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Abstract. In this paper, we study an element which is both group invertible and Moore Penrose invertible
to be EP, partial isometry and strongly EP by discussing the existence of solutions in a definite set of some
given constructive equations. Mainly, let a ∈ R#

∩ R+. Then we firstly show that an element a ∈ REP if
and only if and Equation : axa+ + a+ax = 2x has at least one solution in χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}. Next,
a ∈ RSEP if and only if Equation: axa∗ + a+ax = 2x has at least one solution in χa. Finally, a ∈ RPI if and only
if Equation: aya∗x = xy has at least one solution in ρ2

a , where ρa = {a, a#, a+, (a#)∗, (a+)∗}.

1. Introduction

Throughout this paper, R will denote a unital ring with identity 1. An involution ∗ : a 7−→ a∗ in a ring R
is an anti-isomorphism of degree 2, that is,

(a∗)∗ = a, (ab)∗ = b∗a∗, (a + b)∗ = a∗ + b∗.

The notion of Moore-Penrose invertible (or MP-invertible) has been investigated by many authors (see, for
example, [13, 15, 16]). We say that b = a† is the Moore-Penrose invertible of a ∈ R, if the following conditions
hold:

aba = a, bab = b, (ab)∗ = ab, (ba)∗ = ba.

There is at most one b such that the above conditions hold. We write R† for the set of all MP-invertibles of
R. a ∈ R is said to be group invertible if there is a#

∈ R such that aa#a = a; a#aa# = a#; aa# = a#a. a# is called
a group inverse of a and it is uniquely determined by these equations. Denote by R# the set of all group
invertible elements of R.

An element a ∈ R is said to be an EP element if a ∈ R† ∩R# and a† = a# [10]. The set of all EP elements of
R will be denoted by REP. Mosić et al. in [1, Theorem 2.1] gave several equivalent conditions under which
an element in R is an EP element. Patrćio and Puystjens in [7, Proposition 2] proved that for an element
a ∈ R, a ∈ REP if and only if aR = a∗R or aa† = a†a. It is known by [17, Theorem 7.3] that a ∈ R is EP if
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and only if a is group invertible and aa# is symmetric. More results on EP elements can also be found in
[6, 9, 11, 12, 14, 19].

Motivated by these results, this paper is intended to provide, by using certain equations admitting
solutions in a definite set, further equivalent conditions for an element in a ring with involution to be a
partial isometry. Since there are close connections between partial isometries, EP elements and normal
elements in rings with involution [2, 5], we present also several characterizations of the latter two kinds of
elements.

2. Results

Lemma 2.1. ([2, Lemma 1.1 and Theorem 1.2])Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) a+a = aa+;
3) a+a = a#a;
4) aa+ = aa#.

Observing the conditions 2) and 4) of Lemma 2.1, we obtain the following lemma.

Lemma 2.2. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) a+am+1 = am for some m ≥ 1;
3) am = am+1a+ for some m ≥ 1.

Change the condition 2) of Lemma 2.1, we have the following lemma.

Lemma 2.3. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) aa+a+ = a+;
3) a+a+a = a+.

Lemma 2.4. ([2, Theorem 1.1]; [4]; [18]) (1) If a ∈ R+, then a+aa∗ = a∗ = a∗aa+.
(2) If a ∈ R#

∩ R+, then a#a+a = a# = aa+a#.

Substituting a∗ for a# in the left of condition 1) of Lemma 2.4, one obtains the following lemma.

Lemma 2.5. Let a ∈ R#
∩ R+. If a∗ = a+aa#, then a ∈ REP and a+ = a∗.

Proof. Since a∗ = a+aa#, we have a∗a = a+aa#a = a+a. Hence a∗ = a+ by [5, Theorem 2.1]. Consequently,
a+ = a∗ = a+aa#, one obtains a ∈ REP by [1, Theorem 2.1(xxii)].

Let a ∈ R#
∩ R+. Then a∗ = a+aa# if and only if aa∗ = aa#. Hence Lemma 2.5 leads to the following

corollary.

Corollary 2.6. Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP and a+ = a∗;
2) aa∗ = aa#;
3) a∗a = a#a;
4) a∗ = a#aa+;
5) a∗ = a+aa#.

Let a ∈ R#
∩ R+. If a# = a+ = a∗, then a is called a strongly EP element of R. We write by RSEP to denote

the set of all strongly EP elements of R.
Let a ∈ REP. Then we have a2a+ + a+a2 = 2a. Hence we can construct the following equation:

axa+ + a+ax = 2x. (1)

Using the equation (1), we can characterize strongly EP elements as follows.
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Theorem 2.7. Suppose a ∈ R#
∩ R+, then a ∈ REP if and only if Equation (1) has at least one solution in

χa = {a, a#, a+, a∗, (a#)∗, (a+)∗}.

Proof. ” ⇒ ” Assume a ∈ REP, then a2a+ + a+a2 = 2a by [1, Theorem 2.1(xxx)]. Hence x = a is a solution to
the equation.
”⇐ ” 1) If x = a is a solution, then a2a+ + a+a2 = 2a, this gives a ∈ REP by [1, Theorem 2.1(XXX)];

2) If x = a# is a solution, then one has aa#a+ + a+aa# = 2a#. Post-multiply it by a, we have a#a + a+a = 2a#a
by Lemma 2.4(2), thus a+a = a#a. We can deduce that a ∈ REP by Lemma 2.1;

3) If x = a+ is a solution, then aa+a+ + a+aa+ = 2a+, that is, a+ = aa+a+. By Lemma 2.3, a ∈ REP;
4) If x = a∗ is a solution, then aa∗a+ + a+aa∗ = 2a∗, which implies that a∗ = aa∗a+. Pre-multiplying it by

1 − aa+, we get (1 − aa+)a∗ = (1 − aa+)aa∗a+ = 0. Applying the involution on the last equality, it turns out to
be a(1 − aa+) = 0, so a = a2a+. This means a ∈ REP by Lemma 2.2;

5) If x = (a#)∗ is a solution, one deduces that

a(a#)∗a+ + a+a(a#)∗ = 2(a#)∗. (2)

Note that a+a(a#)∗ = (a#a+a)∗ = (a#)∗. Accordingly, (2) turns into (a#)∗ = a(a#)∗a+. Pre-multiply this equality
by 1− aa+, then we obtain (1− aa+)(a#)∗ = (1− aa+)a(a#)∗a+ = 0. Applying the involution on the equality, we
get a#(1− aa+) = 0, Morever, pre-multiplying it by a2, we get a = a2a+, which implies that a ∈ REP by Lemma
2.2;

6) If x = (a+)∗ is a solution, then

a(a+)∗a+ + a+a(a+)∗ = 2(a+)∗. (3)

Since aa+(a+)∗ = (a+aa+)∗ = (a+)∗, we can pre-multiply (3) by 1−aa+, and get (1−aa+)a+a(a+)∗ = 0. Multiplying
it on the right by a∗, we arrive at (1 − aa+)a+aaa+ = 0. In addition, post-multiplying this equality by aa#, we
can see that (1 − aa+)a+a = 0, so a+a = aa+a+a. According to the proof of Lemma 2.2, we know that a ∈ REP,
as required.

Modify Equation (1) to

axa∗ + a+ax = 2x. (4)

Theorem 2.8. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Equation (4) has at least one solution in χa.

Proof. ”⇒ ” Obviously x = a+ = a# = a∗ is a solution.
” ⇐ ” 1) If x = a is a solution, then a2a∗ + a+a2 = 2a. Multiplying the equality on the left by a, we have

a3a∗ = a2. Hence a ∈ RSEP by [2, Theorem 2.2(xvii)];
2) If x = a# is a solution, one has that aa#a∗ + a+aa# = 2a#. Hence a ∈ RSEP by [2, Theorem 2.2(iv)];
3) If x = a+ is a solution, then aa+a∗ + a+aa+ = 2a+. It can be concluded that aa+a∗ = a+. Then post-

multiply the equality by a, and we have aa+a∗a = a+a. Applying the involution on the last equality, one has
a+a = a∗a2a+. Multiplying the equality on the right by aa#, we arrive at a+a = a∗a. Hence a∗ = a+, it follows
that a∗ = a+ = aa+a∗. So, a = a2a+, one obtains a ∈ REP. Thus a ∈ RSEP;

4) If x = a∗ is a solution, one concludes that aa∗a∗ + a+aa∗ = 2a∗, which forces that aa∗a∗ = a∗. Taking the
involution on the equality, we get a = a2a∗. Hence a ∈ RSEP by [2, Theorem 2.2(xvii)];

5) If x = (a#)∗ is a solution, then a(a#)∗a∗ + a+a(a#)∗ = 2(a#)∗. This leads to a(aa#)∗ = (a#)∗. Consequently,
a# = aa#a∗. Furthermore, pre-multiply it by a3, and we obtain a2 = a3a∗. In the light of the proof of 1),
a ∈ RSEP;

6) If x = (a+)∗ is a solution, we have a(a+)∗a∗ + a+a(a+)∗ = 2(a+)∗. Taking the involution on the equality,
one has that aa+a∗ + a+a+a = 2a+. Pre-multiply the equality by 1 − a+a, it turns out to be (1 − a+a)aa+a∗ = 0.
Again applying the involution on the last equality, we get a2a+(1− a+a) = 0. Furthermore, multiplying it on
the left by a+a#, we obtain a+(1− a+a) = 0, giving that a+ = a+a+a. By Lemma 2.3, we have a ∈ REP, this gives
2a+ = aa+a∗ + a+a+a = a+aa∗ + a+aa+ = a∗ + a+, it follows that a∗ = a+. Hence a ∈ RSEP, as required.
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We modify the equation (1) to

axa+ + a∗ax = 2x. (5)

Theorem 2.9. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Equation (5) has at least one solution in {a, a#, a+}.

Proof. ”⇒ ” Obviously x = a+ = a# = a∗ is a solution.
”⇐ ” 1) If x = a is a solution, then a2a+ + a∗a2 = 2a. Multiplying the equality on the right by a, we have

a∗a3 = a2. Hence a ∈ RSEP by [2, Theorem 2.2(xvi)];
2) If x = a# is a solution, one has that aa#a+ + a∗aa# = 2a#. Multiplying the equality on the right by a, one

has aa# = a∗a. Hence a ∈ RSEP by [2, Theorem 2.2(v)];
3) If x = a+ is a solution, then aa+a+ + a∗aa+ = 2a+, that is, aa+a+ + a∗ = 2a+. Pre-multiply the equality

by 1 − a+a, and we have (1 − a+a)aa+a+a = 0. Applying the involution on the last equality, one obtains that
a+a2a+(1− a+a) = 0. Multiplying it on the left by a+a#a, one has a+(1− a+a) = 0. Hence a ∈ REP by Lemma 2.3,
this gives a# = a+, it follows that 2a+ = aa+a+ + a∗ = aa+a# + a∗ = a# + a∗ = a+ + a∗. Thus a+ = a∗, this implies
a ∈ RSEP.

If we use a# in place of a+ in Equation (1), one has the following equation.

axa# + a+ax = 2x. (6)

Theorem 2.10. Suppose a ∈ R#
∩ R+, then a ∈ REP if and only if Equation (6) has at least one solution in χa.

Proof. ”⇒ ” Assume a ∈ REP, then x = a is a solution to the equation.
”⇐ ” 1) If x = a is a solution, then a2a# + a+a2 = 2a, this gives a = a+a2. Hence a ∈ REP by Lemma 2.2;
2) If x = a# is a solution, then one has aa#a# + a+aa# = 2a#, that is a+aa# = a#. Post-multiply it by a, we

have a+a = a#a. Hence a ∈ REP by Lemma 2.1;
3) If x = a+ is a solution, then aa+a# + a+aa+ = 2a+, that is, a+ = aa+a# = a# by Lemma 2.4. Hence a ∈ REP;
4) If x = a∗ is a solution, then aa∗a# + a+aa∗ = 2a∗, which implies that a∗ = aa∗a#. Post-multiplying it by

1 − a+a, we get a∗(1 − a+a) = aa∗a#(1 − a+a) = 0. Applying the involution on the last equality, it turns out to
be (1 − a+a)a = 0, so a = a+a2. This means a ∈ REP by Lemma 2.2;

5) If x = (a#)∗ is a solution, one deduces that

a(a#)∗a# + a+a(a#)∗ = 2(a#)∗. (7)

This implies (a#)∗ = a(a#)∗a#. Post-multiply this equality by 1 − a+a, then we obtain (a#)∗(1 − a+a) = 0.
Applying the involution on the equality, we get (1−a+a)a# = 0. According to the proof of (2), we get a ∈ REP;

6) If x = (a+)∗ is a solution, then

a(a+)∗a# + a+a(a+)∗ = 2(a+)∗. (8)

Similar to the proof of 6) in Theorem 2.1, we have a ∈ REP, as required.

Pre-multiplying Equation (6) by a, we have the following equation.

a2xa# = ax. (9)

Change the left sided of Equation (9) as follows.

xa2a+ = ax. (10)
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Theorem 2.11. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the equation (10) has at least one solution in χa.

Proof. ”⇒ ” Assume that a ∈ REP, then x = a is a solution to the equation (10).
”⇐ ” 1) If x = a is a solution, then a3a+ = a2. Hence a ∈ REP by Lemma 2.2;
2) If x = a# is a solution, then one has a#a2a+ = aa#, that is aa+ = aa#. Hence a ∈ REP;
3) If x = a+ is a solution, then a+a2a+ = aa+, this infers that a = a+a2 by multiplying the equality on the

right by a. Hence a ∈ REP by Lemma 2.2;
4) If x = a∗ is a solution, then a∗a2a+ = aa∗, which implies that aR = a∗R by [3, Lemma 2.3, Lemma 2.4].

This means a ∈ REP;
5) If x = (a#)∗ is a solution, one deduces that (a#)∗a2a+ = a(a#)∗. Then, by [3, Lemma 2.2, Lemma 2.3], we

have aR ⊆ a∗R, this implies (1 − a+a)aR ⊆ (1 − a+a)a∗R = 0. Hence we get a ∈ REP by Lemma 2.2;
6) If x = (a+)∗ is a solution, then (a+)∗a2a+ = a(a+)∗, by [3, Lemma 2.1, Lemma 2.4], one has Ra+ =

R(a+)∗a2a+ = Ra(a+)∗ ⊆ R(a+)∗ = Ra, it infers that Ra+(1 − a+a) = Ra(1 − a+a) = 0. Hence a ∈ REP by Lemma
2.3.

Applying the involution on the equation (10), one obtains the following equation.

aa+a∗x = xa∗. (11)

Since a ∈ REP if and only if a∗ ∈ REP and χa = χa∗ , Theorem 2.5 implies the following corollary.

Corollary 2.12. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the equation (11) has at least one solution in χa.

Using a∗ in place of a in the equation (11), one has the following equation.

a+a2x = xa. (12)

Hence Corollary 2.2 implies the following corollary.

Corollary 2.13. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the equation (12) has at least one solution in χa.

Using a+ in place of a∗ in the right of Equation (11), one has the following equation.

aa+a∗x = xa+. (13)

Theorem 2.14. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if Equation (13) has at least one solution in χa.

Proof. ”⇒ ” Obviously x = a+ = a# = a∗ is a solution.
” ⇐ ” 1) If x = a is a solution, then aa+a∗a = aa+. Applying the involution on the equality, one has

aa+ = a∗a2a+. Multiplying the last equality on the right by aa#, we have aa# = a∗a, this implies a ∈ RSEP by
Corollary 2.1;

2) If x = a# is a solution, one has that aa+a∗a# = a#a+. Multiplying the equality on the right by a+a, we
have a#a+ = a#a+a+a by Lemma 2.4, this gives aa+ = aa+a+a by pre-multiplying a2. Hence a ∈ REP by Lemma
2.3, this gives aa+ = a#a+a2 = aa+a∗a#a2 = aa+a∗a. Hence a ∈ RSEP by 1);

3) If x = a+ is a solution, then aa+a∗a+ = a+a+. Hence aR = aa+R = (a+)∗a∗R = (a+)∗a∗a∗R = (a2a+)∗R =
aa+a∗R = aa+a∗a∗R = aa+a∗a+R = a+a+R ⊆ a+R, this implies a ∈ REP. Thus a#a+ = a+a+ = aa+a∗a+ = aa+a∗a#,
one obtains a ∈ RSEP by 2);
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4) If x = a∗ is a solution, one concludes that aa+a∗a∗ = a∗a+, which forces that a3a+ = (a+)∗a by applying
the involution on the equality. Noting that Ra3 = Ra and R(a+)∗ = Ra. Then Ra+ = Raa+ = Ra3a+ = R(a+)∗a =
Ra2 = Ra, which implies a ∈ REP. It follows that a2 = a3a+ = (a+)∗a. Pre-multiplying the last equality by a∗,
we get a∗a2 = a. Hence a ∈ RSEP by [2, Theorem 2.2(xvii)];

5) If x = (a#)∗ is a solution, then aa+a∗(a#)∗ = (a#)∗a+. Taking the involution on the equality, one has
aa+ = (a+)∗a#, which implies a∗ = a∗aa+ = a∗(a+)∗a# = a+aa#. Hence a ∈ RSEP by Lemma 2.5;

6) If x = (a+)∗ is a solution, we have aa+a∗(a+)∗ = (a+)∗a+, that is, aa+a+a = (a+)∗a+. Per-multiplying the
equality by a∗, one has a∗a+a = a+, it follows that Ra+ = Ra∗a+a = Ra∗(a+a)∗ = Ra∗a∗(a+)∗ = Ra∗(a+)∗ = Ra+a =
Ra. Hence a ∈ REP. It follows that aa+ = aa+a+a = (a+)∗a+ and a∗ = a∗aa+ = a∗(a+)∗a+ = a+. Therefore
a ∈ RSEP.

If we modify the equation (13) as follows.

aa∗a+x = xa+. (14)

Then we have the following problem.

Problem 2.15. Let a ∈ R#
∩ R+. If Equation (14) has at least one solution in χa, is a ∈ RSEP?

For this problem, we have studied the conclusions of three cases, and other cases need to be further reached.
The details are as follows:

(1) If x = a is a solution, then aa∗a+a = aa+, this gives a+ = a∗a+a. By [5], a ∈ RSEP.
(2) If x = a# is a solution, then aa∗a+a# = a#a+. Post-multiply this equality by a2, one yields aa∗a+a = a#a,

this gives a#a+ = (aa∗a+a)a#a# = a#aa#a# = a#a#. Hence a ∈ REP by [2, Theorem 2.1]. Thus aa+ = a+a = a#a =
a#a#a2 = a#a = a#a+a2 = aa∗a+a#a2 = aa∗a+a. By (1), we have a ∈ RSEP.

(3) If x = a+ is a solution, then aa∗a+a+ = a+a+. By [19, Lemma 2.11],we have aa∗a+ = a+. Hence a ∈ RSEP

by [5].
Unfortunately, we haven’t yet reached whether a ∈ RSEP when x = a∗, (a+)∗ or (a#)∗.
Also, Equation (13) can be changed as follows.

aa+xa∗ = xa+. (15)

Let a ∈ R. a is said to be partial isometry if a∗ = a+. We denote the set of all partial isometry elements of
R by RPI.

Theorem 2.16. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if Equation (15) has at least one solution in χa.

Proof. ”⇒ ” Obviously x = a is a solution.
”⇐ ” 1) If x = a is a solution, then aa+aa∗ = aa+, this gives aa∗ = aa+. Hence a ∈ RPI by [2, Theorem 2.1(i)];
2) If x = a# is a solution, one has that aa+a#a∗ = a#a+. It follows that a#a∗ = a#a+ from Lemma 2.4, this

gives aa∗ = aa+ by pre-multiplying a2. Hence a ∈ RPI by 1);
3) If x = a+ is a solution, then aa+a+a∗ = a+a+. Pre-multiplying the equality by 1 − aa+, one has

(1− aa+)a+a+ = 0, we arrive at (1− aa+)a+a∗ = 0 because a∗ = a+aa∗. Applying the involution on the equality,
we have a(a+)∗(1 − aa+) = 0. Since Ra(a+)∗ = Ra(a+aa+)∗ = Ra2a+(a+)∗ = Raa+(a+)∗ = R(a+)∗ = R(a+aa+)∗ =
R(a+)∗a+a ⊆ Ra+a = Ra∗(a+)∗ ⊆ R(a+)∗, Ra(a+)∗ = Ra+a = Ra, it follows that Ra(1 − aa+) = Ra(a+)∗(1 − aa+) = 0,
which implies a ∈ REP. Hence a#a+ = a+a+ = aa+a+a∗ = aa+a#a∗, this infers that a ∈ RPI by 2);

4) If x = a∗ is a solution, one concludes that aa+a∗a∗ = a∗a+. Hence a ∈ RPI by the proof of 4) of Theorem
2.6;

5) If x = (a#)∗ is a solution, then aa+(a#)∗a∗ = (a#)∗a+. Taking the involution on the equality, one has
aa#aa+ = (a+)∗a#, which implies aa+ = (a+)∗a#. Post-multiplying a2, we have a2 = (a+)∗a, pre-multiplying a∗,
one has a∗a2 = a+a2. Hence a ∈ RPI by [2, Theorem 2.1(ii)];

6) If x = (a+)∗ is a solution, we have aa+(a+)∗a∗ = (a+)∗a+, that is, aa+ = (a+)∗a+. Post-multiplying the
equality by a, one has a = (a+)∗a+a = (a+)∗, Therefore a ∈ RPI.
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Pre-multiplying the equation (15) by a+, we have the following equation.

a+xa∗ = a+xa+. (16)

Theorem 2.17. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if Equation (16) has at least one solution in

{a, a#, a∗, (a#)∗, (a+)∗}.

Proof. ”⇒ ” Obviously x = a is a solution.
”⇐ ” 1) If x = a is a solution, then a+aa∗ = a+aa+ = a+, this gives a∗ = a+. Hence a ∈ RPI;
2) If x = a# is a solution, one has a+a#a∗ = a+a#a+. It follows that a#a∗ = a#a+ by pre-multiplying a. Hence

a ∈ RPI by [2, Theorem 2.1(iv)];
3) If x = a∗ is a solution, one concludes that a+a∗a∗ = a+a∗a+. Pre-multiplying the equality by a and

applying the involution, we have a3a+ = (a+)∗a2a+. Post-multiplying the last equality by a#a, one obtains
a2 = (a+)∗a. Hence a ∈ RPI by the proof of 5) of Theorem 2.7;

4) If x = (a#)∗ is a solution, then a+(a#)∗a∗ = a+(a#)∗a+. Pre-multiply the equality by a and then taking
the involution, one has aa+ = (a+)∗a#aa+, Post-multiplying the last equality by a2, one has a2 = (a+)∗a, which
implies a ∈ RPI by 3);

5) If x = (a+)∗ is a solution, we have a+(a+)∗a∗ = a+(a+)∗a+, that is, a+ = a+(a+)∗a+, this gives a = aa+a =
aa+(a+)∗a+a = (a+)∗. Therefore a ∈ RPI.

Proposition 2.18. Let a ∈ R#
∩ R+, if a+a+a∗ = a+a+a+, then a ∈ RPI.

Proof. Since a+a+a∗ = a+a+a+, a+a∗ = a+a+ by [19, Lemma2.11]. Hence a ∈ RPI by [19, Corollary 2.10].

Theorem 2.19. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if Equation

aya∗x = xy. (17)

has at least one solution in ρ2
a , where ρa = {a, a#, a+, (a#)∗, (a+)∗}.

Proof. ”⇒ ” If a ∈ RPI, then a∗ = a+, it follows that{
x = a
y = a

is a solution.
”⇐ ” 1) If y = a, then Equation (17) changes as follows

a2a∗x = xa. (18)

(1) If x = a is a solution, then a2a∗a = a2. Pre-multiplying the equality by a+a#, one has a∗a = a+a, this
implies a ∈ RPI;

(2) If x = a# is a solution, then a2a∗a# = a#a. Post-multiplying it by a2, we have a2a∗a = a2, by (1), we can
get a ∈ RPI;

(3) If x = a+ is a solution, then a2a∗a+ = a+a. Post-multiplying the equality by aa+, one obtains a+a = a+a2a+,
this gives a = a2a+, a ∈ REP, so a# = a+, it follows a2a∗a# = a2a∗a+ = a+a = a#a, by (2), a ∈ RPI;

(4) If x = (a+)∗ is a solution, then a2a∗(a+)∗ = (a+)∗a, that is, a2 = (a+)∗a. Pre-multiplying it by a∗, one has
a∗a2 = a+a2, it infers a ∈ RPI;

(5) If x = (a#)∗ is a solution, then a2a∗(a#)∗ = (a#)∗a. Post-multiplying aa+, we have (a#)∗a = (a#)∗a2a+.
Pre-multiplying (a+)∗a∗a∗, we have a = a2a+, it follows that a ∈ REP, then a# = a+, and a2a∗(a+)∗ = (a+)∗a, by
(4), a ∈ RPI.
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2) If y = a# , then

aa#a∗x = xa#. (19)

i) If x = a is a solution, then aa#a∗a = aa#. Pre-multiplying the equality by a2, we have a2a∗a = a2, by (1),
a ∈ RPI.

ii) If x = a# is a solution, then aa#a∗a# = a#a#. Post-multiplying a2, we have aa#a∗a = aa#, by i), we can get
a ∈ RPI;

iii) If x = a+ is a solution, then aa#a∗a+ = a+a#. Pre-multiplying a, we have aa∗a+ = a#, post-multiplying
1 − aa+, one has a# = a#aa+, a ∈ REP, this gives aa#a∗a# = aa#a∗a+ = a+a# = a#a#, by ii), a ∈ RPI;

iv) If x = (a+)∗ is a solution, then aa#a∗(a+)∗ = (a+)∗a#, that is, aa# = (a+)∗a#, post-multiplying a2, we have
a2 = (a+)∗a, by (4), we have a ∈ RPI;

v) If x = (a#)∗ is a solution, then aa#a∗(a#)∗ = (a#)∗a#. Pre-multiplying 1 − aa+, we have (1 − aa+)(a#)∗a# = 0.
Post-multiplying a2a+(a∗)2, we have (1 − aa+)a∗ = 0, this gives a ∈ REP. Hence aa#a∗(a+)∗ = aa#a∗(a#)∗ =
(a#)∗a# = (a+)∗a#, by iv), a ∈ RPI.

3) If y = a+ , then

aa+a∗x = xa+. (20)

By Theorem 2.6, a ∈ RPI.
4) If y = (a+)∗ , then

a(a+)∗a∗x = x(a+)∗. (21)

That is,

a2a+x = x(a+)∗. (22)

(a) If x = a is a solution, then a2a+a = a(a+)∗, that is a2 = a(a+)∗. Similar to the proof of (4), we have a ∈ RPI;
(b) If x = a# is a solution, then a2a+a# = a#(a+)∗, that is aa# = a#(a+)∗, pre-multiplying it by a2, we have

a2 = a(a+)∗, by (a), we can get a ∈ RPI;
(c) If x = a+ is a solution, then a2a+a+ = a+(a+)∗. Pre-multiplying it by 1−aa+, we have (1−aa+)a+(a+)∗ = 0,

post-multiplying a∗, we have (1− aa+)a+ = 0, this implies a ∈ REP. Hence x = a# is a solution of the equation
(22), by (b), a ∈ RPI;

(d) If x = (a+)∗ is a solution, then a2a+(a+)∗ = (a+)∗(a+)∗. Applying the involution on the equality, we have
a+a∗ = a+a+, pre-multiplying the equality by a and then, applying the involution, we have a2a+ = (a+)∗aa+,
post-multiply a, one has a2 = (a+)∗a, by (4), a ∈ RPI;

(e) If x = (a#)∗ is a solution, then a2a+(a#)∗ = (a#)∗(a+)∗. Post-multiplying the equality by aa+, we have
(a#)∗(a+)∗ = (a#)∗(a+)∗aa+. Applying the involution on the last equality, we have a+a# = aa+a+a#. Post-
multiplying it by a2, we have a+a = aa+a+a, hence a ∈ REP, this implies x = (a+)∗ is a solution of Equation
(22), by (d), a ∈ RPI.

5) If y = (a#)∗ , then

a(a#)∗a∗x = x(a#)∗. (23)

a) If x = a is a solution, then a(a#)∗a∗a = a(a#)∗, pre-multiplying a+, we have (a#)∗a∗a = (a#)∗. Applying the
involution, one obtains a∗aa# = a#, this implies a ∈ RSEP. Hence a ∈ RPI;

b) If x = a# is a solution, then a(a#)∗a∗a# = a#(a#)∗. Post-multiplying it by a+a, we have a#(a#)∗a+a = a#(a#)∗.
Pre-multiplying it by a+a2, we have (a#)∗a+a = (a#)∗. Applying the involution on the equality, we have
a# = a+aa#, a ∈ REP. Thus aa+ = aa# = aaa+a# = a(a+)∗a∗a# = a(a#)∗a∗a# = a#(a#)∗ = a+(a+)∗, a = a2a+ = aa+(a+)∗ =
(a+)∗, a ∈ RPI;

c) If x = a+ is a solution, then a(a#)∗a∗a+ = a+(a#)∗. Pre-multiplying it by aa+, we have a+(a#)∗ = aa+a+(a#)∗,
post-multiplying the last equality by (a∗)2, we have a+a∗ = aa+a+a∗. Applying the involution, we have
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a(a+)∗(1 − aa+) = 0. Noting that Ra(a+)∗ = Ra. Then a(1 − aa+) = 0, a ∈ REP. So x = a# is a solution, by b),
a ∈ RPI;

d) If x = (a+)∗ is a solution, then a(a#)∗a∗(a+)∗ = (a+)∗(a#)∗, so a+aa#a∗ = a#a+, by applying the involution.
Pre-multiplying it by a2, we obtain aa∗ = aa+, a ∈ RPI;

e) If x = (a#)∗ is a solution, then a(a#)∗a∗(a#)∗ = (a#)∗(a#)∗. Applying the involution on the equality, one has
a#a∗ = a#a#. Thus a ∈ RPI.
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