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L-Convex Quasi-Uniform Spaces

Xiu-Yun Wu?, Hui-Min Zhang?

?School of Mathematics and Statistics, Anhui Normal University, Wuhu, 241003, China

Abstract. In this paper, L-convex f*-remotehood system is introduced and some characterizations of both
L-convexity and L-convex remotehood system are obtained. Further, f*-remote mapping is presented and
some of its properties are investigated. Based on this, L-convex quasi-uniformity and L-convex quasi-
uniformity preserving mapping are introduced. It is proved that L-convex quasi-uniform space and L-
convex space are mutually induced. In addition, the category of L-convex spaces and the category of
L-convex f*-remotehood spaces can be embedded into the category of L-convex quasi-uniform spaces.

1. Introduction

In an abstract convex space, a convex structure on a nonempty set is a family of subsets containing
the empty set and the largest set and is closed under arbitrary intersections and nested unions. Its theory
is called the abstract convex theory which involves many mathematical structures such as lattice, graph,
median algebra, metric space, poset and vector space [16].

Convex structure has been extended into fuzzy settings by many ways. Maruyama introduced L-convex
structure [3] which has being studied by many scholars [4-6, 24, 31, 34]. Also, Shi and Xiu introduced M-
fuzzifying convex structures [13]. Many subsequent studies have been done [7, 17, 22, 23]. Further, Shi
and Xiu introduced (L, M)-fuzzy convex structure which is a unified form of L-convex structure and M-
fuzzifying convex structure [14]. It characterizations have been studied recently [19, 20]. Now, these
fuzzy forms of convex structures have being applied to many fuzzy mathematical structures such as fuzzy
topology [2, 17, 18, 20, 25], fuzzy convergence [6, 7, 32, 33] and fuzzy matroid [21, 27].

Uniformity is a topology-like concept which is a convenient tool in interpreting topology. In fuzzy
settings, Hutton introduced fuzzy quasi-uniformities by fuzzy uniform operators [1]. Ying introduced M-
fuzzifying uniformities and studied relations between M-fuzzifying uniformities and M-fuzzifying topolo-
gies [28]. Rodabaugh presented the axiomatic foundations for quasi-uniformities in fuzzy real lines and
some other fuzzy settings [8, 9]. Zhang gave a comparison of various uniformities [30]. Shi established the
theory of quasi-uniformities in completely distributive lattices and fuzzy sets [10, 11]. Yue extended Shi’s
quasi-uniformity in a Kubiak-Sostak sense and showed that the category of fuzzy topological spaces can
be embedded into the category of fuzzy extension of Shi’s quasi-uniform spaces [15, 29].
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As mentioned above, quasi-uniformity is a topology-like structure which is used to interpret topology.
Then, is there any convex-like quasi-uniformity which can be used to interpret convex structure? Motivated
by this, we present this paper. The arrangement of this paper is as follows. In Section 2, we recall some
basic concepts, denotations and results related to L-convex space. In Section 3, we introduce L-convex
p*-remotehood spaces and characterize both L-convex spaces and L-convex remotehood spaces. In section
4, we introduce L-convex quasi-uniformity and study its relations with L-convex space and L-convex f*-
remotehood space. In section 5, we introduce L-convex quasi-uniformity preserving mapping. We find
that the category of L-convex spaces and the category of L-convex *-remotehood spaces can be embedded
into the category of L-convex quasi-uniform spaces.

2. Preliminaries

In this paper, X and Y are nonempty sets. L is a completely distributive lattice. The smallest (resp.
largest) element in L is denoted by L (resp. T). An element a € L is called a co-prime, if for all b,c € L,
a <bVcimpliesa < bora < c. The set of all co-primes in L\{1} is denoted by J(L). For any a € L, there
is an Ly € J(L) such that a = \/;;, b. A binary relation < on L is defined by a < b iff for each L; C L,
b < \/ L, implies some d € L; with a < d. The mapping f : L — 2%, defined by f(a) = {b € L : b < a},
satisfies B(V e i) = Uie; B(ai) for any {a;}ier € L. For any a € L, we denote *(a) = f(a) N J(L). It is proved that
a=Vp@) =\ p@),p@= Upep@pb) and @) = Upep o) B'(0) [12].

An L-fuzzy set on X is a mapping A : X — L. The set of all L-fuzzy sets on X is denoted by LX. The
smallest (resp, largest) element in LX is denoted by L (resp. T). A subset {A;}ic C LX is called a directed
set, denoted by {A}}%" C L¥, if any pair of indices i, j € I implies a k € I such that A; V A; < A. In this
case, we denote \/,; A; by /4 A An L- -fuzzy point x; (A € L\{1}) is an L-fuzzy set defined by x,(x) =
and xA(y) 1 for any y € X\{x}. The set of all L-fuzzy points on L* is denoted by PHLX). Also, we denote

J(LX) = {x) € PHLX) : A € J(L)} and B*(LX) = {xp € PHLX) : A € B*(L)}.

For A € L*, we denote F(A) = {F e LX : Ap € ZﬁiLA),F =\ ¢}. It is proved that that (1) §(A) is directed;

(2) B < Aiff §(B) € F(A) for A, B € L¥; (3) B'(A) € F(A) @) V F(A) = 4; (5) F(Vif A) = Uyes F(A) [19],
For a mapping ¢ : X — Y, ¢ : L* — LY is defined by ¢;*(A)(y) = V{A(x) : ¢(x) = y} for A € L¥ and
yeY,and @i : LY — L¥ is defined by ¢~ (B)(x) = B(¢p(x)) for B € LY and x € X [12].

Definition 2.1. ([3]) A subset C C LX is called an L-convexity on LX and the pair (X, C) is called an L-convex
space, if

(LC) T, LeC

(LC2) Y{Aitier € C, AlelA' € C

(LC3) V(AN c €, Vit A
Definition 2.2. ([4]) An operator co : LX — LX is called an L-hull operator on L* and the pair (X, co) is called
an L-hull space, if it satisfies

(LCO1) co(L) = L

(LCO2) A < co(A);

(LCO3) co(co(A)) = co(A);

(LCO4) co( Vi Ai) = Vier co(4y).

Theorem 2.3. ([19]) Relations between L-convexities and L-hull operators are as follows.

(1) If (X, C) is an L-convex space, then the operator coc : LX — LX defined by coc(A) = N{B€ LX : A<B€C})
for any A € L%, is an L-hull operator on LX.

(2) If (X, co) is an L-hull space, then the set Co, = {A € LX : co(A) = A} is an L-convexity on LX,

(3) cog,, = co for any L-hull space (X, co).

(4) Ceo, = C for any L-convex space (X, co).
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Let (X,Cx) and (Y, Cy) be L-convex spaces. A mapping ¢ : X — Y is called an L-convexity preserving
mapping, if ;7 (A) € Cx for any A € Cy. The category of L-convex spaces and L-convexity preserving
mappings is denoted by L-CS [19].

Definition 2.4. ([26]) A set R = {R,, : x4 € (LX)} is called an L-convex remotehood system on LX and the
pair (X, R) is called an L-convex remotehood space, where R,, C LX satisfies
(LCR1) L € Ry,;
(LCR2) A € R,, implies x) £ A;
(LCR3) A € Ry, iff there is a set B € L* such that x; £ B > A and B € R,, for any y, € J(L*) with y, £ B;
(

LCR4) \/;Z Ai € Ry, iff there is a u € f°(A) such that A; € R, foralli € L.

Let (X, Rx) and (Y, Ry) be L-convex remotehood spaces. Amapping ¢ : X — Y'isan L-convex remotehood
preserving mapping, if B € (Ry)y-(x,) implies ¢ (B) € (Rx)x, for all B € L' and x, € J(L*). The category of
L-convex remotehood spaces and L-convex remotehood preserving mappings is denoted by L-CRS [26].

Theorem 2.5. ([26]) Relations between L-convex spaces and L-convex remotehood spaces are as follows.

(1) Let (X, R) be an L-convex remotehood space. The set Cg = {A € LX :Vx, £ A, A € Ry} is an L-convexity on
LX.

(2) Let (X, C) be an L-convex space. Then the set R = {R% : x) € J(LX)} is an L-convex remotehood system on
LX, where Ry, ={A € LX :AB € C,x) £ B > A}.

(3) L-CRS is isomorphic to L-CS.

3. L-convex *-remotehood space

In an L-topological space, the supremum of two L-fuzzy sets is an L-remotehood of an L-fuzzy point iff
each of them is an L-remotehood of that point [12]. However, as described in (LCR3) of Definition 2.4, in an
L-convex space, the supremum of a directed subset of L-fuzzy sets is an L-convex remotehood of an L-fuzzy
point can not imply that each L-fuzzy set is an L-convex remotehood of that point. To solve this problem,
we introduce the notion of L-convex f*-remotehood space by which we characterize L-convex spaces and
L-convex remotehood spaces. For this, we firstly present the following lemma.

Lemma 3.1. For any x, € (LX), we denote
BiL) ={nep(L): Aep )

and
P (LX) ={A e LX : Y € B1(L), x, £ A

Forall A,B € LX and any {A;}ie; C L%, it follows that
(1) B < A € Yy, (LX) implies B € iy, (LX);
(2) Viet Ai € Uy, (LX) iff Ai € Uy, (LX) forany i € I;
(3) Yy, (LX) = mqeﬁ;(L) lwa (LX)/’
(4) B< Aiff A € Uy, (LX) implies B € Yy, (L) for any x, € B(LX).

Proof. (1). Itis clear.

(2). Clearly, \/;e; A; € ¥y, (LX) implies A; € 1, (LX) for any i € I. Conversely, let A; € ¥, (LX) forany i € I.
Suppose that /¢ A; ¢ iy, (LX). Then there is an 1) € g;(L) such that x, < \/;; A;. Since 1 € (L), there is
a 0 € p*(n) such that 6 € g} (L). Further, since xg < x, < V¢ A;, thereis a j € [ such that xy < A;. But this
contradicts A; € iy, (L¥). Therefore \/,c; A; € ¢y, (L¥).

(3). Clearly, iy, (L%) € Myep: @) P, (L¥). Conversely, let A € Myep, @) Y, (L¥). For any 6 € B;(L), there
is a & € p(0) such that 6 € By(L). Thus A € ¢, (L*) and xo £ A. Hence A € i, (L¥). Therefore
mqeﬁj‘(L) be,,(LX) c lPx,\ (LX)‘
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(4). The necessity is clear. For the sufficiency, assume that A € ¥, (LX) implies B € 1,,(L¥) for any
xy € B(L¥). Suppose that B £ A. Thereis a y, € f°(L*) such that y, < Band y, £ A. Then A € ¢, (L¥)
which implies B € 1, (L¥). Since y, < B, there is an 1 € (L) such that y;, < B. But this contradicts
B € ¢, (L¥). Therefore B< A. [

Definition 3.2. A set R = {R,, : x; € B*(L¥)} is called an L-convex f*-remotehood system on LX and the pair
(X, R) is called an L-convex *-remotehood space, if for any x, € f*(LX) the set R,, C LX satisfies

(LCBR1) L € R, ;

(LCBR2) A € R, iff any 1 € p; (L) implies a set B € 1), (LX) such that A < B € R, for any y,, € p*(L¥)
with B € ¢, (L%);

(LCBR3) /% A; € Ry, iff A; € Ry, forallie I.

Let (X, Rx) and (Y, Ry) be L-convex f*-remotehood spaces. A mapping ¢ : X — Y is called an L-convex f*-
remotehood preserving mapping, if B € (Ry)p-(x,) implies @i~ (B) € (Rx)x, forallx, € p*(L¥) and B € LY. The
category of L-convex f*-remotehood spaces and L-convex f*-remotehood preserving mappings is denoted
by L-CBRS.

Lemma 3.3. Let (X, R) be an L-convex B'-remotehood space. For any x, € *(LX), it is true that
(1) A< BeR,, implies A e R,;
(2) ﬂx,\ = ﬂqeﬁj\(L) qu.

Proof. (1). It directly follows from (LCBR2).

(2). Clearly, R,, € mnéﬁj\(L) Ry, by (LCBR2). Conversely, if A € mnéﬁj\(L) Ry, then A € Ry, forany 11 € (L)
By (LCBRY), for any 6 € f;(L) there is a set Dy € by, (L*) such that A < Dg € Ry, for any y, € (LX) with
Do € iy, (L%).

Let D = Aqeﬁj\(L) /\96/371@) Dg. For any n € (L), we say that D € gbxq(LX). Otherwise, xg < D for some
0 € By(L). There is a u € §°(0) such that u € By(L). Hence xo <D < D, € ¢y, (LX). It is a contradiction.
Therefore D € 1y, (L¥).

Further, let z; € B*(LX) with D € . (L¥). To prove that D € R;,, letv € B;(L). Thenz, £ D. Thus there are
nepy(l)yand 6 € ‘Bﬁ,(L) such that z, £ Dg. Hence Dy € 1, (LX) and Dy € 7?2‘, by the assumption. Therefore
D € R., by (LCBR2).

Now, for 1 € g; (L), it follows that A < D € ¢, (LX) and D € R;, for any z; € p*(L¥) with D € ¢, (L¥). So
A € Ry, by (LCBRY2). Therefore (Ve 1) Ry, € Ry O

We study relations between L-convex spaces and L-convex *-remotehood spaces.

Theorem 3.4. Let (X, R) be an L-convex p*-remotehood space. Then the set
Cp=1AeL*:Vx) € B (LX), A € Py, (LX) implies A € Ry}
is an L-convexity on LX.
Proof. (LC1). By (LCBR1), we know that L € R,, for any x, € g*(LX). Thus L € Cg. Also, T € Cy is trivial.
(LC2). Let {Aj}ier € Cg and let x; € B*(L*) with A\ ;; A; € ¢y, (L¥). For any 1 € B; (L), we have x;, £ A\ Aj.

So thereis a j € I such that x;, £ A;. Thus A; € Yy, (LX) which implies that A; € @xq. Hence A Ai € @XW by
(1) of Lemma 3.3. As a result, by (2) of Lemma 3.3, it follows that

/\Ai (S ﬂ ﬁxq = Qx/‘
iel nep; (L)

Therefore A Ai € Cyg.
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(LC3). Let {A}}%" € Cg and let x; € (LX) with \/%] A; € U, (L¥). Then A; € ¢y, (LX) and A; € R,, for any

i€l

i€l Hence V" A e R, by (LCBR3). Therefore Vi A € Ci O

iel

Theorem 3.5. Let (X, Rx) and (Y, Ry) be L-convex B*-remotehood spaces. If @ : X — Y is an L-convex B*-remotehood
preserving mapping, then ¢ : (X,Cg ) — (Y,Cg,) is an L-convexity preserving mapping.

Proof. Let B € Cy, . To prove that @i~ (B) € Cg, let x) € *(L*) with @5 (B) € ¢y, (L¥). Then ¢;”(x,) € p(LY)
and B € QD@?(X/‘)(LY). Thus B € (f{y)q)?(x/\) followed by ¢; " (B) € (Rx)x,. Hence ¢y (B) € Cg,- Therefore ¢ is an
L-convexity preserving mapping. [

Theorem 3.6. Let (X, C) be an L-convex space. For any x, € B*(L%), define
RE ={AeLX:TBeCnyy, (L¥), A<B)
Then Re = {RS, : xy € B*(LX)} is an L-convex p’-remotehood system.

Proof. (LCBR1). It is clear.

(LCBR2). If A € RS, then there is a set B € C N, (L) such that A < B. Thus B € y, (L%) for any
1 € B (L). In addition, for any y, € g*(L*X) with B € ¢, (LX), it is clear that B € C N ¢, (L¥). This shows that
Be f%(y“‘“. Hence the necessity of (LCBR2) holds for 7?%

Conversely, assume that any n € f;(L) implies some B, Ae P, (LX) such that A < B, € 7?30,“ for any
Yu € B(LX) with B, € ¢, (LX). Letn € By(L). Then B, € RS by the assumption. Thus there is a set
E,€CNy, (LX) such that B, < E,. Further, let E = Ar]&ﬁ;(L) E,. It follows that A < /\,]eﬁj‘(L) B, <Eand

EeCn ﬂ Ur, (L) = C 0y, (L),
1n€p; (L)
Hence A € ﬁ% Therefore the sufficiency of (LCBR2) holds for @%

(LCBR3). Let {A}¥" c LX. If Vi A € RS then A; € RC for any i € I. Conversely, let A; € RS for any
i € I. There is a set B; € C N 1y, (LX) such that A; < B; forany i € I.

Let E; = AID; € C Ny, (LX) : A; < Dy} for any i € I. We have A; < E; and E; € C Ny, (L¥). Since
{Ai}flég is directed, the set {E;}ic; is also directed. Thus \/%" E; € C N, (LX) and \/% A; < /4" E;. Therefore
\/Idé; Ai € REA

In conclusion, R is an L-convex f*-remotehood system. [

Theorem 3.7. Let (X,Cx) and (Y, Cy) be L-convex spaces. If ¢ : X — Y is an L-convexity preserving mapping, then

@ (X, Rey) — (Y, Re,) is an L-convex B*-remotehood preserving mapping.

Proof. Let x, € (LX) and A € Qgi(x ;- Then there is a set B € Cy N g (x,)(L") such that A < B. Thus
L (X2

¢ (B) € Cx Ny, (LX) and @) (A) < ¢ (B). Hence ¢; (B) € @f‘x Therefore ¢ is an L-convex f*-remotehood

preserving mapping. [

Theorem 3.8. 7%& = R for any L-convex B*-remotehood space (X, R).

Proof. Letx, € p*(L¥X)and A € f%ff There is a set B € Cg N iy, (LX) such that A < B. Further, B € Cj implies
B € R,, for any y, € (LX) with B € i, (L¥). In particular, B € R,,. Hence A € R,,. Therefore REx C R,
Conversely, let A € R.,. By (LCBR2), any n € (L) implies some B, € ¢, (LX) such that A < B, € @yy for
any y, € p(L*) with B, € i, (L¥).
Let B = Aep ) By To prove that B € Cy, it is sufficient to prove that B € R., for any z; € p*(LX) with
B € ¢, (L%). Indeed, for any 6 € (L), it is clear that zp £ B. Then there is an 71 € (L) such that zp £ B,
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Thus B, € 1.,(L*) and so B, € R., by the assumption. Hence B € R,,. Therefore B € ﬂBEﬁg(L) R, = R., by
(3) of Lemma 3.3. This implies that B € Cg. So

A<Be C@ N ﬂ lPxn(LX) = C'f% N IPXA (LX)
nep; (L)
Thus R,, € R,
In conclusion, f{f\R = Ry, for any x, € B*(L¥). Therefore R = Re,. O

Theorem 3.9. Cg = C for any L-convex space (X, C).

Proof. Let A € Cg.. For any x) € p*(A) with A € ¢, (L%), it follows that A € 7?%. Thus there is a set
By, € CN ¢y, (LX) such that A < By,. Let B = A ey, 1) Bx,- Then A < B € C. On the other hand, for any
yy £ A, thereis a u € B*(n) such that y, £ A. Thus A € ¢, (L¥) and B,, € ¢, (LX) N C. Hence y, £ B,, > B
followed by y, £ B. This implies that B < A. Hence A = B € C. Therefore Cz, € C.

Conversely, let A € C. For any x, € (LX) with A € ¢, (L%), it is clear that A € C N1y, (LX). This directly
implies that A € f?% and A € C . Thus C € Cg_. This shows that Cg . =C. O

Based on Theorems 3.4 and 3.5, we define a functor: IF : L-CBRS — L-CS by
F(X,R) = (X,Cr),  F(@) = ¢
By Theorems 3.4-3.9, IF is isomorphic. Thus we have the following conclusion.
Theorem 3.10. L-CBRS is isomorphic to L-CS.

Based on Theorems 2.5 and 3.6, the following example shows that L-convex §*-remotehood system and
L-convex remotehood system are different. Although their differences may seem trivial, the difference of
B*-remotehood systems provides some necessary conveniences in defining L-fuzzy f*-remote mappings
and L-convex quasi-uniforms in the next section.

Example 3.11. Let X = {x} and L = [0, 1]. Itis clear that C = {L, x 1 , T}is an L-convexity on LX. In addition,
it is easy to check the following results.
() Re = {Rg\ :0 < A < 1} is an L-convex remotehood system, where

Therefore RC and RC are different.

The following theorem gives a direct relation between L-convex f*-remotehood systems and L-convex
remotehood systems.

Theorem 3.12. (1) Let (X, R) be an L-convex f*-remotehood space. Define 7%@ = Upepy R, for any x, € J(LX).
Then Ry = {Rf\ s x) € J(LX)} is an L-convex remotehood system.

(2) Let (X,R) be an L-convex remotehood space. Define 7?5 = Na<pe) Ry, for any x, € B*(LX). Then
R = {7??‘ 1x) € ﬁ*(LX)} is an L-convex f*-remotehood system.

(3) VAQR@ = R for any L-convex B’-remotehood space (X, R).

(4) Ry, = R for any L-convex remotehood space (X, R).

(5) L-CBRS is isomorphic to L-CRS.
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4. L-convex quasi-uniform space

In this section, we introduce the notion of L-convex quasi-uniform space and study its relations with
L-convex spaces and L-convex f*-remotehood spaces. For this, we introduce L-fuzzy f*-remote mappings
as follows.

A mapping f : (LX) — L¥is called an L-fuzzy B*-remote mapping, if f(x,) € ¢, (L) for any x, € p*(L¥).
The set of all L-fuzzy f*-remote mappings is denoted by R(L¥). For f, g € R(LX), we denote f < g provided
that f(x,) < g(x,) for any x, € p*(L%). Clearly, the mapping fy : (LX) — L%, defined by fo(x,) = L for any
x) € B*(L%), is the smallest L-fuzzy f*-remote mapping.

For all f,g € R(LX), {filier € R(LX) and x, € B*(LX), we further define

(D) Vier fd(xa) = Vier filxa);

@) (Niat £)02) = Aier f2):

B) (f o P(xa) = AMf(Wy) : g(x2) € Py, (LF)).

A subset {f;}ie; € R(L) is called directed if any pair of indices i, j € I implies a k € I such that f; V f; < fi.
In this case, \/, f; is denoted by \/47 f..

Lemma 4.1. Let f,g,h € R(LX) and {f;}icr € R(LX). We have
(1) fogeRWLX)and fog< fAg;
(2) Vier fi € RILX) and N\ fi € R(LX);
B)(fog)oh=fo(goh).

Proof. (1). For any x; € p*(L¥), we have g(x)) € ¢y, (LX) and so (f ¢ g)(x1) < f(x,). Thus f ¢ g < f which
implies that f ¢ g € R(LX).

Suppose that (f ¢ g)(x1) £ g(xa). Then thereis a y, € p*(L*) such that y, < (f © g)(x3) and y, £ g(x,). By
Yu % g(xp), there is an 1 € B*(u) such that y, £ g(x,). So g(xa) € ¢y, (LX) and

Yu < (f 0 9)(xn) < f(yy) € ¢y, (L)
It is a contradiction. Hence (f ¢ g)(xa) < g(x,). Therefore f o g < f A g.
(2). It directly follows from (1) and (2) of Lemma 3.1.
(3). Let x, v € *(LX). We have

£[(f o g)ohl(xa) Fn(xr) € Y, (L), yu £ (f 0 9)(zy)

=1
e Jh(xy) € -, (LX), Fg(zy) € Puy (LX), yu £ f(wo)
< 3(9 o h)(xy) € ¢w9(LX)r Yu £ f(we)

S Y £ [f o(ge m1(xy).

Thus [(f © 9)  hl(xa) = [f © (9 © H)](x2). Therefore [(f o g) o k] = [f o (g o W)]. OO

Definition 4.2. A subset U C R(L¥) is called an L-convex quasi-uniformity on LX and the pair (X, U) is
called an L-convex quasi-uniform space, if

(LCQUY) fo € U;

(LCQU2) f € U iffthereisag e Usuchthat f<gog;

(LCQUB) {f;}4" € U implies Vi feU.

Let U be an L-convex quasi-uniformity on L*. A subset 8 C U is called an L-convex quasi-uniform base

of U if any f € U implies a g € B such that f < g. A subset ® C U is called an L-convex quasi-uniform
subbase of U if By = f’;; A fi) Z C @} is an L-convex quasi-uniform base of U. Clearly, an L-convex
quasi-uniform base is an L-convex quasi-uniform subbase.

Now, we construct an L-convexity by an L-convex quasi-uniformity.
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Lemma 4.3. Let (X, U) be an L-convex quasi-uniform space. For any A € L%,
Ay = \[trr € FLY): Vf €U, AL f(x)).

Forall x) € B*(L%), f € U and {Ai}fg C LX, we have
(1) A < f(xy) implies Ay < g(x,) forany g € U with f <gog;
(2) Aq € Y (LX) iff any 1 € B; (L) implies some g € U such that A < g(xy);
(3) fxn)u € Pu, (L)
4) A SAru,' '
(5) (Vi Ay = Vis(Adu.

Proof. (1). Let A < f(x)) and let g € U with f < g o g. Suppose that Aq; £ g(x,). There is a y, € *(L¥) such
that y, £ g(x)) and A £ h(y,) for any h € U. In particular, we have A £ g(y,). Also, since g(x) € ¢y, (LX)
by y, £ g(xa), we have

A < flxa) < (g0 9)0a) < g(yu)-
It is a contradiction. So Aq; < g(x4).

(2). Let Aqs € iy, (LX) and let 1) € B;(L). Suppose that A £ g(x;) for any g € U. Then x, < Aq and thus
Ay € Uy, (LX). But it is a contradiction. So there must be some g € U such that A < g(x,).

Conversely, assume that any 1 € g} (L) implies some g € U such that A < g(x;). If Ay ¢ Py, (L¥), then
there is a 6 € §(L) such that x5 < Aq. By 6 € B}(L), there is a u € B (L) such that u € (). Thus x, < Ay
which implies an x,, € g*(L¥) such that x, < x, and A £ g(x;) for any g € U. Hence 1 € g(L) and A £ g(x,)
for any g € U. But this contradicts the assumption. Therefore Aq € ¥y, (LX).

(3). By (LCQU?2), thereisa g € U such that f < gog. Forany 1 € B;(L), wehave g(x,) € ¢, (L) C ¢y, (L¥).
Thus f(x)) < (g ¢ 9)(x2) < g(x,). Hence f(x1)u € ¢y, (LX) follows from (2).

(4). For any y, € B*(A), thereisan 1 € [SL(L) such that y, € g°(A). In addition, g(y,) € ¢y, (LX) for any
g € U. Thus y, £ g(yu) followed by A £ g(y,). Hence y, < Aqy. Therefore A =V, g1 yu < Au

(5). By the definition, \/%1(A)u < (V' Aj)y. Conversely, let y, € p7(LX) with y, £ V&(A)u. Then
there is an n) € $*(u) such that v, £ V(A Thus Yy £ (A for any i € I. So there is an f; € U such that
Ai < filyy)-

Let E; = {fi € U : A; < fi(y,)} for any i € I. Then Az, fi € U by (LCQU2). Since {Aj}dir € X, the set
{Afes, filier € U is directed. Let f = \/i A ex, fi. Then f € U by (LCQU3). In addition, \/i A < f(y,)-
Further, by (LCQU?2), thereisa g € U such that f < gog.

Suppose that y, < (\/fel; Ai)y. Then y, < (\/?El; Aj)u. Thus there is a y5 € *(L¥) such that y, < ys and
V& A; £ h(ys) for any h € U. In particular, we have /% A; £ g(ys). Since g(y,) € iy, (LX), it follows that
9(yy) € Py, (L) and thus

dir
\/ Ai < fly) < @ 9)) < g(ws).
i€l
It is a contradiction. Hence y, £ (V5 A;)y. Therefore (V45 Ay < Vi(Ady. O
Theorem 4.4. Let (X, U) be an L-convex quasi-uniform space. Define an operator coq; : LX — LX by
VA e LX, coy(A) = Aq.
Then coqq is an L-hull operator of some L-convexity denoted by Cq;.

Proof. We prove that coq; satisfies (LCO1)-(LCO4).
Indeed, (LCO1) is clear. In addition, (LCO2) and (LCO4) directly follow from (4) and (5) of Lemma 4.3.
(LCO3). Let x4 € B(LX) with cog(A) € ¥y, (L¥). By (2) of Lemma 4.3, any 1 € B;(L) implies some
f € U such that A < f(x,). Further, by (LCQU3), there are g,h € U such that f < gogand g < hoh.
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Thus coq(A) < g(xa) and coqs(cog(A)) < h(xy) by (1) of Lemma 4.3. Hence coq/(coq(A)) € ¢n, (L¥). By
the arbitrariness of x; € (LX), we conclude from (4) of Lemma 3.1 that coq/(coq/(A)) < coy(A). So
coq(coqs(A)) = coqy(A) as desired.

Therefore coq; is an L-hull operator. [

Next, we construct an L-convex quasi-uniform space from an L-convex space.

Lemma 4.5. Let (X, C) be an L-convex space. For any A € LX, define a mapping fa : (LX) — LX by
faGe) = \/{BeC Ny (L¥): B<A)

for any x, € pr(LX). Forall A € L*, {Aj}%"  L* and {Bi}ie; € L%, the follows statements are valid.
(1) fa € ER(LX);
2 AN € C implies \/iep fa, = fyar 4/
(3) /\ie[ fBi = f/\,d Bi/
(4) fa o fa = fa.

Proof. (1). It directly follows from (2) of Lemma 3.1.

(2). Let x4 € B*(L%). For any y, € B*(L*) with y, <V fa,(x2), there is an i € I such that y, < fa,(x)).
Thus there is a set B < A; such that y, < B € C N ¢, (L¥). Hence B < A; < /% A; which implies that
Yy < f\/?e"?A‘ (x2). Therefore V¢ fa,(x1) < f\/f'é§ A (x2).

Conversely, let z, € p*(LX) with z, < fv‘_ds,; A.(xa). Then there is a set D < V4" A; such that zy <D €

C N ¢y, (L¥). By (LCOA4), it follows that z, < D = co(D) = \/ Fe(p) CO(F). Thus there is an F € §(D) such that
zy < co(F) < D < VI A;. So co(F) € C N iy, (LX) by (1) of Lemma 3.1. Further, since F € FD) € F(Vi Aj) =
Uier 3(A)), there is an i € I such that F € §(A;). Hence co(F) < A; and z, < co(F) < fa,(xa) < Vg fa,(xa).
Therefore f,ar o (1) < Vier fa,(x2).

Now, Vier fa;(xa) = f\/ﬁ;;Ai(x/\) for any x; € B'(L¥). Thus Vg fa, = f\/f’e’}'A,-'

(3). Let x; € B*(L¥) and let y,, € B*(L*) with y, < A, fg,(x1). Then y, < fg,(xy) for any i € I. Thus there
is a set D; < B; such that y, < D; € CNy, (LX). Thus y, < Aje; Di € CN 1y (LX) and A Di < Ajer Bi. Hence
Yu < fa8/(x2). Therefore Aje fp,(x2) < fa,, 5, (x2)-

Conversely, let z, € ﬁ*(LX) with z, < fa_ B, (x1). Then there is a set B < /\;.;B; such thatz;, <Be€ Cn
Yy, (LX). Thus B < Bjand z,, < f,(x)) forany i € I. Hence z, < A fg,(x1). Therefore fp _ 5.(x1) < Aicr f,(x2).

So Ajer fBi(x/\) = f/\ieI 5,(x2) for any xp € ﬁ*(LX)' Thatis, A fBi = f/\ieI B;-

(4). Clearly, fao fa < fa. Suppose that f4 £ fa© fa. Thereisan x; € p*(L%) such that fa(xx) £ (fa < fa)(x2)-
Thus thereis a z, € B*(L¥) such that zy < fa(xa) and z; £ (fa © fa)(xa).

By z, £ (fa ¢ fa)(x1), there is a y, € B*(L¥) such that f4(x)) € ¢, (L*) and z, £ fa(y,). Further, by
zy < fa(xp), there is a set B < A such that z, < B < fa(x)) and B € C N ¢y, (L¥). Hence B € C N1, (L¥)
followed by z, < B < fa(y,). It is a contradiction. So f4 < fa ¢ fa must hold. Therefore fa o f4 = fa. O

Theorem 4.6. Let (X, C) be an L-convex space. Define a set
Ue = {f € RILY) : JA € C, Vx3 € B'(LY), f(x2) < fa(xp) € C).
Then Uc is an L-convex quasi-uniformity.

Proof. We prove that U satisfies (LCQU1)-(LCQUS3).
(LCQUL1). Itis clear that L € C and fy(xa) = fL(x1) = L € C for any x, € B*(L¥). Thus fy € Uc.
(LCQU2). If f € Uc, then there is a set A € C such that f(x,) < fa(x;)) € C for any x, € g*(L¥). Since
fa € Uc and fa ¢ fa = fa by (4) of Lemma 4.5, we find that f < f4 ¢ fa. Therefore (LCQU?2) holds for U.
(LCQU3). Let {ﬁ}fg C Uc. For any i € I, there is a set A; € C such that fi(x)) < fa,(xa) € C for any
x) € B*(L%). For any i € I, we denote

Ei = {D; € C : Yx,€B° (L), fi(xa)<fp,(x1) € C}.
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Then A; € E; and /\p.cz, D; € C by (LC2). Also, by (3) of Lemma 4.5, for any x, € B*(L%), it follows that

fi) < frp e 0,00 =\ fo(x1) €C.

D;eE;

Since { fl}g C R(LX), the set { A pieg,; Dilier € Cis also directed. Thus \/7;'; Ab,ez; Di € Cby (LC3). In addition,
by (2) of Lemma 4.5,

dir dir
VA0 < fty e 0,00 =\ Froe pii) €C.
i€l i€l

Hence V4" fi e Ue. O

Corollary 4.7. For any L-convex space (X,C), the set B = {fa : A € C, ¥x, € B (LX), fa(xa) € C} is an L-convex
quasi-uniform base of Ue.

Theorem 4.8. Cq;, = C for any L-convex space (X, C).

Proof. Let B € Cy and let y, € p"(L*) with coq;,(B) = B € ¢, (L¥). By (2) of Lemma 4.3, for any 1 € (L),
there is an f € U such that B < f(y,). Further, by f € Uc, there is a set A € C such that f(x;) < fa(xa) € C
for any x, € p*(L¥). In particular, B < f(y,) < fa(y,) € C N ¢, (LX). Thus

co(B) < co(fa(yy)) = falyy) € C Ny, (L).
Further, by the arbitrariness of 1 € ﬁL(L) and (3) of Lemma 3.1, we have
co(B) € ﬂ Py, (1Y) = Py, (L),
nepi (L)

Hence co(B) < B by (5) of Lemma 3.1. So B = co(B) € C. Therefore Cq, € C.
Conversely, for any D € C, it is clear that coq,(D) € C by Cq, € C. Also, by (3) of Lemma 4.3, for any
x) € (LX), we have coqy,( feou,(0)(X2)) € P, (LX). Further, by feou(0)(%2) < cogy (D), it follows that

€04 (feoy, (0)(X2)) < €04 (C014o (D)) = coqy (D).
Thus cog4,(feo,(D)(XA)) < feoy(0)(x2) and
Jeoug)(x2) = €024 (feo () (x2)) € Caye € C.
Therefore fmﬂc(D) e Ue.
To prove that D € Cqy,, let x, € B*(LX) with D € i, (LX). We have
D < feoy(0)(Xa) = €0t (feoy,(0)(X1))

and 04/, (D) < fuoy, (0)(*1) € P, (L¥). This implies coq,(D) € ¥, (L¥). Thus coqs(D) < D by (4) of Lemma
3.1. Hence D = coq;.(D) € Cqy,. Therefore C C Cq,. In conclusion, Cq, = C, as desired. []

Example 4.9. Let X = {x} and L = {1, 4,b, T} be the diamond lattice, where a and b are incomparable. Then
*(LX) = {xa, xp}.
f (1) Let U = {f € R(LX) : f < f1}, where fi(x;) = xp and fi(xp) = x,. Since f1 ¢ fi = fi, it is easy to check
that U is an L-convex quasi-uniformity on L*. In addition, C¢; = L* and U = U,,.
(2)LetC = {L, x,, T}. ThenCis an L-convexity on LX. Further, itis easy to check that f, (x;) = fr(x,) = L €
C and f,(xp) = fr(xp) = %, € C. Thus Uc = {f € RILY) : f < f+} = {fo, fr} is an L-convex quasi-uniformity
on LX satisfying C = Cqy,.
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Remark 4.10. If an L-convex quasi-uniform space (X, U) is induced by an L-convex space (X,C) (i.e.,
U = U¢), then it directly follows from Theorem 4.8 that U = Uc,,. However, in general, given an L-convex
quasi-uniformity U on LX, it is possible that U¢,, # U. For example, let X = {x} and L = {L,a,b, T} be a
diamond lattice. Define two mappings fi, f> : ﬁ*(LX) — X by fi(xp) = x4, fo(xa) = xp and f1(x,) = fo(xp) = L.
Then f1, f» € R(LX) satisfying i = fio fi and fo = f, o fo. Thus the set U = {fy, f1, f2} is an L-convex
quasi-uniformity on LX. In addition, C¢y = LX and Uc,, = {f € RILY) : f < fr} = {fo, fi, fo, fr}, where
fr € R(LX) satisfies fr(x,) = xp and fr(xp) = x,. Clearly, Uc,, # U.

Now, we discuss relations between L-convex quasi-uniformities and L-convex *-remotehood systems.
For this, we first construct an L-convex *-remotehood system from an L-convex quasi-uniformity.

Theorem 4.11. Let (X, U) be an L-convex quasi-uniform space. For x, € p*(LX), define a set
RYU={AeLX:Vnepy(L), Af e U, A< flxy)).
Then Rey = {7?;”/\ 1 x) € BY(LX)} is an L-convex B*-remotehood system.

Proof. Letx) € p*(LX) and A € LX. Then A € RY iff A/ € i, (L¥) by (2) of Lemma 4.3. Next, we prove that
RY satisfies (LCBR1)~(LCBR3).

(LCBR1). Itis clear that L € 7?%’ since fo € U and L < fo(x,) for any n € B3 (L).

(LCBR2). Let A € RY. For any 1 € §;(L), we have A < Ay € )y, (LX) C ¢y, (L¥). Further, let y,, € p*(L)
with Aq; € ¢y, (L). For any 6 € (L), it is clear that

Yo £ Ay = coy(A) = coqy(coyi(A)) = (Aw)u-

Thus, by the definition of (A¢), there is a g € U such that Ay < g(ye). This implies that Aq; € f{% Hence
the necessity of (LCBR2) holds for 7?%

Assume that any 7 € (L) implies some B, € iy, (L*) such that A < B, € 7?;‘: for any y, € *(L¥) with
B, € ¢, (L¥). Let 1) € B;(L). Then B, € R;L: by the assumption. Thus A < B, < (By)u € i, (L¥). Further, let
B= A'leﬁ}@) B,. Then A < B < By; and

Bu< N\ Bpue () o) = vy, L)
nep; (L) nep; (L)
This shows that Aq; < Byy € ¢, (LX) and Aqs € ¢y, (LX). Hence A € ﬁ% Therefore the sufficiency of (LCBR2)

holds for RY.
(LCBR3). Let {A;}4" ¢ LX. By (5) of Lemma 4.3, it follows that

dir dir
\VAieRY o (\/A)u ey, L%
iel iel

dir

& /@Ay ey, (L%
iel
& Viel, (A)y € Py, (L)
& Viel AjeRY.
So (LCBR3) holds for RY.
Therefore Ry, is an L-convex f*-remotehood system. [J

Theorem 4.12. Let (X, U) be an L-convex quasi-uniform space. Then Cqyy = Cg, and R = Rey,-
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Proof. Firstly, we check that Cyy = Cy -

If A € Cqy then A = coq(A). For any x, € (LX) with A € 1, (LX), we have coq(A) = Ay € ¢y, (LX). Thus
Ac€ 7?;”‘ and A € Cry Therefore Cqy C Ciry-

Conversely, let A € Cg, . Then A € )y, (LX) implies A € RY for all x, € p'(LX). So A € ¢, (LX) implies
co(A) = Ay € Py, (LX) for any x, € B*(LX). Thus coq(A) < A by (4) of Lemma 3.1. Hence coq/(A) = A which
implies A € Cq. Therefore Cgry € Cu- Therefore Cgry = Cu-

Next, to verify that Ry, = Re,, let x, € B*(LX). We verify that RY = RS,

Let A € LX. By (2) of Theorem 4.4, it follows that

AeR" & ABeCyniy (LX), A<B

3B € Cy, Vn € Bi(L), x,; £ B = coy(B) > A
ABeCy, YneBiL), Af e U, A<B< f(x,)
YnepL), Af e U, A< f(xy)

AeRH.

t LU

Thus 9235‘7’ c 7?%

Conversely, let A € 7?}( For any n € (L), there is an f, € U such that A < f(x;) € ¥y (L%).
Thus A < /\neﬁ;(L) folxn) € ¥y (L¥). Hence A € ¢, (L¥) and coq(A) = Ay € ¢y, (LX). This implies that
A < cog(A) € Cyy N Pr, (LX). So A € RE. Therefore RY R O

Also, an L-convex quasi-uniformity can be directly constructed from an L-convex §*-remotehood system.

Theorem 4.13. Let (X, R) be an L-convex f*-remotehood space. Define a set
Uy = {f € RALX) : Vx) € p7(LX), B e R,,, f(x1) < BI.
Then Uy is an L-convex quasi-uniformity satisfying Uz = Uc,, and 7?%{ =R

Proof. By Theorems 3.4 and 4.6, Uc,, is an L-convex quasi-uniformity. To prove that Uy is an L-convex
quasi-uniformity, it is sufficient to prove that Uy = Uc,.

Let f € Uy Then any x; € B (LX) implies a set B € R,, such that f(x,) < B. Further, by B € R,
and (LCBR2), any 1 € B;(L) implies some E, € i (L) such that B < E; € R, for any v, € (L) with

E, €y, (LX).
LetE = /\neﬁ*\(L) E,. By (3) of Lemma 3.1, it follows that

B<E= /\ Eye (] ¢q¥) =y, L5)

nep; (L) nep; (L)

Further, to prove that E € Cy, let y,, € B*(LX) with E € ¢, (L¥). It is sufficient to prove that E € R, .

Forany 0 € ﬁL(L), itis clear that yp £ E. Then there is an 1) € (L) such that yo £ E,. Thus E, € ¢, (LX)
followed by E < E; € fiye. SoE € fiye by (1) of Lemma 3.3 and E € ﬂggﬁp(m ‘7%6 = f?yy by (2) of Lemma 3.3.
Therefore E € Cy.

Now, we obtain that E € Cj N ¢, for any x, € B*(L¥). This implies that f(x;) < fe(x)) = E € Cg for any
x) € B(LX). Thus f € Uc,. Therefore Uy C Uc,.

Conversely, let f € Uc,. Then there is a set A € Cy, such that f(x;) < fa(x;) € Cg for any x, € B (L%).
Notice that fa(x;) € ¥y, (LX) by (1) of Lemma 4.5. Thus fa(x4) € Cj implies that fa(x;) € fixl\. Hence f € Uy,
Therefore Uc, € Uy,.

In conclusion, Uy, = (L(Cﬁ. That is, Uy, is an L-convex quasi-uniformity on LX.

To prove that @%} = R, we need to prove that SZAQ,((L(R = R,, for any x, € g*(L¥).
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LetA € 7?;”\’* Then, for any ne By (L), there is an f € Uy such that A < f(x;). F}lrther, by f € U, and
x, € ﬁ*(LX), there is a set B, € Ry, such that f(x;) < B;. Thus A < f(x;) < B, € Ry, which implies that
Ae fexq. Hence A € ﬂneﬁ*\(L) fixw = R,,. Therefore VAQZ{" CR,,.

Conversely, let A € R,,. By (LCBR2), any 0 € B (L) implies a set By € 1, (L*) such that A < By € ﬁyﬂ for
any y, € B*(L*) with By € Py, (LX.

LetE = Agep: 1) Bo- By the proof of Theorem 4.13, we have E € Cz Ny, (LX). Define an L-fuzzy f*-remote
mapping f;, : B*(L*) — LX by: for any y, € g*(L%),

_JE yuzx,
fo(yw) = { L, otherwise.

Then f,, € Uyp. In addition, for any n € B;(L), it holds that A < E = f, (x;) and
A <E € Cxrni, (LX) € Cp N iy, (L).

Thus A € @Z{R Therefore R,, C @Z{R
In conclusion, f{xﬂf =Ry, for any x; € B*(L%). Thatis, Ry, =R. O

5. L-convex quasi-uniform preserving mappings

In this section, we introduce L-convex quasi-uniform preserving mappings, by which, we form the
category of L-convex quasi-uniform spaces. We show that the category of L-convex spaces and the category
of L-convex f*-remotehood spaces can be embedded into the category of L-convex quasi-uniform spaces.

Lemma 5.1. For a mapping ¢ : X — Y, define (i) : R(LY) — (LX)F') by

(P ) (Nx2) = (pr o f o) (xa)

forall f € R(LY) and x, € B*(LX). The following statements are valid.
@) (@) (f) € R(LY) for any f € R(LY);
(2) (1) (9) < () (h) o () (h) forall f,g € R(LY) withg <h o h.

Proof. (1). Itis direct.

(2). Let x, € B*(L¥). For any z, € B*(L¥) with z, £ [(¢;)*(h) © () (W]1(xa), there is a y, € B*(L*) such
that (;7) (h)(xa) € Py, (LX) and z,, £ (@) (1)(y,)- By (@] ) (h)(xa) € Wy, (LX), itis clear that yo £ (@} ) (h)(x2)
for any 6 € B;(L). Thus ¢;’(ye) £ h(¢y (x2)). Hence h(p;*(x1)) € Yp-(y,)(LY). Also, by z, £ (@5 ) (h)(y,), it

follows that ¢;”(z;) £ h(¢;” (y,)) and
P (zy) £ (o )P (x2)) 2 gleL (xa))-
So z;, £ (p; )" (9)(xa). Therefore
(L) (@) < [ep) (1) o () (W]1(xa).
By the arbitrariness of x, € p*(L¥), it concludes that (¢{)*(9) < (@;)*(h) © () (h). O
Theorem 5.2. Let (Y, Uy) be an L-convex quasi-uniform space and ¢ : X — Y be a mapping. The set
o (Uy) ={f €RLY) : g € Uy, f < (@) (9)}

is an L-convex quasi-uniformity on LX.
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Proof. (LCQUT1). Let (fo)x be the smallest element in R(LX) and (fy)y be the smallest element in R(LY). Since

(fo)y e Uy by (LCQU1) and gD(L_((fo)y) = (fo)x, it is clear that (fO)X € (pi_ (Uy).
(LCQU2). If f € ¢; (Uy), then there is a g € Uy such that f < (¢;)"(9). By g € Uy, thereisan h € Uy
such that g < h o h. By (2) of Lemma 5.1, it is clear that

f=er)(9) < (ep) () o (o) (h)
Since (¢;)*(h) € (p; )" (Uy), (LCQU2) holds for (¢; )" (Uy).
(LCQUB). Let {f,-}fé; C ¢; (Uy). For any i € I, there is an h; € Uy such that f; < (¢;7)" (). Let
W, ={h € Uy: f; <(p; ) (h)}.

For any x, € (LX), we have

fie) < /\ @iy (e = o\ Iuler () = (97" /\ B,
h,‘E\P“ h,‘E\yi h,‘E\I’Z‘

So fi < (@) (Anew, hi)- Since { )% € g (Uy), the set { A\, ey, i} € Uy is also directed. Hence \/5 Ay, ey, i €
Uy and

dir dir dir dir

\ <\ (N\m=er o\ N\ moer =@\ \ h.

i€l iel hieV; iel h;eV; i€l h;eV;
Therefore \/flg € 7 (Uy).

So ¢; (Uy) is an L-convex quasi-uniformity. [

Theorem 5.3. Cy-s,) = ¢; (Cuy) for any L-convex quasi-uniform space (Y, Uy) and any ¢ : X — Y.

L

Proof. If A € Cp-(asy), then A = Ay-(s,). To prove that A € ¢f (Cuy,), let xp € (LX) with A € ¢y, (L¥). Then
P (A) € Yo (LY) and Ape(asy) € Py, (LY). Tt follows from (2) of Lemma 4.3 that any 7 € f; (L) implies an
f € ¢; (Uy) such that A < f(x;). Further, since f € ¢;" (Uy), there is a g € Uy such that f < (¢;)"(9). Thus
A < ()" (9)(xy) followed by ¢;°(A) < g(p; (x,)). Hence ¢;"(A)wy, € Ipq)?(XA)(LY). So o (A)uy, < ¢ (A) by
(4) of Lemma 3.3. Therefore ¢;”(A) € Cqy, and ¢ (¢, (A)) € @] (Cary)-

Since ¢ (A)us, € Yy (y)(LY), it follows that ¢f (¢;” (A)wy) € P, (LY). Thus @5 (¢’ (A)zsy) < A by (4) of
Lemma 3.3. This implies that A = ¢ (¢ (A)wy) € ¢} (Cuy). Therefore Cp-ary) € @ (Casy)-

Conversely, if A € ¢; (Cu,), then ¢;”(A) € Cq,. To prove that A € Cop-(wy), let x) € B (LX) with
A € Py, (LY). Then ¢}’ (A) € Yy-x)(LY) and

Q1 (A, = cocy, (P (A)) = @ (A) € Yooy (LY).

It follows from (2) of Lemma 4.3 that any 7 € /(L) implies some g € Uy such that ¢;”(A) < g(¢;”(xy)). Thus
A < ()" (9)(xy)- Notice that (¢;)"(9) € ¢ (Uy). It follows from (2) of Lemma 4.3 that

g1ty (A) = Aguty) € P, (L),
Further, it follows from (4) of Lemma 3.3 that Ap-(u,) < A. Hence A = Ap-y) € Cpr(uy)- As a result,
¢; (Cuy) € Cop-(uy)- Therefore Cop i) = ¢ (Cary). O

Next, we introduce the notion of L-convex quasi-uniform preserving mapping.

Definition 5.4. Let (X, Ux) and (Y, Uy) be L-convex quasi-uniform spaces. A mapping ¢ : X — Y is
called an L-convex quasi-uniformity preserving mapping, if any g € Uy implies some f € Ux such that
91 (1)) € Pgp ) (LY) for all x3, y, € (L) with f(x2) € iy, (L¥).

The category of L-convex quasi-uniform spaces and L-convex quasi-uniformitity preserving mappings
is denoted by L-CQUS.
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Theorem 5.5. Let (X, Ux) and (Y, Uy) be L-convex quasi-uniform spaces. For a mapping ¢ : X — Y, the following
results are equivalent.

(1) @ is an L-convex quasi-uniform preserving mapping.

(2) For any g € Uy, there is an f € Ux such that (p;")"(9) < f.

(3) () (@) € Ux for any L-convex quasi-uniform subbase © of Uy.

(4) (p;)(B) € Ux for any L-convex quasi-uniform base B of Uy.

(5) (9} (Uy) € Ux.

Proof. (1) = (2). Let g € Uy. Since ¢ is an L-convex quasi-uniformity preserving mapping, there is an
f € Ux such that g(p; (1)) € Per(y,)(LY) for all x,,y, € B(LX) with f(xy) € ¥, (L¥). To prove that
() (9) < f,letxy, y, € ﬁ*(LX) with y,; £ f(x1), we next verify that v, £ (p;)(7)(xa).

Since y, £ f(x)), there is a u € (1)) such that y, £ f(x)). Thus f(x)) € gby“(LX) and g(p;”(xp)) €
Yo () (LY). Hence ¢ (yy) £ g(pp(x2)) which implies that y, £ (@7)'(9)(x)- So (¢ ) (9)(xa) < flxa).
Therefore (p;7)(9) < f.

(2) = (3). It directly follows from (LCQU2).

(3) = (4). Itis clear since an L-convex quasi-uniform base is an L-convex quasi-uniform subbase.

(4) = (5). For any g € Uy, there is an 1 € B such that g < h. Then (¢;7)'(9) < ([ ) (h) € Ux followed by
(p)(9) € Ux. Thus (¢; ) (Uy) € Ux.

(5) = (1). If g € Uy, then (p;)'(9) € (p; ) (Uy) € Ux. By (LCQU2), there is an f € Ux such that
@ry@=<fefsf

For all x,y, € p(L¥) with f(xa) € ¢, (L%), it is clear that (p;)*(g9) € ¥y, (L*). Thus g(p;’(x))) €
llb(p?(yp)(LY). Therefore ¢ is an L-convex quasi-uniformity preserving mapping. [

Theorem 5.6. Let (X, Ux) and (Y, Uy) be L-convex quasi-uniform spaces. If ¢ : X — Y is an L-convex quasi-
uniformity preserving mapping, then ¢ : (X, Cq,) — (Y, Cyy,) is an L-convexity preserving mapping.

Proof. Let B € Cyy. To prove that @] (B) € Cuyy, let x, € B(L¥) with ¢;~(B) € ¢, (L¥). Then coc,, (B) = B €
gbq,?(x/‘)(LY). It follows from (2) of Lemma 4.3 that any 11 € ' (L) implies some g € Uy such that B < g(¢; (xy)).
Thus ;" (B) < (¢;)*(9)(xy)- By (2) of Theorem 5.5, there is an f € Ux such that ;" (B) < (p;)"(9)(x;) < f(xy).

We say that coc,, (@] (B)) € x, (LX). Otherwise, cocy, (@p (B)) & x, (LX). It follows from (2) of Lemma
4.3 that there is an 1 € f(L) such that ¢; (B) £ h(x;) for any h € Ux. In particular, ¢, (B) £ f(x,). It

is a contradiction. Thus COCy, (p; (B)) € Yy, (LX). Hence ¢ (B) = COCy, (p; (B)) € Cuy. Therefore ¢ is an
L-convexity preserving mapping. [

Lemma 5.7. Let (X, Cx) and (Y, Cy) be L-convex spaces. If ¢ : X — Y is an L-convexity preserving mapping, then
(Pr ) (fa) = fpr(a) for any A € Cy.

Proof. Let x) € ﬁ*(LX), For any D € Cy N l,l}(p?(x/\)(LY) with D < A, we have (p‘L_(D) eCxnN %/\(LX) and
¢; (D) < ¢; (A) € Cx. Thus

(L ) (fa)(xa) = op (falpr (xa))
= \/lpi (D) : D € Cy Ny, D < A}
< \IG:GeCxny,(L5),G < o (A))
= formw®a).
Conversely, let E € Cx N ¢, (LX) with E < ¢; (A). Then ¢;*(E) < A and ¢;°(E) € y-(x,)(LY). Also,
oy, (@1 (E)) = coc, (¢} (E)) < Aby Theorem 4.8.
Let zp € B(E). Then ¢;’(z0) < @7 (E) € Yyr(oy(LY) which implies ¢;°(z9) € Yy (LY). Define a
mapping fy; ) : B'(LY) = LY by for any y, € p(LY),

. _ ] 90 @e), yu =@ (xa),
Joreo(Yu) = { 1, otherwise.
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It is clear that fo-(,) € R(LY) and for (@ (x2)) € gbq,;(xA)(LY). Further, it follows from Theorem 4.8 and (3)
of Lemma 4.3 that

coc, (@1 (20)) = coc, (fo- o) (@L (1)) = (for o @L @), € Cy N Py (LY).
In addition, coc, (¢ (ze)) < coc, (¢, (E)) < A. Thus coc, (] (ze)) < fa(@;” (xa)) which implies that

zg < @5 (coc,(pr (z0)) < @f (faler (x2))) = (o1 ) (fa)(xa).
Hence E =\ 55 20 < (¢} )'(fa)(xa). Therefore

foran@) = \/{E € Cx Ny, (L%) : E < 9 (A)) < (@) (fa) ().
In conclusion, fo-(a)(x1) = (@) (fa)(x)) for any x, € B*(LX). That s, fory = (@ )'(fa), as desired. [

Theorem 5.8. Let (X, Cx) and (Y, Cy) be L-convex spaces. If ¢ : X — Y is an L-convexity preserving mapping, then
@ (X, Ue,) = (Y, Ue,) is an L-convex quasi-uniformity preserving mapping.

Proof. Let g € Uc,. Then there is a set A € Cy such that g(z@() < fa(yu) € Cy for any y, € B*(LY). Thus
¢y (A) € Cx and g(p;”(xa)) < falp; (xa)) € Cy for any x, € p*(L*). This implies that

Jor@a) = (@) (@) < @ (faler’ (x2))) = (@1 ) (fa)(xa) € Cx.

By this result and Lemma 5.7, it follows that (¢;7)*(fa) = fer@) € Ucy-
For any y, € p*(L*) with (¢;7)"(94)(x2) € 1y, (L¥), it follows that

9(p7 (x2) = @7 (@1 (9(er (X)) = o (@F ) (94)(x2)) € Yoy (L)

So ¢ : (X, Ucy) — (Y, Ue,) is an L-convex quasi-uniformity preserving mapping. [J
Based on Theorems 4.6 and 5.8, we define a functor U : L-CS — L-CQUS by
U((X/ C)) = (X/ q/{C)/ U(f) = f

Based on Theorem 4.8, U is an injective functor. Thus the category L-CS can be embedded as a subcategory
into the category of L-CQUS. Further, based on Theorem 3.10, the category L-CBRS can be embedded as a
subcategory into the category of L-CQUS.

6. Conclusions

We define a new remotehood space, namely L-convex f*-remotehood space, which can be used to char-
acterize L-convex space and L-convex remotehood space. Further, we present the notion of f*-remotehood
mappings, based on whose properties, we further introduce L-convex quasi-uniform space. We find that L-
convexities and L-convex quasi-uniformities are mutually induced. In addition, we prove that the category
of L-convex spaces and the category of L-convex f*-remotehood spaces can be embedded into the category
L-convex quasi-uniform spaces as subcategories.

In [11], Shi defined pointwise quasi-uniformities by fuzzy remote mappings in fuzzy set theory. As we
can see, fuzzy remote mappings are different with L-fuzzy *-remote mappings. But they possess similar
properties. Thus, it may be worth to discuss relations between Shi’s quasi-uniformity and L-convex quasi-
uniformity. In addition, it may also be worth to consider how to characterize L-convex quasi-uniformities
by fuzzy proximities or fuzzy metrics.
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