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Abstract. Let R be a commutative ring with nonzero identity and M be an R-module. In this paper, first
we give some relations between S-prime and S-maximal submodules that are generalizations of prime and
maximal submodules, respectively. Then we construct a topology on the set of all S-prime submodules of
M , which is generalization of prime spectrum of M.We investigate when SpecS(M) is T0 and T1-space. We
also study on some continuous maps and irreducibility on SpecS(M). Moreover, we introduce the notion of
S-radical of a submodule N of M and use it to show the irreducibility of S-variety VS(N).

1. Introduction

Throughout the paper, R denotes a commutative ring with identity, M denotes an R-module. Spec(R),
Spec(M) and Max(R) denote the set of all prime ideals of R, prime submodules of M and maximal ideals of
R, respectively. For ideals I, J of R the residual of I by J denoted by (I :R J) is the set of elements a of R such
that aJ ⊆ I. For a submodule of N of M the residual of N by M denoted by (N :R M) is the set of elements a
of R such that aM ⊆ N. If no confusion arises, we can omit R and write (I : J) instead of (I :R J).

In [9], the author constructed a topology on Spec(M) which is the set of all prime submodules of M.
He proved some results that are known for Spec(R). Also he defined absolutely flat R-module. In 1995,
Chin-Pi Lu investigated some properties of Spec(M). She gave a relation between Spec(M) and Spec(S−1M).
She showed that the statement “Spec(M) , ∅ if and only if M , 0” is not necessarily true for all modules
by giving an example of a nonzero module M with Spec(M) = ∅. She also showed Spec(M) , ∅ for some
special modules such as multiplication modules. Moreover, she proved the existence of a surjective map
between Spec(M) and Spec(R/Ann(M)) where M is a finitely generated R module. This map is bijective if
and only if M is multiplication [13]. In [16], the authors investigated when Spec(M) has a Zariski topology.
Let M be a finitely generated R-module. They proved that Spec(M) has a Zariski topology if and only if M
is a multiplication module. After that, in [14], Chin-Pi Lu continued to investigate topological properties of
Spec(M). She obtained conditions when Spec(M) is a spectral space. Furthermore, she showed that the map
ϕ : Spec(M) → Spec(R/Ann(M)) plays a significant role for Spec(M) being spectral space. Currently, Sevim
et al. introduced the notion of S-prime submodules which is a generalization of prime submodules [19].
Let P be a submodule of an R-module M such that (P : M)∩ S = ∅. Then P is said to be S-prime submodule
if there exists s ∈ S such that am ∈ P implies sa ∈ (P : M) or sm ∈ P. They gave many features of S-prime
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submodules and characterized some prime submodules by using S-prime submodules. More recently,
Yildiz et al. constructed a topology on the set of all S-prime ideals denoted by SpecS(R) and this topology is
a generalization of classical Zariski topology [23]. They investigated some topological properties of SpecS(R)
such as connectedness, compactness and separation axioms.

In this paper, firstly we define S-maximal submodules and give some relations between S-maximal and
S-prime submodules (See, Lemma 2.5, Proposition 2.6, Proposition 2.7). Then we introduce a topology on
the set of all S-prime submodules of R-module M. We define the set VS(N) = {P ∈ SpecS(N) : s(N : M) ⊆ (P :
M)for some s ∈ S}. The collection of VS(N) for every submodule N of M satisfies the axioms of closed sets
in a topological space (See, Theorem 3.6). Then SpecS(M) with these closed sets induces a topology and we
call it as S-Zariski topology. Further, we illustrate that S-Zariski topology and classical Zariski topology are
two different concepts with examples (See, Example 3.1, Example 3.2). Starting from this, we give a basis
for S-Zariski topology (See, Theorem 3.7) and investigate some properties of this topological space such
as T0, T1 axioms and continuity of some maps on the space (See, Theorem 3.13, Proposition 3.15, Theorem
3.16, Theorem 3.17). Also we define the closure of a subset of SpecS(M) (See, Theorem 3.10).The last section
is dedicated to the irreducibility of the topology. We define the notion of S-radical that is a generalization
of the radical of a submodule and use it to investigate irreducibility.

2. S-maximal and S-prime submodules

Definition 2.1. Let ∅ , S ⊆ R such that 0 < S. Then S is called a multiplicatively closed set if 1 ∈ S and for all
s, s′ ∈ S, ss′ ∈ S .

Let P be an ideal of R such that P ∩ S = ∅. Then P is called an S-prime ideal if there exists an s ∈ S and
ab ∈ P for some a, b ∈ R, implies either sa ∈ P or sb ∈ P [10].

Let N be a submodule M such that (N : M) ∩ S = ∅ . Then N is called an S-prime submodule if there
exists an s ∈ S such that am ∈ N for some a ∈ R,m ∈M implies that sa ∈ (N : M) or sm ∈ N [19].

Definition 2.2. Let S be a multiplicatively closed subset of R and P be an ideal of R that is disjoint from S.
Then P is said to be an S-maximal ideal if there exists a fixed s ∈ S such that P ⊆ Q for some ideal Q of R
implies either sQ ⊆ P or Q ∩ S , ∅ [23].

A submodule N of M with (N : M) ∩ S = ∅ is said to be an S-maximal submodule if there exists a fixed
s ∈ S and N ⊆ K for some submodule K of M, implies either sK ⊆ N or (K : M) ∩ S , ∅.

Proposition 2.3. ([23, Proposition 10]) Every S-maximal ideal is an S-prime ideal.

The converse of Proposition 2.3 is not true in general. See the following example.

Example 2.4. Let R = Z[X] and S = {(X+2)n : n ∈N}∪{1}. Take the ideal P = (X2+2X).Here P∩S = ∅.Now
choose f (X)1(X) ∈ P ⊆ (X). Since X is a prime ideal, f (X) ∈ (X) or 1(X) ∈ (X). This gives that s f (X) ∈ P
or s1(X) ∈ P where s = X + 2. Hence P is an S-prime ideal of R. If we choose K = (X, 3). Then P ⊆ K and
K ∩ S = ∅. Also for any s′ = (X + 2)n

∈ S, s′K ⊈ P since 3(X + 1)n < P. Therefore, we conclude that P is not
an S-maximal ideal of R.

Lemma 2.5. Let R be a ring, M be a finitely generated R-module, S be a multiplicatively closed subset of R and K,N
be finitely generated submodules of M. Then S−1K = S−1N if and only if sK ⊆ N and s′N ⊆ K for some s, s′ ∈ S.

Proof. Assume that S−1K = S−1N. Since K is finitely generated, we can write K =
n∑

i=1
= Rmi for some

m1,m2, . . . ,mn ∈ K. This gives that mi
1 ∈ S−1K = S−1N. Then there exists si ∈ S such that simi ∈ N. Put

s = s1s2 . . . sn ∈ S. Thus we have sK ⊆ N. Similarly s′N ⊆ K for some s′ ∈ S. For the reverse direction,
suppose that sK ⊆ N and s′N ⊆ K for some s, s′ ∈ S. Let a

u ∈ S−1K. Then there exists u′ such that u′a ∈ K.
Since sK ⊆ N for some s ∈ S, we have su′a ∈ sK ⊆ N. Then a

u =
su′a
su′u ∈ S−1N which implies that S−1K ⊆ S−1N.

Similarly, one can show that S−1N ⊆ S−1K, as required.
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Recall from [3] that a module M is called S-Noetherian if for each submodule N of M, sN ⊆ K ⊆ N for
some s ∈ S and some finitely generated submodule K.

Proposition 2.6. Let M be a finitely generated R-module, S be a multiplicatively closed subset of R. If a submodule
P such that (P : M)∩ S = ∅ is S-maximal submodule of M, then S−1P is a maximal submodule of M. The converse is
also true when M is an S-Noetherian module and P ∈ SpecS(M).

Proof. Assume that P is S-maximal submodule. Choose a maximal submodule S−1Q such that S−1P ⊆ S−1Q
where Q is prime submodule and (Q : M)∩S = ∅. Then P ⊆ Q. Since P is S-maximal, sQ ⊆ P for some s ∈ S.
So S−1(sQ) = S−1Q ⊆ S−1P which completes the proof.

Now suppose S−1P is a maximal submodule of S−1M. Let P ⊆ Q. Then S−1P ⊆ S−1Q ⊆ S−1M. As S−1P is
maximal, S−1P = S−1Q or S−1Q = S−1M.

Case 1: Assume that S−1P = S−1Q. Since Q is S-finite, there exists m1,m2, . . .mn ∈ Q such that sQ ⊆
n∑

i=1
Rmi.

As mi
1 ∈ S−1Q = S−1P, there exists si ∈ S such that simi ∈ P. Now put s′ = ss1s2 . . . sn ∈ S. Then we have

s′Q ⊆ P. Since P is S-prime, there exists a fixed t ∈ S such that tQ ⊆ P.
Case 2: Assume that S−1Q = S−1M. Since M is S-finite, by a similar argument in Case 1, we get tM ⊆ Q

for some t ∈ S. Thus t ∈ (Q : M) ∩ S; that is, (Q : M) ∩ S , ∅, as required.
Consequently, P is an S-maximal submodule of M.

Recall that an R-module M is called multiplication if (N : M)M = N for every submodule N of M [7]. An
R-module M is said to be a cancellation module if IM = JM implies I = J for all ideals I, J of R [4]. One can
easily see that, in a cancellation module M, (IM : M) = I for any ideal I of R. We call here a multiplication
module that is cancellation module as a cancellation multiplication module.

Proposition 2.7. Let M be a cancellation multiplication R-module. Then P is an S-maximal submodule of M if and
only if (P : M) is an S-maximal ideal of R.

Proof. Assume that P is S-maximal submodule and let (P : M) ⊆ I. Then (P : M)M ⊆ IM implying P ⊆ IM.
Since P is S-maximal, either sIM ⊆ P for some s ∈ S or (IM : M) ∩ S , ∅. This implies that sI ⊆ (P : M) or
I ∩ S , ∅, as needed.

Now suppose (P : M) is an S-maximal ideal of R. Let P ⊆ Q ⊆ M. Then (P : M) ⊆ (Q : M). As (P : M) is
S-maximal, there exists s ∈ S such that s(Q : M) ⊆ (P : M) or (Q : M) ∩ S , ∅. If the former case holds, then
s(Q : M)M ⊆ (P : M)M showing that sQ ⊆ P. If the latter case holds, then we are done.

3. Topologies on SpecS(M)

Let R be a ring, S be a multiplicatively closed subset of R and I be an ideal of R. Define the set
VS(I) = {P ∈ SpecS(R) : sI ⊆ P for some s ∈ S} which is called S-variety of I. Then the collection of VS(I) for
any ideal I of R satisfies the axioms for closed sets in a topological space and so induces a topology. This
topology is known as the S-Zariski topology on SpecS(R) [23].

The set of all S-prime submodules of M is denoted by SpecS(M). For any submodule N of M, we have
two different types of S-varieties denoted by V∗S(N) and VS(N).

Define V∗S(N) = {P ∈ SpecS(M) : sN ⊆ P for some s ∈ S}. Then:
(i) V∗S(M) = ∅ and V∗S((0)) = SpecS(M).
(ii)
⋂
i∈I

V∗S(Ni) = V∗S(
∑
i∈I

Ni) where Ni ≤M and I is an index set.

(iii) V∗S(K) ∪ V∗S(N) ⊆ V∗S(K ∩N) for any submodules K,N of M.
Next define VS(N) = {P ∈ SpecS(M) : s(N :R M) ⊆ (P :R M) for some s ∈ S}.
(i) VS(M) = ∅ and VS((0)) = SpecS(M).
(ii)
⋂
i∈I

VS(Ni) = VS(
∑
i∈I

(Ni :R M)M) for any submodule Ni of M.

(iii) VS(K) ∪ VS(N) = VS(K ∩N) for any submodules K,N of M.
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In order to construct a topology on SpecS(M), we address the above sets V∗S(N) and VS(N). The collection
of V∗S(N) where N ≤ M induces a topology, say τ∗S, if and only if finite union of V∗S(N) where N ≤ M is
closed. In this case, the induced topology is called S-quasi Zariski topology on SpecS(M). A module is said
to be S-top module if τ∗S(M) is a topology. A module is not necessarily to be an S-top module. On the other
hand, the collection of VS(N) and V∗S(IM) always induces a topology, say τS, on SpecS(M). This topology is
called S-Zariski topology.

Note that if P ∈ Spec(M) with (P : M) ∩ S = ∅ then P ∈ SpecS(M). But the following example shows that
the converse is not true in general.

Example 3.1. Let M = Z3 ×Z, R = Z. Consider the submodule P = 0 × 0 of M. Here (0 × 0 : Z3 ×Z) = 0.
Though 3(1, 0) = (0, 0) ∈ P, neither 3 ∈ (0 × 0 : Z3 ×Z) nor (1, 0) ∈ 0 × 0. Thus P is not a prime submodule
of M. On the other hand, take S = Z − {0}. Then (P : M) ∩ S = ∅. Choose r(a, b) = (ra, rb) ∈ P. This gives
ra = 0 and rb = 0. If r = 0, we are done. So assume that r , 0. Then b = 0 and this implies 3(a, b) = (0, 0) ∈ P
where s = 3. Hence P is an S-prime submodule of M. Since P ∈ SpecS(M) but P < Spec(M), we conclude that
SpecS(M) is strictly bigger than Spec(M).

Example 3.2. Let M = Z × Z and R = Z. Take N = 6Z × 5Z. Here (N : M) = 30Z. Then V(N) =
{2Z×Z, 3Z×Z,Z× 5Z}. On the other side, VS(N) = ∅where S = Z− {0}. Now suppose N = 0× 5Z, 6Z× 0
or 0 × 0. Then VS(N) = SpecS(M). Therefore, though Spec(M) has many varieties, SpecS(M) has only ∅ and
SpecS(M) itself.

Theorem 3.3. Let R be a ring, S ⊆ R be a multiplicatively closed subset and M be an R-module. Then the following
statements hold:

(i) VS(A) = VS((A)) for any subset A of M where (A) denotes the submodule generated by the subset A ⊆M.
(ii) VS(M) = ∅ and VS((0)) = SpecS(M).
(iii)
⋂
i∈I

VS(Ni) = VS(
∑
i∈I

(Ni :R M)M) for any submodule Ni of M.

(iv) VS(K) ∪ VS(N) = VS(K ∩N) for any submodules K,N of M.

Proof. (i) It is clear.
(ii) Let P ∈ VS(M). Then there exists s ∈ S such that s(M :R M) ⊆ (P :R M). This gives s ∈ (P :R M) ∩ S,

a contradiction. So VS(M) = ∅. Now choose P ∈ VS(0). Then we have s(0 :R M) ⊆ (P :R M) for some s ∈ S.
This is true for all P ∈ SpecS(M). Thus VS((0)) = SpecS(M).

(iii) Take P ∈
⋂
i∈I

VS(Ni). Then P ∈ VS(Ni) for all i. Since P is S-prime submodule, there exists a fixed s ∈ S

such that s(Ni : M) ⊆ (P : M) for each Ni.

s(Ni : M) ⊆ (P : M)⇒ s(Ni : M)M ⊆ (P : M)M
⇔ (Ni : M)M ⊆ ((P : M)M : s)
⇔ ((Ni : M)M : M) ⊆ (((P : M)M : s) : M) = (((P : M)M : M) : s)
⇔ s((Ni : M)M : M) ⊆ ((P : M)M : M) = (P : M)

⇔ s(
∑
i∈I

(Ni : M)M : M) ⊆ (P : M)

⇔ P ∈ VS(
∑
i∈I

(Ni : M)M).

(iv) Take P ∈ VS(N) ∪ VS(L). Then P ∈ VS(N) or VS(L). This means that s(N :R M) ⊆ (P :R M) or
s(L :R M) ⊆ (P :R M) for some s ∈ S. Thus s(N ∩ L :R M) ⊆ (P :R M) giving that P ∈ VS(N ∩ L).

Let P ∈ VS(N ∩ L). Then there exists s ∈ S such that s((N :R M) ∩ (L :R M)) = s(N ∩ L :R M) ⊆ (P :R M).
So, s(N :R M) ⊆ (P :R M) or s(L :R M) ⊆ (P :R M). This gives either P ∈ VS(N) or P ∈ VS(L). Hence
P ∈ VS(N) ∪ VS(L), as needed.
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From the previous theorem, there exists a topology on SpecS(M) having the collection of VS(N) for N ≤M
as the family of all closed sets. This topology is called S-Zariski topology on SpecS(M). It can be seen that
any open set on S-Zariski topology has the form SpecS(M) − VS(N) for N ≤M.

Proposition 3.4. Let M be an R-module and N be a submodule of M. Then VS(N) = VS((N : M)M) = V∗S((N :
M)M).

Proof. Let P ∈ VS(N). Then s(N : M) ⊆ (P : M) for some s ∈ S. This implies that s(N : M)M ⊆ (P : M)M.
So we have s((N : M)M : M) ⊆ (s(N : M)M : M) ⊆ ((P : M)M : M) = (P : M). Thus we conclude that
P ∈ VS((N : M)M). For the other inclusion, take P ∈ VS((N : M)M). Then s((N : M)M : M) ⊆ (P : M) for
some s ∈ S. Since ((N : M)M : M) = (N : M), we get s(N : M) ⊆ (P : M) showing that P ∈ VS(N).

Let P ∈ V∗S((N : M)M). Then s(N : M)M ⊆ P for some s ∈ S. This gives s(N : M) = s((N : M)M :
M) ⊆ (s(N : M)M : M) ⊆ (P : M). Hence P ∈ VS(N). Choose P ∈ VS(N) = VS((N : M)M). Then
s((N : M)M : M) ⊆ (P : M) for some s ∈ S implying s(N : M)M ⊆ P and this gives P ∈ V∗S((N : M)M), as
desired.

Define the set Specp
S(M) = {P ∈ SpecS(M) : S−1(P : M) = S−1p, p ∈ SpecS(R)}.

Proposition 3.5. Let M be an R-module and N be a submodule of M. Then,

VS(N) =
⋃

p∈VS((N:M))

Specp
S(M).

Proof. Choose P ∈ VS(N). Then s(N : M) ⊆ (P : M) for some s ∈ S implying S−1(N : M) ⊆ S−1(P : M) = S−1p.
Here, s′(N : M) ⊆ p for some s′ ∈ S. Thus p ∈ VS((N : M)). This means that P ∈

⋃
p∈VS((N:M))

Specp
S(M).

On the other hand, let Q ∈
⋃

p∈VS((N:M))
Specp

S(M). Then Q ∈ Specp
S(M) for some p ∈ VS((N : M)). So

S−1(Q : M) = S−1p where s(N : M) ⊆ p for some s ∈ S. This implies that S−1(N : M) ⊆ S−1p = S−1(Q : M).
Hence we have s′(N : M) ⊆ (Q : M) showing Q ∈ VS(N).

Lemma 3.6. Let R be a ring, M be an R-module, S be a multiplicatively closed subset of R and K,N be submodules
of M. If S−1(K : M) = S−1(N : M), then VS(K) = VS(N). The converse is also true when K and N are S-prime.

Proof. Assume that S−1(K : M) = S−1(N : M). Take P ∈ VS(K). Then there exists s ∈ S such that s(K : M) ⊆
(P : M). Choose r ∈ (N : M) implying r

s ∈ S−1(N : M) = S−1(K : M). So s′r ∈ (K : M) for some s′ ∈ S. Then we
get ss′r ∈ s(K : M) ⊆ (P : M). Since (P : M) is S-prime ideal, there exists t ∈ S such that tr ∈ (P : M) and so
t(N : M) ⊆ (P : M), that is, P ∈ VS(N). Similar argument shows that VS(N) ⊆ VS(K), as desired.

On the other hand, suppose that VS(K) = VS(N). Choose a
s ∈ S−1(K : M). Then there exists u ∈ S such

that ua ∈ (K : M). Since s′(K : M) ⊆ (N : M) for some s′ ∈ S, we get s′ua ∈ s′(K : M) ⊆ (N : M). Then
a
s =

s′ua
s′us ∈ S−1(N : M). This shows that S−1(K : M) ⊆ S−1(N : M). For the converse, take b

s ∈ S−1(N : M).
Then there exists u ∈ S such that ub ∈ (N : M). Since s′(N : M) ⊆ (K : M) for some s′ ∈ S, we get
s′ub ∈ s′(N : M) ⊆ (K : M). Then b

s =
s′ub
s′us ∈ S−1(K : M). This shows that S−1(N : M) ⊆ S−1(K : M) which

proves the equality.

Theorem 3.7. The collection of DS
a = {P ∈ SpecS(M) : s(aM : M) ⊈ (P : M) for all s ∈ S} where a ∈ R is a basis for

S-Zariski topology.

Proof. First, we will show that DS
a is open for any a ∈ R. Let P ∈ SpecS(M) −DS

a . Then P < DS
a implying that

s(aM :R M) ⊆ (P :R M). Hence P ∈ VS(aM) which gives SpecS(M) −DS
a ⊆ VS(aM). For the reverse inclusion,

take P ∈ VS(aM). Then s(aM :R M) ⊆ (P :R M). This means that P < DS
a and so P ∈ SpecS(M) − DS

a . Since
SpecS(M) −DS

a = VS(aM) and VS(aM) is closed in SpecS(M), we conclude that DS
a is open.

Now we will show that any open set SpecS(M) − VS(N) can be written as a union of DS
a , that is,

SpecS(M) − VS(N) =
⋃

DS
a . If P ∈ SpecS(M) − VS(N). Then P < VS(N) which means that s(N :R M) ⊈ (P :R M)
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for all s ∈ S. So (N :R M) ⊈ ((P :R M) :R s). Then there exists s′ ∈ S such that ((P :R M) :R s) ⊆ ((P :R M) :R s′)
for all s ∈ S by [19, Lemma 2.16]. Let N =

∑
{i∈∆}

aiM and ∆′ = {i ∈ ∆ : (aiM :R M) ⊈ ((P :R M) :R s′)}. Then for

each s ∈ S, i ∈ ∆′, we have s(aiM :R M) ⊈ (P :R M). This gives P ∈ DS
ai

implying that P ∈
⋃

i∈∆′
DS

ai
. Conversely,

choose P ∈
⋃

i∈∆′
DS

ai
. Then P ∈ DS

ai
for some i ∈ ∆′, ai ∈ R. So s(aiM :R M) ⊈ (P :R M) for all s ∈ S. Then we get

a(N :R M) ⊈ (P :R M) for all s ∈ S. Thus P < VS(N) giving P ∈ SpecS(M) − VS(N), as desired.

Lemma 3.8. ([17]) Let B and B′ be basis for topologies τ and τ′, respectively, on X. Then τ′ is finer that τ if and
only if for each x ∈ X and each basis element x ∈ B ∈ B , there is a basis element B′ ∈ B′ such that x ∈ B′ ⊂ B.

Recall from [2] that a module M is called S-multiplication if for each submodule N of M there exists an
s ∈ S such that sN ⊆ (N : M)M ⊆ N .

Note that the collection of D∗Sa = {P ∈ SpecS(M) : saM ⊈ P for all s ∈ S} where a ∈ R is a basis for
quasi S-Zariski topology in an S-top module. In this case, quasi S-Zariski topology is finer than S-Zariski
topology. In particular, in an S-multiplication module, they are coincide.

Proposition 3.9. Let M be a S-multiplication R-module. Then τ∗S = τS.

Proof. We already know that τS ⊆ τ∗S by Proposition 3.4. For the other inclusion, since M is an S-
multiplication module, we have sN ⊆ (N : M)M ⊆ N for some s ∈ S and it implies that V∗S(N) ⊆ V∗S((N :
M)M) ⊆ V∗S(N). Thus we obtain V∗S(N) = V∗S((N : M)M) = VS(N) by Proposition 3.4. Thus τ∗S = τS, as
desired.

By [19, Lemma 2.16], there exists an s ∈ S such that (P :M s′) ⊆ (P :M s) for each s′ ∈ S and (P :M s) is a
prime submodule. From this time forth, we denote this s ∈ S for P ∈ SpecS(M) by sP. The following theorem
illustrates a relationship between the closure of any subset of SpecS(R) and closed sets.

Theorem 3.10. Let M be a finitely generated R-module and Y ⊆ SpecS(M). Then,

Y = VS(
⋂
P∈Y

(P :M sP)).

Proof. Let Q ∈ Y. Then
⋂

P∈Y
(P :M sP) ⊆ (Q :M SQ) and this implies that sQ

⋂
P∈Y

(P :M sP) ⊆ Q.

(sQ

⋂
P∈Y

(P :M sP) :R M) ⊆ (Q :R M)⇒ sQ(
⋂
P∈Y

(P :M sP) :R M) ⊆ (Q :R M)⇒ Q ∈ VS(
⋂

(P :M sP))

⇒ Y ⊆ VS(
⋂
P∈Y

(P :M sP))

⇒ Y ⊆ VS(
⋂
P∈Y

(P :M sP)).

Conversely, suppose Y ⊆ VS(N). If P ∈ Y then P ∈ VS(N). This gives that s(N :R M) ⊆ (P :R M) for some
s ∈ S.

(N :R M) ⊆ ((P :R M) :R s) ⊆ ((P :R M) :R sP) = ((P :M sP) :R M)

⇒ (N :R M) ⊆
⋂
P∈Y

((P :M sP) :R M) = (
⋂
P∈Y

(P :M sP) :R M).

Let Q ∈ VS(
⋂

P∈Y
(P :M sP)). Then we get s(N : M) ⊆ s(

⋂
P∈Y

(P :M sP) : M) ⊆ (Q : M), that is, Q ∈ VS(N), as

desired.
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Let R be a ring, M be an R-module and S be a multiplicatively closed subset of R. Define the set
θ = {S−1(P : M) : P ∈ SpecS(M)}. S−1(P : M) is a maximal element of θ if S−1(P : M) ⊆ S−1(Q : M) implies that
S−1(P : M) = S−1(Q : M) where Q ∈ SpecS(M).

Theorem 3.11. Let M be an R-module and P ∈ SpecS(M). Then we have the following:
(i) {P} = VS(P) = VS((P :M sP)).
(ii) For any Q ∈ SpecS(M), Q ∈ {P} iff s(P : M) ⊆ (Q : M) for some s ∈ S iff VS(Q) ⊆ VS(P).
(iii) {P} is closed in SpecS(M) if and only if S−1(P : M) is a maximal element of θ and Specp

S(M) = {P} where
S−1(P : M) = S−1p, that is, |Specp

S(M)| = 1.

Proof. (i) {P} = VS(
⋂

P∈{P}
(P :M sP)) = VS((P :M sP)). Since P ⊆ (P :M sP), it is clear that VS((P :M sP)) ⊆ VS(P).

Now choose Q ∈ VS(P). Then s(P : M) ⊆ (Q : M) for some s ∈ S. This implies that ssP((P :M sP) : M) =
ssP((P : M) : sP) ⊆ s(P : M) ⊆ (Q : M) and so Q ∈ VS((P :M sP)) which completes the proof.

(ii) Take Q ∈ {P} = VS(P). Then s(P : M) ⊆ (Q : M) for some s ∈ S. Let N ∈ VS(Q). Then there exists
s′ ∈ S such that s′(Q : M) ⊆ (N : M). This gives s′s(P : M) ⊆ s′(Q : M) ⊆ (N : M). Thus N ∈ VS(P) implying
VS(Q) ⊆ VS(P).

For the converse, let Q ∈ VS(Q) ⊆ VS(P). Then s(P : M) ⊆ (Q : M) for some s ∈ S. Hence Q ∈ VS(P) = {P}
which completes the proof.

(iii) Suppose {P} is closed. Then {P} = {P} = VS(P). Since S−1(P : M) ⊆ S−1(Q : M) where Q ∈ SpecS(M)
implies s(P : M) ⊆ (Q : M) for some s ∈ S, we have Q ∈ VS(P) = {P}. Thus Q = P and this means that
S−1(P : M) is a maximal element of θ. Also, we have Specp

S(M) ⊆ VS(P) = {P}.
On the other hand, choose Q ∈ {P}. Then there exists s ∈ S such that s(P : M) ⊆ (Q : M). It means that

S−1(P : M) ⊆ S−1(Q : M). Since S−1(P : M) is a maximal element ofθ, we have S−1(P : M) = S−1(Q : M) = S−1p.
So Q ∈ Specp

S(M). As |Specp
S(M)| = 1, P = Q. Then we conclude that {P} = {P} and so {P} is closed.

Theorem 3.12. Let M be an R-module and P,Q ∈ SpecS(M). Then the following statements are equivalent:
(i) The natural map ϕ : SpecS(M)→ Spec(S−1R/Ann(S−1M)) is injective.
(ii) If VS(P) = VS(Q), then P = Q.
(iii) |Specp

S(M)| ≤ 1.

Proof. (i) ⇒ (ii) Assume that VS(P) = VS(Q). Then we have S−1(P : M) = S−1(Q : M) by Lemma 3.6. This
gives that S−1(P : M) = S−1(Q : M) implying ϕ(P) = ϕ(Q). Since ϕ is injective, we get P = Q.

(ii) ⇒ (iii) Let P,Q ∈ Specp
S(M). Then S−1(P : M) = S−1p = S−1(Q : M). This implies that VS(P) = VS(Q)

and so P = Q, as desired.
(iii) ⇒ (i) Let ϕ(P) = ϕ(Q). Then S−1(P : M) = S−1(Q : M) = S−1p. Thus we have P,Q ∈ Specp

S(M). As
|Specp

S(M)| ≤ 1, P = Q which shows ϕ is injective.

Theorem 3.13. Let M be an R-module. Then the following are equivalent:
(i) SpecS(M) is T0-space.
(ii) If VS(P) = VS(Q), then P = Q for any P,Q ∈ SpecS(M).

Proof. (i) ⇒ (ii) Assume that VS(P) = VS(Q). Then we have {P} = {Q}. Since SpecS(M) is T0, we conclude
that P = Q.

(ii) ⇒ (i) Assume that VS(P) = VS(Q) implies P = Q. Since {P} = VS(P), {P} = {Q} means that
VS(P) = VS(Q) and so P = Q by the assumption. Thus SpecS(M) is T0-space.

Corollary 3.14. If M is a multiplication module, then SpecS(M) is a T0-space for both S-Zariski topology τS and
quasi S-Zariski topology τ∗S.

Proof. Suppose VS(P) = VS(Q) for P,Q ∈ SpecS(M). Then S−1(P : M) = S−1(Q : M) by Lemma 3.5. This
implies that (P : M) = (Q : M). As M is a multiplication module, we have P = (P : M)M = (Q : M)M = Q.
Thus SpecS(M) is T0 by Theorem 3.13. The rest follows from the fact that τS ≤ τ∗S.
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Proposition 3.15. Let M be an R-module whose SpecS(M) may be empty. SpecS(M) is a T1-space if and only if
S−1(P : M) is a maximal element of θ and |Specp

S(M)| ≤ 1 for every p ∈ SpecS(R).

Proof. If SpecS(M) = ∅, it is clear that the statement is true. Now suppose SpecS(M) , ∅. If SpecS(M) is a
T1-space, then S−1(P : M) is a maximal element of θ and Specp

S(M) = {P} where S−1(P : M) = S−1p, that is,
|Specp

S(M)| = 1 by Theorem 3.11 (iii).
On the other hand, |Specp

S(M)| = 1 for every S−1p ∈ θ. Then {P} is closed for every P ∈ SpecS(M) by
Theorem 3.11. Therefore, SpecS(M) is T1.

Theorem 3.16. Let M be a S-multiplication R-module. Then the map ϕ : SpecS(M) → SpecS(R) defined by
ϕ(N) = (N : M) is continuous.

Proof. Let F be any closed set in SpecS(R). We will show that ϕ−1(F) is closed in SpecS(M). Since F is closed
in SpecS(R), we have F = VS(I) where I ⊴ R. For any N ∈ SpecS(M), N ∈ ϕ−1(F) and so ϕ(N) ∈ VS(I). Since
(N : M) ∈ VS(I), there exists s ∈ S such that sI ⊆ (N : M). Then sIM ⊆ (N : M)M.

(sIM : M) ⊆ ((N : M)M : M)⇒ s(IM : M) ⊆ (N : M).

This gives N ∈ VS(IM).
Conversely, take N ∈ VS(IM). Then s(IM : M) ⊆ (N : M) for some s ∈ S.
Since M is S-multiplication, there exists s′ ∈ S such that s′IM ⊆ (IM : M)M. This implies that ss′IM ⊆

s(IM : M)M ⊆ N, that is, ss′I ⊆ (N : M). Then (N : M) ∈ VS(I), that is, N ∈ ϕ−1(F). Then we have
VS(IM) ⊆ ϕ−1(F). Therefore, we conclude that ϕ−1(F) = VS(IM) proving that ϕ−1(F) is closed in SpecS(M).

Theorem 3.17. Let M,M′ be R-modules, X = SpecS(M) and X′ = SpecS(M′). If f : M→M′ is epimorphism, then
ϕ : X′ → X defined by P′ 7→ f−1(P′) is continuous.

Proof. For any P′ ∈ X′ and any closed set VS(N) where N ≤M. Choose P′ ∈ ϕ−1(VS(N)) = ϕ−1(V∗S((N : M)M)).
Then ϕ(P′) = f−1(P) ∈ V∗S((N : M)M). This implies that s(N : M)M ⊆ ϕ(P′) = f−1(P′). Hence we obtain
f (s(N : M)M) ⊆ f (ϕ(P′)) = P′. Then

s(N : M)M′
⊆ P′ ⇒ P′ ∈ V∗S((N : M)M′) = VS((N : M)M′).

Conversely, take P′ ∈ V∗S((N : M)M′) = VS((N : M)M′). Then

s(N : M)M′
⊆ P′ ⇒ s f ((N : M)M) ⊆ P′ ⇒ s(N : M)M ⊆ f−1(P′) = ϕ(P′).

ϕ(P′) ∈ V∗S((N : M)M)⇒ P′ ∈ ϕ−1(V∗S(N : M)M) = ϕ−1(VS(N)).

4. Irreducibility in SpecS(M)

Proposition 4.1. Let P be an S-prime submodule of an R-module M. Then VS(P) is an irreducible closed subset of
SpecS(M).

Proof. Assume that VS(P) = VS(K) ∪ VS(L) for some submodules N,L of M. It is clear that VS(K) ⊆ VS(P).
Since P ∈ VS(P), P ∈ VS(K) or P ∈ VS(L). Without loss of generality, suppose P ∈ VS(K). Then there exists
s ∈ S such that s(K : M) ⊆ (P : M). Choose Q ∈ VS(P). Then s′(P : M) ⊆ (Q : M). This implies that
s′s(K : M) ⊆ s′(P : M) ⊆ (Q : M). This gives Q ∈ VS(K) implying VS(P) ⊆ VS(K). Thus we get VS(P) = VS(K)
which completes the proof.

Proposition 4.2. Let M be an R-module and Y be a subset of SpecS(M). Assume that S−1(
⋂

P∈Y
(P :M sP) : M) = S−1p

is a prime ideal of R. If Specp
S(M) , ∅, then Y is irreducible.
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Proof. Let Q ∈ Specp
S(M). Then S−1(Q : M) = S−1p = S−1(

⋂
P∈Y

(P :M sP) : M). Hence VS(Q) = VS(
⋂

P∈Y
(P :M sP) =

Y. Since VS(Q) is irreducible for S-prime submodule Q of M, Y is irreducible. So Y is also irreducible.

Corollary 4.3. Let M be an R-module and Y be a subset of SpecS(M). If
⋂

P∈Y
P is an S-prime submodule of M, then Y

is irreducible.

Proof. If
⋂

P∈Y
P is an S-prime submodule of M, VS(

⋂
P∈Y

P) = Y is irreducible. So Y is irreducible.

Corollary 4.4. Let Specp
S(M) , ∅ for some p ∈ SpecS(R). If p is S-maximal ideal of R, then Specp

S(M) is irreducible
closed subset of SpecS(M).

Proof. One can easily see that p ⊆ (pM : M). Since p is S-maximal, we have either s(pM : M) ⊆ p or
(pM : M) ∩ S , ∅. If we assume (pM : M) ∩ S , ∅, then there exists s ∈ S such that s ∈ (pM : M). Let
P ∈ Specp

S(M). This gives S−1(P : M) = S−1p by the definition. So s′p ⊆ (P : M) for some s′ ∈ S. Then,

s′pM ⊆ (P : M)M⇒ s′(pM : M) ⊆ (s′pM : M) ⊆ ((P : M)M : M) = (P : M).

So, ss′ ∈ (P : M), a contradiction. If the former case holds, then S−1(pM : M) ⊆ S−1p. So we have
S−1(pM : M) = S−1p. Now we claim that Specp

S(M) = VS(pM) where p is S-maximal ideal of R. Let
P ∈ Specp

S(M). Then S−1(P : M) = S−1p = S−1(pM : M). This gives VS(P) = VS(pM). So P ∈ VS(pM). Now take
Q ∈ VS(pM). Then s(pM : M) ⊆ (Q : M) for some s ∈ S. This gives S−1p = S−1(pM : M) ⊆ S−1(Q : M). Since p
is S-maximal, S−1p is maximal. So we have S−1p = S−1(Q : M) showing Q ∈ Specp

S(M).

Definition 4.5. Let M be an R-module and N be a submodule of M. Then, S-radical of N is defined as

S√

N = {r ∈ R : srnM ⊆ N,∃s ∈ S,∃n ∈ Z+}.

Proposition 4.6. Let M be a finitely generated multiplication module and N be a submodule of M. Then,

S√

N =
⋂

P∈VS(N)

((P : M) : sP).

Proof. Let a ∈ S√N. Then sanM ⊆ N for some s ∈ S and n ∈ Z+ implying san
∈ (N : M). Take P ∈ VS(N). Then

s′(N : M) ⊆ (P : M). So we have s′san
∈ s′(N : M) ⊆ (P : M). This gives an

∈ ((P : M) : s′s) ⊆ ((P : M) : sP).
Since ((P : M) : sP) is a prime ideal, a ∈ ((P : M) : sP) for all P ∈ VS(N).

Conversely, choose b ∈
⋂

P∈VS(N)
((P : M) : sP). Then b ∈ ((P : M) : sP) for all P ∈ VS(N). Suppose b < S√N.

So sbnM ⊈ N for all s ∈ S and n ∈ Z+. Then bn

1 = ( b
1 )nS−1M ⊈ S−1N. This means that b

1 <
√

(S−1N : S−1M).
There exists a prime submodule P∗ of S−1M with S−1N ⊆ P∗ such that b

1 S−1M ⊈ P∗ = S−1P′ for some prime
submodule P′ of M. As S−1N ⊆ S−1P′, sN ⊆ P′ implying s(N : M) ⊆ (sN : M) ⊆ (P′ : M) and so P′ ∈ VS(N).
Since b ∈ ∩P∈VS(N)((P : M) : sP), b ∈ ((P′ : M) : s′P) = (P′ : M). Thus b

1 ∈ S−1(P′ : M) and this implies
b
1 S−1M ⊆ S−1P′ = P∗, a contradiction.

Proposition 4.7. Let M be a finitely generated multiplication module and N be a submodule of M. Then,

VS(N) = VS(
S√

NM).

Proof. Since N = (N : M)M ⊆
S√NM, we have VS( S√N) ⊆ VS(N). For the converse, suppose Q ∈ VS(N).

As S√N =
⋂

P∈VS(N)
((P : M) : sP) ⊆ ((Q : M) : sQ), we obtain sQ

S√N ⊆ (Q : M) implying sQ
S√NM ⊆ Q. Then

sQ( S√NM : M) ⊆ (Q : M) and so Q ∈ VS( S√NM), as desired.
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Proposition 4.8. Let M be a finitely generated multiplication module and N be a submodule of M. If VS(N) is
irreducible, then S√N is a prime ideal.

Proof. Take ab ∈ S√N but a < S√N and b < S√N. Then there exist P,Q ∈ VS(N) such that a < ((P : M) : sP) and
b < ((Q : M) : sQ). This implies that sa < (P : M) and sb < (Q : M) for all s ∈ S. So s(aM : M) ⊈ (P : M)
and s(bM : M) ⊈ (Q : M). So we conclude that P ∈ DS

a and Q ∈ DS
b which imply P ∈ DS

a ∩ VS(N) and
Q ∈ DS

b ∩ VS(N). Thus DS
a ∩ VS(N) and DS

b ∩ VS(N) are nonempty open sets in subspace topology. Since
VS(N) is irreducible, (DS

a ∩ VS(N)) ∩ (DS
b ∩ VS(N)) , ∅. Suppose U ∈ (DS

a ∩ VS(N)) ∩ (DS
b ∩ VS(N)). As

U ∈ VS(N) = VS( S√NM) by Proposition 4.7, we get s( S√NM : M) ⊆ (U : M). Also, U ∈ DS
a ∩DS

b = DS
ab implies

s′(abM : M) ⊈ (U : M) for all s′ ∈ S. But we have sab ∈ (U : M) that gives sabM ⊆ (U : M)M. Then we have
s(abM : M) ⊆ ((U : M)M : M) = (U : M), a contradiction. Thus S√N is a prime ideal.
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