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Abstract. We introduce the class of linearly S-closed spaces as a proper subclass of linearly H-closed
spaces. This property lies between S-closedness and countable S-closedness. A space is called linearly
S-closed if and only if any semi-open chain cover posses a member dense in the space. It is shown that in
the class of extremally disconnected spaces the class of linearly H-closed spaces and linearly S-closed spaces
coincide. We gave characterizations of these spaces in terms of s-accumulation points of chain filter bases
and complete s-accumulation points of families of open subsets. While regular S-closed spaces are compact
there is a non compact, regular, linearly S-closed space. It is shown that a Hausdorff, first countable, linearly
S-closed space is extremally disconnected. Moreover, in the class of first countable, regular, compact spaces
the notions of S-closedness, linearly S-closedness and extremally disconnectedness are equivalent. Some
cardinality bounds for this class of spaces are obtained. Several examples are provided to illustrate our
results.

1. Introduction and Preliminaries

In 1963, N. Levine [18] defined semi-open sets in a topological space. In this paper we extend the notion
of linearly H-closed spaces, introduced by M. Baillif [7] in 2019, by using semi-open sets. The new class
of spaces so obtained, which we call linearly S-closed spaces, lies between S-closedness and countable
S-closedness.

By ‘space’ we always mean ‘topological space’. An open cover (respectively, semi-open cover) of a space
is a cover by open sets (respectively, semi-open sets) in the space. A cover is said to be a chain cover if
it is linearly ordered by the inclusion relation. An open chain cover (respectively, semi-open chain cover)
is a chain cover consisting of open sets (respectively, semi-open sets) in the space. A topological space X
is linearly H-closed [7] if and only if any open chain cover of X posses a member dense in X. The class of
linearly H-closed spaces lies between H-closed spaces and feebly compact spaces.

Definition 1.1. A space X is linearly S-closed if any semi-open chain cover of X has a member dense in X (or
equivalently, if any semi-open chain cover has a finite subfamily with a dense union).

A topological space X is Quasi H-closed (QHC) [20] (respectively, S-closed [23]) if any open cover of X
(respectively, semi-open cover of X) has a finite subfamily the union of closures of whose members covers
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X. A space X is H-closed [4, p-298] if X is closed in any Hausdorff space containing it as a subspace, which
turns out to be equivalent to “any open cover of the space X has a finite subfamily whose union is dense
in X”. H-closed spaces are trivially linearly H-closed. A Hausdorff QHC space as well as a Hausdorff
S-closed space is H-closed and therefore linearly H-closed. While regular S-closed spaces are compact there
is a linearly S-closed, regular, non compact, extremally disconnected topological space [see Example 4.3].
In Section 2, we give several characterizations of linearly S-closed spaces and investigate basic properties
of these spaces. It is pointed out that the new class of spaces lies between S-closed spaces and countably
S-closed spaces. Some results on cardinal bounds are also established for the new class of spaces. While a
first countable, compact space has cardinality at most continuum [1, Corollary 3.1.30]. We show that, first
countable, Hausdorff, linearly S-closed space is finite. Moreover, in this section we deal with mappings
of linearly S-closed spaces too. It is shown that the s-continuous image of a linearly S-closed space in any
Hausdorff, first countable space is closed. In Section 3, we study and investigate the conditions for which
the product is linearly S-closed. We observe that in general the product of linearly S-closed spaces need not
be necessarily linearly S-closed. The product of a linearly H-closed space with a H-closed space is linearly
H-closed [7, Proposition 2.18]. However, the product of a linearly S-closed space with a S-closed space
may fail to be linearly S-closed. Finally in Section 4, we provide several examples to illustrate the results
obtained in Section 2 and Section 3.

For a subset A of a space X, we denote the closure of A, interior of A in X by cl(A) (or A), int(A),
respectively. A subset A of a topological space X is,

(i) semi-open [18] if and only if there exist an open set O ⊂ X such that O ⊂ A ⊂ cl(O) or equivalently,
A ⊂ cl(int(A)).

(ii) regular semi-open [8] if and only if there exists a regular open set O ⊂ X such that O ⊂ A ⊂ cl(O).
(iii) regular open if A = int(cl(A)).
(iv) regular closed if A = cl(int(A)).
(v) semi-closed if A ⊃ int(cl(A)).

In a space X, regular closed sets and regular semi-open sets are semi-open. The closure of a semi-open
set as well as the closure of a regular open set is regular closed. The interior of a regular closed set is regular
open. The complement of a regular open set, a semi-open set in a space X is regular closed, semi-closed,
respectively. The family of semi-open, regular open, regular semi-open and regular closed subsets of X is
denoted by SO(X), RO(X), RSO(X) and RC(X) respectively. RO(X, τ) is a base for a coarser topology τs on
X known as semi-regularization topology on X. Clearly every open set is semi-open. However, a semi-open
set may not be open. Union of semi-open sets is semi-open whereas intersection of semi-open sets may fail
to be semi-open. Semi-closure and semi-interior of a subset of X is defined analogously to the closure and
interior: the semi-interior of A ⊂ X denoted by, sInt(A) is the union of all semi-open sets contained in A and
the semi-closure of A ⊂ X (denoted as sCl(A)) is the intersection of all semi-closed sets containing A. For any
subset A ⊂ X,

int(A) ⊂ sInt(A) ⊂ A ⊂ sCl(A) ⊂ cl(A).

The collection of regular closed (respectively, semi-open) subsets of X containing x ∈ X is denoted
by RC(x) (respectively, SO(x)). For any x ∈ X, RC(x) = {V : V ∈ SO(x)}. An extremally disconnected [2]
(abbreviated as, e.d.) topological space is a topological space in which closure of every open set is open. A
subset A ⊂ X is called locally dense if A ⊂ int(cl(A)).

Following are some well known results.

Lemma 1.2. ([12, Lemma 1.1]) Let (X, τ) be a topological space. Then:
1. RC(X, τ) = RC(X, τs).
2. (X, τ) is extremally disconnected if and only if (X, τs) is extremally disconnected.
3. For a locally dense subset A ⊂ X

RC(A, τ|A) = {F ∩ A : F ∈ RC(X, τ)}.

Note that, a finite topological space is trivially linearly S-closed hence throughout our discussion X is
assumed to be an infinite space.
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2. Linearly S-closed Spaces

Throughout the paper, spaces will mean the topological spaces on which no separation axiom is assumed
unless explicitly stated. The following set-theoretic notions are adopted: κ, λ are regular cardinal numbers
and α, β, γ are ordinal numbers. A cardinal number is the set of all ordinals that precede it. Thus α < κ and
α ∈ κ are the same. Any chain cover posses a subcover indexed by a regular cardinal so that for simplicity
we always use such indexing. We use ω for the smallest infinite ordinal and cardinal. ω1 is the smallest
uncountable ordinal and cardinal. The standard example in topology, frequently used in this paper is βω
which is the Stone − Čech compactification of the integers. We will begin with some basic properties of
linearly S-closed spaces and provide some characterizations of the new class of spaces at a later stage. Our
first lemma is very basic but plays a key role to establish the next implication diagram, that connects linearly
S-closedness to various types of covering properties. The proof of the lemma is very similar to that of [7,
Lemma 2.1].

Lemma 2.1. A space X is linearly S-closed if and only if any infinite semi-open cover of X, has a subfamily of strictly
smaller cardinality with a dense union.

Proof. For any semi-open chain cover U of X the union of a subfamily of strictly smaller cardinality is
contained in some member. Consequently, U has a member dense in the space X. Conversely, let X be a
linearly S-closed space and U = {Uα : α < κ} be an infinite semi-open cover of X. For each α < κ the sets
of the form Vα = ∪β<αUβ form a semi-open chain cover of X. Since X is linearly S-closed there exists some
β < κ such that Vβ is dense in X. Consequently, U has a subfamily of strictly smaller cardinality with a
dense union.

Recall that a space X is countably S-closed [12] if and only if any countable regular closed cover of X
has a finite subcover. This turns out to be equivalant to “ any countable semi-open cover of X has a finite
subfamily, the closures of whose members cover X”. A topological space X is called feebly compact [4] if
every locally finite collection of non empty open subsets of X is finite. This turns out to be equivalant to
“any countable open cover has a finite subfamily with a dense union” [4, Theorem 1.11(b)]. The class of
countably S-closed spaces lies between S-closed spaces and feebly compact spaces [12]. A semi-compact [13]
(respectively, semi-Lindelö f [14]) space is a topological space for which any semi-open cover has a finite
(respectively, countable) subcover. A countably semi-compact space (called semi countably compact by Dorsett
in [13]) is a space for which any countable semi-open cover of X has a finite subcover.

Evidently, we have the following diagram:

semi-compact S-closed Linearly S-closed Countably S-closed

compact Quasi H-closed Linearly H-closed Feebly Compact

Figure(1).

Note that the converses of these implications are false, however. We provide various examples in Section
4 to support our claim.

Example 2.2. A discrete space is linearly S-closed if and only if it is finite.

By a regular closed cover (respectively, regular semi-open cover) of a space X we mean a cover by
regular closed sets (respectively, regular semi-open sets) in X. For any subset A ⊂ X , int(cl(A)) is regular
open [3, p-29, 3(D)]. In our next result we present a variety of characterizations for linearly S-closed spaces.

Theorem 2.3. For a space (X, τ), the following are equivalent:

(a). (X, τ) is linearly S-closed.
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(b). Every regular closed cover of X has a subfamily of strictly smaller cardinality with a dense union.
(c). Every regular semi-open chain cover of X has a member dense in X.
(d). If {Fα : α < κ} is a decreasing family of nonempty regular closed sets in X, then⋂

{int(Fα) : α < κ} , ϕ .
(e). If {Gα : α < κ} is a decreasing family of nonempty regular open sets in X then⋂

{Gα : α < κ} , ϕ .

Proof. a)⇒ b) is trivial. Regular closed sets are semi-open, now use Lemma 2.1.
For b) ⇒ a) Let U = {Uα : α < κ} be any semi-open cover of X. Since closure of a semi-open set is

regular closed, the collection V = {cl(Uα) : α < κ} form a regular closed cover of X. Therefore, V has
a subfamily V

′

= {cl(Uα(i)) : α(i) ∈ I ⊂ κ} where |I| < κ such that
⋃
α(i)∈I(cl(Uα(i))) is dense in X. This

implies that cl(
⋃
α(i)∈I Uα(i)) ⊃

⋃
α(i)∈I(cl(Uα(i))) is dense in X. Since (

⋃
α(i)∈I Uα(i)) is dense in cl(

⋃
α(i)∈I Uα(i)) and

cl(
⋃
α(i)∈I Uα(i)) is dense in X. Therefore (

⋃
α(i)∈I Uα(i)) where |I| < κ is dense in X.

a)⇒ c) is trivial. Regular semi-open sets are semi-open.
c) ⇒ a) Assume that the space X is not linearly S-closed. Then there exists a semi-open chain cover

U = {Uα : α < κ} having no member dense in X. Since int(cl(Uα)) ⊂ int(cl(Uα))∪Uα ⊂ cl(int(cl(Uα))) for each
α < κ. Therefore, the collection {int(cl(Uα)) ∪Uα : α < κ} form a regular semi-open chain cover of X having
no member dense in X.

a) ⇒ d) Let {Fα : α < κ} be a decreasing family of nonempty regular closed sets in X such that⋂
{int(Fα) : α < κ} = ϕ, then the collection {X \ int(Fα) : α < κ} form a semi-open chain cover of X and hence

there exist a β < κ such that cl(X \ int(Fβ)) = X which implies that X \ int(Fβ) = X. Therefore, int(Fβ) = ϕ, a
contradiction.

d)⇒ e) Let {Gα : α < κ} be a decreasing family of nonempty regular open sets in X then the collection
{Fα = cl(Gα) : α < κ} be a decreasing family of nonempty regular closed sets in X and hence

⋂
{Gα : α < κ} =⋂

{int(Fα) : α < κ} , ϕ.
e) ⇒ a) Suppose to the contrary that, X is not linearly S-closed and {Uα : α < κ} is a semi-open chain

cover having no member dense in X. Then {X \ cl(Uα) : α < κ} is a decreasing family of nonempty regular
open sets such that

⋂
{X \ cl(Uα) : α < κ} = ϕ, a contradiction.

We now focus on some fundamental properties of linearly S-closed spaces. To begin with recall that, a
topological property R is called semi-regular if, (X, τ) has property R if and only if (X, τs) has property R.

Proposition 2.4. The property being linearly S-closed is semi-regular.

Proof. Let (X, τ) be a linearly S-closed space. By using Lemma 1.2, any τs-regular closed cover of X is a
τ-regular closed cover of X and hence has a subfamily of strictly smaller cardinality with a union dense
in (X, τ). Since τs is coarser then τ, the union of the subfamily is dense in (X, τs) too. Hence by using
Theorem 2.3(b), (X, τs) is linearly S-closed.

Conversely, suppose that (X, τ) is not linearly S-closed. Then there exist a decreasing family {Fα : α < κ}
of nonempty τ-regular closed sets in X such that

⋂
{intτ(Fα) : α < κ} = ϕ. Since intτs (Fα) ⊂ intτ(Fα) for

each α < κ, we have
⋂
{intτs (Fα) : α < κ} = ϕ. Hence, by using Lemma 1.2 and Theorem 2.3(d), (X, τs) is

not linearly S-closed.

A topological space (X, τ) with a topological property R is maximal R if no topology τ
′

stronger than τ
on X has property R. A submaximal space is a topological space in which every dense subset is open. If R is
a semi-regular property then maximal R spaces are submaximal [9, Theorem 2]. Therefore,

Proposition 2.5. A maximal linearly S-closed space is submaximal.

A topological property P is said to be contagious if a space (X, τ) has property P whenever a dense
subspace of (X, τ) has property P.

Proposition 2.6. The property, being linearly S-closed is contagious.
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Proof. Let X be a topological space and D be a dense linearly S-closed subspace of X. For any semi-open
chain coverU = {Uα : α < κ} of X, the family {Uα ∩ D : α < κ} is a semi-open chain cover of D and hence
has a member dense in D. Since D is dense in X, the member is dense in X also. Consequently, U has a
member dense in X.

The property being linearly S-closed is not hereditary. Moreover, it is not hereditary with respect to
open and dense or closed subsets of the space. For example ω ⊂ βω is open and dense in βω. Since βω is
S-closed [23, Corollary to Theorem 5] therefore it is linearly S-closed too. But ω is an infinite, countable,
discrete space and hence can not be linearly S-closed. Also βω \ ω is closed in βω but not linearly S-closed
because it is not countably S-closed [12, Example 4.5]. Our next result is,

Proposition 2.7. Let X be a linearly S-closed space. Then:

(a) A regular open subset of X is linearly S-closed.
(b) A regular closed subset of X is linearly S-closed.
(c) If (A, τ|A) is a linearly S-closed subspace of a topological space (X, τ) (X need not be linearly S-closed), and if

A ⊂ B ⊂ cl(A) then (B, τ|B) is linearly S-closed.
(d) The closure of a linearly S-closed subspace of a topological space is linearly S-closed.
(e) If O is an open set in X, then cl(O) is linearly S-closed.

Proof. (a) Let A ⊂ X be a regular open subset in X and G = {Gα : α < κ} be any decreasing family of non
empty regular open sets in A. ThenG is a decreasing family of non empty regular open sets in X also. Since
X is linearly S-closed,

⋂
{Gα : α < κ} , ϕ. Hence, by using Theorem 2.3(e) A is linearly S-closed.

(b) Let F be a regular closed subset of X then int(F) is regular open in X and dense in F. From (a), int(F)
is linearly S-closed. Hence, by using Proposition 2.6, F is linearly S-closed.

(c) By the hypothesis, A is a dense linearly S-closed subspace of (B, τ|B). Therefore, by using Proposi-
tion 2.6 (B, τ|B) is linearly S-closed.

(d) Clearly (d) follows by (c).
(e) In a topological space X, if O is open then cl(O) is regular closed and hence the result follows by

(b).

Recall that, a mapping f : (X, τX) −→ (Y, τY) is called:

(a) semi-continuous [18] if the preimage of every open set in Y is semi-open in X.
(b) s-continuous if the preimage of every semi-open set in Y is open in X.
(c) irresolute [10] if the preimage of every semi-open set in Y is semi-open in X.
(d) semi-homeomorphism if f is an irresolute, bijection and image of a semi-open set in X is semi-open in Y.

In our next result we have explored the behavior of the new class of spaces under various types of
mappings between topological spaces.

Proposition 2.8. The following statements are true:

(a) An irresolute image of a linearly S-closed space is linearly S-closed.
(b) An s-continuous image of a linearly H-closed space is linearly S-closed.
(c) A semi-continuous (in particular continuous) image of a linearly S-closed space is linearly H-closed.

Proof. The proof of each statement is trivial and that directly follows by applying the definitions of the
mappings involved, thus omitted.

Corollary 2.9. An open, continuous image of a linearly S-closed space is linearly S-closed.

Proof. Since open and continuous mappings are irresolute [10, Theorem 1.2]. Therefore, the result follows
by Proposition 2.8(a).
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A property which is preserved by semi-homeomorphism is known as semi-topological property. Since
every homeomorphism is a semi-homeomorphism as well, a semi-topological property is a topological
property. Thus being linearly S-closed is a semi-topological property as well as a topological property.
Recall that a continuous mapping f : X → Y is perfect [1, p-182] if X is Hausdorff, f is closed and all
fibers f←(y) of f are compact subsets of X. Compactness and local compactness are inverse invariants of
perfect maps [1, Theorem 3.7.24, p-188]. Linearly H-closedness is inverse invariant of perfect, open maps
[6, Theorem 2.4]. We have found a similar result for linearly S-closed spaces too. A subset A ⊂ X is called
semi-compact subset [22] relative to X if every cover of A by semi-open sets in X has a finite subcover. A
mapping f : X→ Y is called s-perfect [21] if image of each semi-closed set A ⊂ X is semi-closed in Y and all
fibers of f , f←(y) are semi-compact relative to X. The proof of following theorem is very similar to that of
[6, Theorem 2.4].

Theorem 2.10. The property of being linearly S-closed space is an inverse invariant of s-perfect, open maps.

Proof. Suppose that f : X→ Y is a surjective, s-perfect, open map from a space X to a linearly S-closed space
Y. LetU = {Uα : α < κ} be any semi-open chain cover of X, then for each α, Vα = Y\ f [X\Uα] is a semi-open
set in Y. We claim that, the collection V = {Vα : α < κ} form a semi-open chain cover of Y. To prove our
claim, for any y ∈ Y since the fiber of y under f , { f←(y)} is semi-compact relative to X the chain coverU of
{ f←(y)} by semi-open sets in X has a finite sub-cover. Hence there exists a γ < κ such that { f←(y)} ⊂ Uα for
all γ < α < κ which implies y < f (X \ Uα) which further implies that y ∈ Vα for each γ < α < κ. Since Y is
linearly S-closed the semi-open chain coverV of Y has a member dense in Y. Therefore there exist a β < κ
such that Vβ = Y \ f [X \ Uβ] is dense in Y. Now we shall show that Uβ is dense in X. Assume to contrary
that Uβ is not dense in X. Since f is open f (X \Uβ) is a nonempty open subset of Y and is disjoint from Vβ.
This gives a contradiction.

A point x ∈ X is an adherent point of a filter (filter base) F = {Fα} if for each open set O ∋ x and each
Fα ∈ F , Fα ∩O , ϕ. A filter base F = {Fα} s-converges [23] to a point x ∈ X if for each V ∈ SO(x) there exists
a Fα ∈ F such that Fα ⊂ cl(V) or equivalently, if for each V ∈ RC(x) there exists a Fα ∈ F such that Fα ⊂ V.
A filter base F = {Fα} s-accumulates [23] to a point x ∈ X (i.e. x ∈ θ-ads(F )) if for each V ∈ SO(x) and each
Fα ∈ F , Fα ∩ cl(V) , ϕ or equivalently, if for each V ∈ RC(x) and each Fα ∈ F , Fα ∩ V , ϕ.

A space X is H-closed if and only if every open filter base (i.e. the filter base consisting of open sets only)
on X has an adherent point in X [4, Proposition 4.8(b)]. A space X is S-closed if and only if every filter base
on X s-accumulates to some point in X [23, Theorem 2]. A chain filter base is a filter base linearly ordered
by set inclusion relation. An open chain filter base is a chain filter base consisting of open sets only. A space
X is linearly H-closed if and only if any open chain filter base on X has an adherent point [7, Lemma 2.2].
We have found a similar characterization for linearly S-closed spaces as follows,

Theorem 2.11. A space (X, τ) is linearly S-closed if and only if any open chain filter-base on X s-accumulate to a
point in X.

Proof. Let F = {Fα : α < κ} be an open chain filter base on X that does not s-accumulate to any point in X.
Then for each x ∈ X there exists a V(x) ∈ SO(x) and an Fα(x) ∈ F such that Fα(x) ∩ V(x) = ϕ which implies
x < sCl(Fα(x)). Hence

⋂
{sCl(Fα) : α < κ} = ϕ. Therefore the collection {X \ sCl(Fα) : α < κ} form a semi-open

chain cover of X having no member dense in X. As if there exist a β < κ such that X \ sCl(Fβ) is dense in
X i.e. cl(X \ sCl(Fβ)) = X then int(sCl(Fβ)) = ϕ which implies that Fβ = ϕ because Fβ ⊂ int(sCl(Fβ)). This
contradicts the necessary assumption Fβ , ϕ to be a member of the filter base.

Conversely, suppose that X is not linearly S-closed andU = {Uα : α < κ} is a semi-open chain cover of
X having no member dense in X. Then F = {X \ Uα : α < κ} is an open chain filter base on X and hence
s-accumulate to a point x0 ∈ X. But there exist a β < κ such that x0 is contained in a semi-open set Uβ and
Uβ ∩ X \Uβ = ϕwhich contradicts the fact that F s-accumulate to x0.

Theorem 2.12. A topological space X is linearly S-closed if and only if any open chain filter base on X, having at
most one s-accumulation point, is s-convergent.
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Proof. Let F = {Fα : α < κ} be an open chain filter base on X with at most one s-accumulation point. Since X
is linearly S-closed, F has an s-accumulation point x0 ∈ X and by the assumption this s-accumulation point
is unique. Our claim is that F , s-converges to x0. To prove our claim suppose that F does not s-converge to
x0. Then for some V ∈ SO(x0) and γ ∈ κ, Fα ⊈ cl(V) for all γ < α < κ. This implies Fα ∩ (X \ cl(V)) , ϕ for all
γ < α < κ. Therefore, the collection F ∗ = {Fα \ cl(V) : Fα ∈ F } form an open chain filter base in X which (by
construction) does not s-accumulate to any point in V. This gives ϕ , θ-ads(F ∗) ⊂ {x0} \ V, a contradiction.

Conversely, suppose that X is not linearly S-closed and F = {Fα : α < κ} is an open chain filter base
on X having no s-accumulation point. By hypothesis F , s-converges to some point x0 ∈ X. Therefore, for
any V ∈ SO(x0) there exists some βV < κ such that FβV ⊂ cl(V). Hence, for each Fα ∈ F ; Fα ∩ cl(V) , ϕ.
Consequently, F s-accumulates to x0 ∈ X, a contradiction.

Corollary 2.13. An open chain filter base with unique s-accumulation point in a linearly S-closed space is s-
convergent.

Linearly S-closedness is linked to other compact like covering properties as shown in Figure 1. We are
now interested to find under what conditions the reverse implications follows too. We will begin with the
following result.

Theorem 2.14. An extremally disconnected topological space is linearly S-closed if and only if it is linearly H-closed.

Proof. A linearly S-closed space is linearly H-closed follows directly by definition.
For the reverse implication, if X is extremally disconnected then closure of an open set in X is open.

Also the interior of a semi-open set is dense in it. Given a semi-open chain cover U = {Uα : α < κ} of a
linearly H-closed space X, the collection V = {cl(int(Uα)) : Uα ∈ U, α < κ} form an open chain cover of X
and hence posses a member dense in X. Consequently,U has a member dense in X.

Following is a corollary to [8, Corollary 1]

Corollary 2.15. An extremally disconnected QHC space is linearly S-closed.

Proposition 2.16. A linearly S-closed, semi-Lindelö f space is S-closed.

Proof. Given a semi-open coverU of a linearly S-closed space X, semi-Lindelö f ness of X implies thatU has
a countable subcover. Since X is linearly S-closed, the subcover has a finite subfamily the closures of whose
members covers X.

Proposition 2.17. A countably S-closed, regular, Lindelö f space is compact.

Proof. Let X be a countably S-closed, regular, Lindelö f space and U = {Uα : α < κ} be an open cover of X.
For each x ∈ Uα ∈ U there exist an open set Vα(x) such that x ∈ Vα(x) ⊂ cl(Vα(x)) ⊂ Uα. The collection
V = {Vα(x) : x ∈ X} form an open cover of X and hence has a countable subcover. Moreover, X is countably
S-closed therefore the countable subcover has a finite subfamily the closures of whose members covers X.
Consequently,U has a finite subcover.

Corollary 2.18. A countably S-closed, regular, semi-Lindelö f space is compact.

Corollary 2.19. A linearly S-closed, regular, Lindelö f space is compact.

Remark 2.20. There exist a regular, linearly S-closed space which is non compact (see for instance, [Exam-
ple 4.3]). Therefore, the hypothesis of being Lindelö f can not be entirely dropped in the above corollary.

Corollary 2.21. A regular, linearly S-closed space of countable cardinality is compact.

A topological space X is called s-regular if for each semi-open set U ⊂ X and each x ∈ U there exist a
semi-open set V ⊂ X such that x ∈ V ⊂ cl(V) ⊂ U.
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Proposition 2.22. A s-regular, semi-Lindelö f , countably S-closed space is semi-compact.

Proof. Let X be a s-regular semi-Lindelö f , countably S-closed space and U = {Uα : α < κ} be a semi-open
cover of X, then for each x ∈ Uα, α < κ there exists a semi-open set Vα,x such that x ∈ Vα,x ⊂ cl(Vα,x) ⊂ Uα.
The collectionV = {Vα,x : α < κ} form a semi-open cover of X. Since X is semi-Lindelö f , V has a countable
subcover. Countably S-closedness of X implies that the subcover has a finite subfamily, the closures of
whose members covers X. Consequently,U has a finite subcover.

Corollary 2.23. A s-regular, semi-Lindelö f , linearly S-closed space is semi-compact.

A topological space X is locally linearly S-closed (respectively, locally S-closed [25]) if each point of X has
a linearly S-closed (respectively, S-closed) open neighbourhood. Clearly a locally S-closed space is locally
linearly S-closed. A linearly S-closed space is locally linearly S-closed but the converse is not true. An
infinite set with discrete topology is locally linearly S-closed but not linearly S-closed. In our next result we
provide a necessary and sufficient condition for a locally linearly S-closed space to be linearly S-closed. In
order to prove our next theorem we need a lemma which is stated as follows:

Lemma 2.24. If a space X is a finite union of open linearly S-closed subspaces then it is linearly S-closed.

Proof. Suppose that X = Y1 ∪ Y2 ∪ Y3......... ∪ Yn where each Yi, i = 1, 2, ....,n; n ∈ N is an open linearly
S-closed space in its subspace topology. Let U = {Uα : α < κ} be a semi-open chain cover (of infinite
regular cardinality κ) of X. Then for each 1 ≤ i ≤ n the family Ui = {Uα ∩ Yi : Uα ∈ U, α < κ} form
a semi-open chain cover of Yi in its subspace topology. Therefore, for each 1 ≤ i ≤ n the semi-open
chain cover Ui has a finite subfamily Vi whose union is dense in Yi. Further suppose that for each
1 ≤ i ≤ n, Ji = {α < κ : Uα ∩ Yi ∈ Vi}. Clearly for each i, |Ji| < ω and Yi = cl(∪α∈Ji (Uα ∩ Yi)). This implies

that X =
n⋃

i=1
Yi =

n⋃
i=1

cl(∪α∈Ji (Uα ∩ Yi)) ⊂
n⋃

i=1
cl(∪α∈Ji (Uα)) ⊂ cl(

n⋃
i=1

(∪α∈Ji Uα)). Let J =
n⋃

i=1
Ji. Since |J| < ω and

X = cl(
⋃
α∈J Uα), the space X is linearly S-closed.

Remark 2.25. If X is a countable union of linearly S-closed subspaces then X need not be linearly S-closed.
A countable discrete space X is a countable union of singleton subspaces which are linearly S-closed in their
subspace topology. But X is not linearly S-closed.

Corollary 2.26. A topological space (X, τ) is linearly S-closed if it is the union of a finite number of clopen linearly
S-closed subspaces of X.

Corollary 2.27. A finite sum of linearly S-closed spaces is linearly S-closed.

Theorem 2.28. A QHC space is linearly S-closed if and only if locally linearly S-closed.

Proof. The necessary part is trivially true.
To prove sufficient part, since X is locally linearly S-closed, for each x ∈ X there exist an open neighbour-

hood Ux of x which is linearly S-closed. Then the collectionU = {Ux : x ∈ X} form an open cover of X. Since

X is QHC the open coverU has a finite subfamily {Uxi : 1 ≤ i ≤ n} such that X =
n⋃

i=1
cl(Uxi ) = cl(

n⋃
i=1

Uxi ). By

Lemma 2.24,
n⋃

i=1
Uxi is linearly S-closed and hence by Proposition 2.7(d) X = cl(

n⋃
i=1

Uxi ) is linearly S-closed.

Corollary 2.29. A locally S-closed, QHC space is linearly S-closed.

Proposition 2.30. Let X be a topological space and suppose that X =
n⋃

i=1
Yi where each Yi is locally dense, linearly

S-closed subspace of X. Then X is linearly S-closed.



G Singh, A.R. Prasannan / Filomat 36:20 (2022), 6841–6854 6849

Proof. Use Theorem 2.3 and Lemma 1.2, the proof is quite similar to that of Lemma 2.24 and hence will not
be given here.

Proposition 2.31. A space (X, τ) is linearly S-closed if every dense subspace is QHC.

Proof. Let U = {Uα : α < κ} be a semi-open chain cover of X. Then D =
⋃
α<κ(int(Uα)) is dense in X

and hence QHC. Thus the open cover {int(Uα) : α < κ} of D has a finite subfamily, the closures of whose
members cover D. Consequently,U has a finite subfamily, the closures of whose members cover X.

A topological space X is called lob-space [11] if every point of X has a linearly ordered local base ( linearly
ordered by reverse subset inclusion). A topological space is extremally disconnected if and only if every
regular open set is clopen. An extremally disconnected, compact space is S-closed [23, Theorem 5] and
hence linearly S-closed. In [23] Thompson proves that a regular S-closed space is extremally disconnected.
A similar result holds for linearly S-closed spaces too.

Theorem 2.32. If X is a Hausdorff, linearly S-closed, lob-space then X is extremally disconnected.

Proof. Suppose that X is not extremally disconnected, then there exists a regular open set O ⊂ X such
that (cl(O) \ O) and (X \ cl(O)) both are non-empty. Let x0 ∈ (cl(O) \ O), then for every neighborhood V of
x0, V ∩ O , ϕ. Suppose that V = {Vα : α < κ} is an open neighborhood chain filter-base at x0 in X. Then
the family U = {Vα ∩ O : α < κ} form an open chain filter base in O. By using Proposition 2.7(a), O is
linearly S-closed and hence the chain filter base U s-accumulates to some point p ∈ O. Since p , x0 and
X is Hausdorff, there exist disjoint open sets W0 ∋ x0 and W1 ∋ p in X. By construction, the filter base V
converges to x0. Therefore, there exist a γ < κ such that (Vα ∩O) ⊂W0, for all γ < α < κ, which implies that
(Vα ∩O) ∩ cl(W1) = ϕ, for all γ < α < κ, which contradicts the fact thatU s-accumulates to p.

Corollary 2.33. A regular, linearly S-closed, lob space is extremally disconnected.

Corollary 2.34. Regular, linearly S-closed, lob space is zero-dimensional.

Proof. Extremally disconnected, regular spaces are zero-dimensional [2, p-303].

Since first countable spaces are lob spaces. We have,

Corollary 2.35. A first countable, Hausdorff, linearly S-closed space is extremally disconnected.

A compact, first countable space has cardinality at most continuum [1, p-132]. Thompson in [23,
Theorem 3] shows that S-closed, first countable, regular spaces are finite. In our next results we tried to
find some bounds on the cardinality of linearly S-closed spaces. We will begin with the following result,

Theorem 2.36. A first countable, Hausdorff, linearly S-closed space is finite always.

Proof. First countable, Hausdorff, extremally disconnected space is discrete [2, p-301] and hence the theorem
follows by using Corollary 2.35.

Remark 2.37. However, the result in Theorem 2.36 is false for non Hausdorff spaces because a countably
infinite space with co-finite topology is an extremally disconnected, non Hausdorff, second countable,
linearly S-closed space. Also the assumption of first countability can not be entirely dropped here as βω is
an infinite Hausdorff, linearly S-closed space which is not first countable.

Corollary 2.38. Linearly S-closed, metrizable space is finite.

Proof. Metrizable spaces are first countable and regular always.

Corollary 2.39. Each infinite, linearly S-closed, regular, Lindelö f space is uncountable.



G Singh, A.R. Prasannan / Filomat 36:20 (2022), 6841–6854 6850

Proof. By using Corollary 2.19, an infinite, linearly S-closed, regular, Lindelö f space is compact and a com-
pact, regular space of countable cardinality is metrizable. The general result follows by Corollary 2.38.

Corollary 2.40. First countable, compact, linearly S-closed spaces are finite.

Theorem 2.41. If X is a first countable, regular, compact space. Then the following are equivalent:

(a). X is S-closed.
(b). X is extremally disconnected.
(c). X is linearly S-closed.
(d). X is finite.

Proof. (a)↔ (b) is followed by [23, Theorem 7].
(a)→ (c) is obvious.
(c)→ (b) is followed by Corollary 2.35.
(c)→ (d) is followed by Theorem 2.36.
(d)→ (c) is trivial.

Thompson in [24] gave a characterization of S-closed spaces using the class of irresolute functions. A
Hausdorff space X is S-closed if and only if the irresolute image of X in any Hausdorff space is closed.

Theorem 2.42. An s-continuous image of a linearly H-closed space in any Hausdorff, first countable space is closed.

Proof. By using Proposition 2.8(b) and Theorem 2.36, the s-continuous image of a linearly H-closed space
in any Hausdorff, first countable space is finite and hence closed.

Theorem 2.43. An irresolute image of a linearly S-closed space in any Hausdorff, first countable space is closed.

Proof. By using Proposition 2.8(a) and Theorem 2.36, the irresolute image of a linearly S-closed space in any
Hausdorff, first countable space is finite and hence closed.

We have already seen in Figure(1) that linearly S-closed→ countably S-closed. We are now interested
to find a set of conditions under which the reverse implication is true. For the purpose, a set of conditions
is given in the following Lemma. To state the lemma we need some more definitions that are stated here.
Given an infinite regular cardinal κ, a space X is initially κ-semi Lindelö f (respectively, initially κ-linearly semi
Lindelö f ) if and only if any semi-open cover (respectively, semi-open chain cover) of cardinality ≤ κ has a
countable sub-cover. Note that every space is initially ω-semi Lindelö f as well as initially ω-linearly semi
Lindelö f . The weak semi Lindelö f number wsL(X) of a space X is the least cardinal κ such that any semi-open
cover of X has a subfamily of cardinality ≤ κ whose union is dense in X. The weak Lindelö f number [7]
(denoted as, wL(X)) of a space X is the least cardinal κ such that any open cover of X has a subfamily of
cardinality ≤ κ whose union is dense in X. By definition, wL(X) ≤ wsL(X). A topological space for which
wsL(X) = ω is known as weakly semi-Lindelö f space. Note that if Y ⊂ X is dense in X, then wsL(X) ≤ wsL(Y)
and if Y is countably S-closed then so is X. A similar discussion about linearly H-closed spaces can be found
in [7].

Lemma 2.44. Let Y ⊂ X be dense in X, and κ be an infinite cardinal. Assume as well that wsL(X) ≤ κ, Y is both
initially κ-linearly semi Lindelö f and countably S-closed. Then X is linearly S-closed.

Proof. LetU = {Uα : α < λ} (where λ is a regular cardinal) be an infinite semi-open chain cover of X then
the collection UY = {Uα ∩ Y : α < λ} form a semi-open chain cover of Y. Assume first that λ ≤ κ. Since Y
is initially κ-linearly semi Lindelö f , UY has a countable subcover, which has a finite subfamily, the closures
of whose members cover Y (being countably S-closed). Consequently, U has a member dense in X. Now
suppose λ > κ, since wsL(X) ≤ κ the semi-open chain coverU has a subfamily of cardinality ≤ κ < λwhose
union is dense in X and by regularity of λ this union is contained in some Uα.
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Proposition 2.45. A countably S-closed, semi-Lindelö f space is linearly S-closed.

Proof. Let X be a countably S-closed, semi-Lindelö f space. Given a semi-open chain cover of X, semi-
Lindelö f ness gives a countable subcover and countable S-closedness gives a finite subfamily of the subcover,
the closures of whose members cover X.

Corollary 2.46. A space containing a dense countably S-closed, semi-Lindelö f space is linearly S-closed.

A family of pairwise disjoint nonempty open sets in a topological space X is known as cellular family.
The cellularity of a space X (denoted by c(X)) is defined as the supremum of the cardinalities of the cellular
families in X. A space X satisfies the countable chain condition (abbreviated as CCC) (respectively, finite
chain condition (abbreviated as FCC)) if and only if the cellularity of X is at most ω (respectively, finite). A
semi-compact space, semi-Lindelöf space always satisfies FCC and CCC, respectively [15, Proposition 2.2].
A space X is countably S-closed if and only if for any countable decreasing family of nonempty regular
open sets in X, the intersection of of the members of the family is nonempty [12, Theorem 2.2(6)].

Proposition 2.47. A countably S-closed space satisfying countable chain condition is linearly S-closed.

Proof. Assume the contrary, that X is not linearly S-closed. Since X is countably S-closed. It has a decreasing
family of regular open sets {Bα : α < κ} of uncountable regular cardinality κ such that

⋂
{Bα : α < κ} = ϕ. We

may assume that Bα+1 is strictly contained in Bα, then the family {(Bα \ Bα+1) : α < κ} form an uncountable
family of mutually disjoint non-empty semi-open sets in X. This implies {int(Bα \ Bα+1) : α < κ} is an
uncountable family of mutually disjoint nonempty open sets in X, a contradiction.

Corollary 2.48. A CCC, feebly compact, extremally disconnected space is linearly S-closed.

Proof. Feebly compact, extremally disconnected spaces are countably S-closed.

Corollary 2.49. A separable, countably S-closed space is linearly S-closed.

Recall that a point x ∈ X is called a complete accumulation point of a subset A ⊂ X if for each neighbourhood
U of x, |A ∩ U| = |U|. In [17] the authors says that, a point x ∈ X is a complete accumulation point of a family
O of regular infinite cardinality κ of nonempty open subsets of X if for each neighbourhood V of x,
|{O ∈ O : O ∩ V , ϕ}| = κ. A topological space X is weakly linearly Lindelö f [17] if and only if any family of
non empty open subsets of regular uncountable cardinality in X has a complete accumulation point in X. A
space X is linearly H-closed if and only if any family of regular infinite cardinality of mutually disjoint non-
empty open sets in X has a complete accumulation point in X [6, Theorem 2.11]. This discussion motivates
us to give a new characterization for the class of spaces we introduced. To state the characterization, we
need a definition, stated as follows:

Definition 2.50. A point x ∈ X is called a complete s-accumulation point of a family A of regular infinite
cardinality κ of subsets of X if for each V ∈ SO(x), |{A ∈ A : A ∩ cl(V) , ϕ}| = κ.

Recall that, a point x ∈ X is in θ-semiclosure of A ⊂ X (i.e. x ∈ θ-cls(A)) if and only if for each
V ∈ SO(x), cl(V) ∩ A , ϕ. A is θ-semiclosed if and only if A = θ-cls(A). Following is a well known result,

Lemma 2.51. ([16, Corollary 1]) A regular open subset of a space X is θ-semi closed.

Theorem 2.52. A space X is linearly S-closed if and only if every family of regular infinite cardinality of mutually
disjoint nonempty open subsets of X has a complete s-accumulation point in X.

Proof. Let X be a linearly S-closed space and O = {Oα : α < κ} be any family of mutually disjoint nonempty
open subsets of X, where κ is a regular (infinite) cardinal. Let Bα =

⋃
{Oβ : α ≤ β < κ} then the family

B = {Bα : α < κ} is an open chain filter base on X. Since X is linearly S-closed, the chain filter base B has an
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s-accumulation point x0 ∈ X. Clearly for each V ∈ SO(x0), cl(V) meets κ-many elements of O and hence x0
is a complete s-accumulation point of O.

Conversely, assume that X is not linearly S-closed. Then there exist a decreasing family of nonempty
regular open sets {Uα : α < κ} of regular infinite cardinality κ such that

⋂
{Uα : α < κ} = ϕ. This implies that

for any x ∈ X there exists some β(x) < κ such that x < Uβ(x). Consequently from Lemma 2.51, x < θ-cls(Uβ(x))
and hence x < θ-cls(Uα \ (Uα+1)) for each α > β(x). Since κ-many sets of the form (Uα \ Uα+1) are non
empty, the collection {(Uα \ Uα+1) : α < κ} is a mutually disjoint family of regular infinite cardinality κ of
nonempty semi-open sets in X having no complete s-accumulation point in X. Therefore the collection
{int(Uα \Uα+1) : α < κ} is a mutually disjoint family of regular infinite cardinality κ of nonempty open sets
of X which has no complete s-accumulation point in X.

3. Product

The product of a linearly S-closed space and a S-closed space need not be linearly S-closed. Moreover,
linearly S-closedness is not a productive property, as shown in the following example.

Example 3.1. From [23] βω is a regular, compact, extremally disconnected, S-closed space, therefore linearly
S-closed. However βω × βω is not countably S-closed [12, Example 4.4] and hence not linearly S-closed.

Unlike for linearly S-closed spaces, the product of a linearly H-closed space and a H-closed space is
linearly H-closed [6, Theorem 4.1]. From Example 3.1, we see that, in general the product of a compact
space and a linearly S-closed space is not linearly S-closed. This consideration leads us to investigate the
conditions under which the product is linearly S-closed. We will begin with the following result,

Theorem 3.2. If X is a separable space, Y is linearly S-closed and X ×Y is countably S-closed then X ×Y is linearly
S-closed.

Proof. Suppose to the contrary X × Y is not linearly S-closed and that D = {dn : n ∈ ω} is a countable
dense subset of X. Since X × Y is countably S-closed there is a decreasing family B = {Bα : α < κ} (of
uncountable regular cardinality κ) of regular open sets in X × Y, such that

⋂
B = ϕ. Since D is dense in

X, πX(Bα) ∩ D , ϕ, for all α < κ. Thus for each α < κ, Bα must intersect at least one of the subspaces
{dm} × Y of X × Y where dm ∈ D. For any n ∈ ω let us denote In = {α < κ : Bα ∩ ({dn} × Y) , ϕ}. Since κ is
a regular cardinal Im ⊂ κ is cofinal in κ for some m ∈ ω and hence the collection {Bα ∩ ({dm} × Y) : α ∈ Im}

form a decreasing family of uncountable regular cardinality of nonempty regular open sets in {dm} ×Y such
that

⋂
{Bα ∩ ({dm} × Y) : α ∈ Im} = ϕ, which implies that {dm} × Y is not linearly S-closed. Since {dm} × Y is

homeomorphic to Y therefore, Y is not linearly S-closed, a contradiction.

Corollary 3.3. If X is separable, Y is linearly S-closed and X × Y is a feebly compact, extremally disconnected space
then X × Y is linearly S-closed.

Theorem 3.4. If (ΠUXα,ΠUτα) (U is an index set) is linearly S-closed then (Xα, τα) is linearly S-closed for each
α ∈ U.

Proof. Let {Uβα : βα ∈ Λ}, α ∈ U where Λ is an index set, be a semi-open chain cover of (Xα, τα), then
{π−1(Uβα ) : βα ∈ Λ} is a semi-open chain cover of ΠUXα. Thus there is a βα(k) ∈ Λ such that π−1(Uβα(k)) is
dense in ΠUXα. Since clΠUτα (ΠUAα) = ΠUclτα (Aα) we have Uβα(k) is dense in Xα.

4. Examples

Example 4.1. The one point compactification of a discrete space of infinite cardinality is not countably
S-closed [12, Example 4.3(iii)] and hence not linearly S-closed.

Example 4.2. The Katětov expansion kω [4, see p-311, and p-450] of positive integers is an example of a non
compact, extremally disconnected, space which is S-closed and hence linearly S-closed.



G Singh, A.R. Prasannan / Filomat 36:20 (2022), 6841–6854 6853

Example 4.3. The space X = βω\ {p}, where p ∈ βω\ω is a regular, countably compact thus feebly compact,
non compact, extremally disconnected, separable (hence CCC), countably S-closed space [12, Example 4.1].
Since a CCC, feebly compact space is linearly H-closed [6, Corollary 2.7]. Hence, by using Theorem 2.14, X
is a linearly S-closed space which is not S-closed [23, Corollary].

Example 4.4. For any discrete space D of infinite cardinality, its Stone − Čech compactification βD is a
compact, Hausdorff, extremally disconnected, linearly H-closed space and therefore by using Theorem 2.14,
βD is linearly S-closed.

Example 4.5. ([12, Example 4.2])Suppose that (Y, τ) is a topological space such that Y \ {p} is a countably
S-closed subspace for some non-isolated point p ∈ Y. Let Y1 and Y2 denote two disjoint copies of Y \ {p}.
For any subset A ⊂ Y denote the corresponding subsets of Y1 and Y2 by A1 and A2, respectively. Let
X = Y1 ∪ Y2 ∪ {p}. Define a topology σ on X in the following way. For any x ∈ X , if x ∈ Y1 (x ∈ Y2,
respectively) then the basic open neighbourhoods of x in σ are of the form U1 (U2, respectively) where U is
an open subset of Y\{p} and the basic open neighbourhoods of p in σ are of the form (V \{p})1∪ (V \{p})2∪{p}
where V is an open neighbourhood p in (Y, τ). It is easy to see that Y1 and Y2 are regular open sets in (X, σ)
and homeomorphic to Y \ {p}. Since neither of Y1 and Y2 is closed in (X, σ) it is not extremally disconnected.
Although it is countably S-closed.

In particular, if we take Y = βω, p ∈ βω \ω. Then the resulting space is a Hausdorff, separable, compact,
countably S-closed space. It is not S-closed because a Hausdorff S-closed space is extremally disconnected
[23, Theorem 7]. By using Corollary 2.49, X is linearly S-closed.

Example 4.6. Following are the examples of non compact, linearly H-closed spaces, which are not linearly
S-closed, due to Theorem 2.36.

1. Bell [5, Example 1] constructed an infinite, first countable, countably compact, Tychonoff space which
is linearly H-closed [7, Example 2.9].

2. The spaceΨdue to J. Isbell and S. Mrówka [19] is an infinite, first countable, locally compact, Tychonoff
space and shown to be linearly H-closed in [7, Example 2.9].

Example 4.7. ω1 the space of all countable ordinals is an infinite, first countable, regular, countably compact,
thus feebly compact space. Since first countable, Hausdorff, linearly S-closed spaces are finit always, ω1 is
not linearly S-closed. Moreover, the ‘canonical” cover by initial segments α (α < ω1) is a semi-open chain
cover of ω1 having no member dense in it.
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