • β
−1
1 )] (by 3)

=[(α • α−1
1 )] ◦ [(α−1

1 • β
−1
1 )]. (by 1)

So, if α1 ∈ ⟨α⟩G and β1 ∈ ⟨β⟩G, then ([α • α−1
1 ], [β • β−1

1 ]) ∈ UG. Since G is a subgroup of π1(L, e), we have
that [α•α−1

1 ]◦ [β•β−1
1 ] ∈ G. Hence the multiplication µ̃ is well defined. On the other hand α, α1 ∈ V ⊆ P(L, e)

such that α(1) = α(0), we have that

[α • α−1
1 ] =[[α • α−1

1 ] (by 5)

=[α • α−1
1 ] (by 6)

=[α • α−1
1 ]. (by 2)

If [α • α−1
1 ] ∈ VG, then [α • α−1

1 ] ∈ G. So ĩ is well defined.
The other details can be checked for L̃G and so L̃G becomes a local group. We know from Theorem 2.1

that p : (̃LG, x̃0)→ (L, x0) is a covering map and L̃G is a topological group and p is a morphism of topological
groups. So we need to prove that L̃G is a local topological group and p is a local topological groups
morphism. We have to show that the multiplication µ̃ and the inversion map ĩ are continuous.

Let (⟨α⟩G, ⟨β⟩G) ∈ Ũ ⊆ L̃G × L̃G and (W̃, ⟨α, β⟩G) be a basic open neighborhood of the element ⟨α, β⟩G.
Here W̃ is an open neighborhood of (α ◦ β)(1) = α(1) ◦ β(1). We know that the multiplication

µ : U → L

is continuous. So there is an open neighborhood W of (α ◦ β)(1) = α(1) ◦ β(1) such that µ(W) ⊆ W̃. Hence
we have that

(W, (⟨α⟩G, ⟨β⟩G)) ⊆ (W̃, ⟨α, β⟩G).

So the multiplication µ̃ is continuous. We now prove that the inversion map ĩ is continuous. Let (Õ, ⟨α⟩G)
be a base open neighborhood of ⟨α⟩. Then Õ is an open neighborhood of α(1). Since the inversion map
i : V → L is continuous, there is an open neighborhood O of α(1) such that i(O) ⊆ Õ. Hence (O, ⟨α⟩G) is an
open neighborhood of ⟨α⟩G and i(O, ⟨α⟩G) ⊆ (Õ, ⟨α⟩G. Hence the inversion map i is continuous. Finally, we
prove that the map p : L̃G → L, ⟨α, β⟩G 7→ α(1) satisfies the conditions in Definition 3.2 as follows.
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(i) For the element (⟨α, β⟩G) of Ũ, since (p × p)(⟨α, β⟩G) = (p × p)(⟨α⟩G, ⟨β⟩G) = (α(1), β(1)) = (α, β)(1), then
(p × p)(Ũ) ⊆ U. Also similarly p(Ṽ) ⊆ V and p(⟨1e⟩G) = 1e(1) = 0.

(ii) p(⟨α ◦ β⟩G) = α(1) ◦ β(1) = p(⟨α⟩G) ◦ p(⟨β⟩G).
(iii) p(̃i(⟨α⟩G)) = p(⟨α⟩G = α(1) = i(α(1)) = i(p⟨α⟩G).

We now give the following result in the light of Theorem 3.7.

Theorem 3.8. Let L be a local topological group whose underlying space is connected, locally path connected and
semi locally simply connected. Let p : (̃L, ẽ) → (L, e) be a covering map such that L̃ is path connected. Then the
multiplication map µ : U → L and inversion map i : V → L lift to L̃.

Proof. If we choose L̃ = L̃G by Remark 2.2 and in the light of Theorem 3.7, then the multiplication map
µ : U → L and inversion map i : V → L lift to the maps

µ̃ : Ũ → L̃

and

ĩ : Ṽ → L̃,

respectively, such that (p × p)(Ũ) =U and p(Ṽ) = V.

If we choose the subgroup G of π1(L, e) to be singleton in Theorem 3.7, then we obtain the following
corollary.

Corollary 3.9. Let L be a local topological group such that the underlying space of L is connected, locally path-
connected and semi locally simply connected and p : (̃L, ẽ) → (L, e) be a universal covering map. Then the multipli-
cation map µ and inversion map i of L lifts to L̃.

Before giving Theorem 3.12, we prove the following proposition.

Proposition 3.10. Let L be a local topological group and B is a liftable neighborhood of e in L. Then there is a liftable
neighborhood A of e in L such that A × A ⊆ U and µ(A,A) ⊆ B, where µ : U → L.

Proof. If L is a local topological group and hence the multiplication map

µ : U → L

is continuous, then there is an open neighborhood B of e in L such that A×A ⊆ U andµ(A,A) ⊆ B. Moreover,
if B is liftable, then A can be chosen as liftable. If B is liftable, then for each x ∈ A, the fundamental group
π1(A, x) is mapped to the singleton by the morphism induced by the inclusion map ι : A→ L. Consider that
A is not necessarily path-connected and hence not necessarily liftable. But here, since the path component
Ce(A) of e in A is liftable and satisfies these conditions, A can be replace by the path component Ce(A) of e
in A and A is assumed to be liftable.

Definition 3.11. Let (L, µ,U, i,V) and (L′, µ′,U′, i′,V′) be local topological groups and A is an open neigh-
borhood of e such that A × A ⊆ U. A continuous map φ : A → B is called a local morphism of local
topological groups, if φ(a ◦ b) = φ(a) ◦ ϕ(b) when a, b ∈ A such that a ◦ b ∈ A.

Theorem 3.12. Let (L, µ,U, i,V) and (L′, µ′,U′, i′,V′) be local topological groups and q : L̃→ L a local topological
group morphism, which is a covering map. Let A be an open, path-connected neighbourhood where A × A ⊆ U such
that µ(A,A) ⊆ U is contained in a liftable neighborhood B of e in L. Then the inclusion map ι : A→ L lifts to a local
morphism ι̂ : A→ L̃ in local topological groups.



H. Fulya Akız / Filomat 36:20 (2022), 7083–7089 7089

Proof. Assuming that B is liftable, A lifts to L̃ by ι̂ : A → L̃. We need to prove that ι̂ is a local morphism of
local topological groups. By the lifting lemma we know that ι̂ is continuous. We choose a, b ∈ A such that
a ◦ b ∈ A. Considering that A is path connected, we also choose the paths α and β in A from e to a and b,
respectively. If we assume that ρ = α ◦ β, then ρ is a path from e to a ◦ b. Here since µ(A,A) ⊆ B, ρ = α ◦ β is
a path in B. Hence the paths α, β and ρ lift to α̃, β̃ and ρ̃, respectively. Since q is a local grup morphism, we
have that

q(ρ̃) = ρ = α ◦ β = q(α̃) ◦ q(β̃) = q(α̃ ◦ β̃).

By the unique path lifting,

ρ̃ = α̃ ◦ β̃,

since α̃ ◦ β̃ and ρ̃ have the initial point 0̃ in L̃. If we evaluate that these paths at 1 ∈ I, then we have

ι̂(a ◦ b) = ι̂(a) ◦ ι̂(b),

thus ι̂ is a local morphism in local topological groups.
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