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Abstract. Let (un : n = 1, 2, ...) be a sequence of real or complex numbers. We aim in this paper to
determine necessary and/or sufficient conditions under which convergence of a sequence (un) or its certain
subsequences follows from summability by deferred Cesàro means. We also investigate the limiting
behavior of deferred moving averages of (un). The conditions in our theorems are one-sided if (un) is a
sequence of real numbers, and two-sided if (un) is a sequence of complex numbers. The theory developed
in this paper should be useful for developing more interesting and useful results in connection with other
sophisticated summability means as well as to extend to other spaces like ordered linear spaces.

1. Introduction

Let (un) be a sequence of real or complex numbers. The deferred Cesàro mean Dp,q
n (u) of (un) is defined

by

Dp,q
n (u) =

1
qn − pn

qn∑
k=pn+1

uk, n = 1, 2, ..., (1)

where (pn) and (qn) are sequences of non-negative integers such that

pn < qn, n = 1, 2, ..., (2)

and

lim
n→∞

qn = ∞. (3)

Note that, if pn = n−1 and qn = n, we have the identity transformation and in the case pn = 0 and qn = n,
the corresponding deferred Cesàro mean is the well known (C, 1) mean.
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We say that (un) is deferred Cesàro summable to ` if

lim
n→∞

Dp,q
n (u) = `. (4)

The concept of the deferred Cesàro mean is first defined by Agnew [1]. This concept has drawn more
attention of mathematicians in recent years due to its applications in summability theory and approximation
theory. In the year 2016, the deferred statistical convergence of sequences was introduced in [18]. Later, this
concept is extended to statistical deferred Cesàro summability and statistical deferred weighted summability
and extensively studied from different aspects in the papers [13, 14, 26–28]. Recently, Et et al. [7] generalized
the concept of deferred Cesàro summability to Lebesgue measurable real-valued functions, and investigated
the relations between the set of strong deferred Cesàro summable and µ-deferred statistical convergent
functions.

The deferred Cesàro summability method is regular under the conditions (2) and (3) (see Agnew [1]).
Namely, the set of conditions (2) and (3) is sufficient that every convergent sequence to be deferred Cesàro
summable to the same limit. However, it is shown by the following example that convergence does not
follow from deferred Cesàro summability in general.

Choose pn = 2n − 1 and qn = 4n − 1 and define the sequence (see Dutta et al. [6]) by

un =

 0, n is even

1, n is odd.

The sequence (un) is deferred Cesàro summable to 1/2, but it is not convergent in the usual sense.
The main aim of this paper is to derive converse conclusions, i.e., Tauberian results. But, this can only be

true under additional assumptions, the so-called Tauberian conditions. Here, we are interested in finding
Tauberian conditions on (un) under which the convergence of (Dp,q

n (u)) implies that of (un) or its certain
subsequences. Also, we investigate the limiting behavior of deferred moving averages of (un). We present
one-sided or two-sided conditions in the case of real or complex sequences, respectively. The theory in this
paper is suitable to obtain analogous results for sequences in ordered linear spaces. For the special case of
the Cesàro method (C, 1), our results contain Tauberian theorems by Móricz [21].

“Tauberian Theory” began in 1897 with Alfred Tauber’s [32] two theorems for the conditional converse
of Abel’s theorem and has been developed over the years. Tauberian theorems for various summability
methods have an extensive literature; for example, we refer to the papers [21, 29, 31] which we inspired
throughout the study and the classical books [11, 16].

2. Preliminaries

Throughout this paper, we assume that (qn) is a strictly increasing sequence of positive integers. Define
γn := [γn] for γ > 0, where [γn] denotes the integral part of the product γn. We need following lemmas and
definitions which are essential in the proofs of our main results.

Lemma 2.1. (i) For γ > 1 and sufficiently large n,

uqn −Dp,q
n (u) =

qγn − pn

qγn − qn

(
Dp,qγ

n (u) −Dp,q
n (u)

)
−

1
qγn − qn

qγn∑
k=qn+1

(uk − uqn ). (5)

(ii) For 0 < γ < 1 and sufficiently large n,

uqn −Dp,q
n (u) =

qγn − pn

qn − qγn

(
Dp,q

n (u) −Dp,qγ
n (u)

)
+

1
qn − qγn

qn∑
k=qγn +1

(uqn − uk). (6)
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Proof. (i) By definition,

Dp,qγ
n (u) =

1
qγn − pn

qγn∑
k=pn+1

uk

=
1

qγn − pn

qn∑
k=pn+1

uk +
1

qγn − pn

qγn∑
k=qn+1

uk

=
qn − pn

qγn − pn
Dp,q

n (u) +
1

qγn − pn

qγn∑
k=qn+1

uk.

Therefore,

qγn − pn

qγn − qn

(
Dp,qγ

n (u) −Dp,q
n (u)

)
−

1
qγn − qn

qγn∑
k=qn+1

uk = −Dp,q
n (u),

that is equivalent to (5).
(ii) The proof of (6) is similar.

Definition 2.2. We say that a sequence (qn) of positive numbers is regularly varying of index ρ ∈ R, in the
sense of Karamata [15] if

lim
n→∞

qγn

qn
= γρ for every γ > 0.

Since then, much literature have been devoted to Karamata’s theory of regular variation (see [3], [23]
and references therein).

One of the possible extensions of regular variation, due to Avakumović [2], is O-regular variation.

Definition 2.3. We say that a sequence (qn) of positive numbers is O-regularly varying if

lim sup
n→∞

qγn

qn
< ∞ for every γ > 0.

The above two classes of sequences have an important role in the theory of Tauberian theorems [5, 12, 17]
and in qualitative analysis of divergent sequential processes [9, 30].

Lemma 2.4. ([4]) Let (qn) be a non-decreasing sequence of positive numbers, then the following assertions are
equivalent:

lim inf
n→∞

qγn

qn
> 1 (γ > 1), (7)

lim sup
n→∞

qγn

qn
< 1 (0 < γ < 1), (8)

lim inf
n→∞

qn

qγn

> 1 (0 < γ < 1), (9)

lim sup
n→∞

qn

qγn

< 1 (γ > 1). (10)

The conditions (7)–(10) are satisfied by those regularly varying sequences of index ρ > 0 (see [4]). These
conditions have been widely used in the formulation of Tauberian theorems (see e.g. [5, 8, 22] and our
previous papers [24, 25]).
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3. Main results

In the case of real sequences, we prove the following one-sided theorems.
First, we give necessary and sufficient Tauberian conditions under which convergence of a certain

subsequence of a sequence of real numbers follows from its deferred Cesàro summability.

Theorem 3.1. Let condition (7) be satisfied. If a sequence (un) of real numbers is deferred Cesàro summable to a finite
limit `, then

lim
n→∞

uqn = ` (11)

if and only if

lim sup
γ↓1

lim inf
n→∞

1
qγn − qn

qγn∑
k=qn+1

(uk − uqn ) ≥ 0 (12)

and

lim sup
γ↑1

lim inf
n→∞

1
qn − qγn

qn∑
k=qγn +1

(uqn − uk) ≥ 0, (13)

in which case we necessarily have

lim
n→∞

1
qγn − qn

qγn∑
k=qn+1

(uk − uqn ) = 0 (14)

for all γ > 1, and

lim
n→∞

1
qn − qγn

qn∑
k=qγn +1

(uqn − uk) = 0 (15)

for all 0 < γ < 1.

We can reformulate conditions (12) and (13) as follows: To every ε > 0 and γ0 > 1, there exist n0(ε) > 0
and γ = γ(ε) with 1 < γ < γ0 such that for every n ≥ n0 we have

1
qγn − qn

qγn∑
k=qn+1

(uk − uqn ) ≥ −ε

and for another 1 < γ < γ0 we have

1
qn − qγ−1

n

qn∑
k=q

γ−1
n

+1

(uqn − uk) ≥ −ε,

where γ−1
n := [γ−1n].

The symmetric counterparts of conditions (12) and (13) are the following:

lim inf
γ↓1

lim sup
n→∞

1
qγn − qn

qγn∑
k=qn+1

(uk − uqn ) ≤ 0 (16)
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and

lim inf
γ↑1

lim sup
n→∞

1
qn − qγn

qn∑
k=qγn +1

(uqn − uk) ≤ 0, (17)

respectively.
Theorem 3.1 remains valid if conditions (12) and (13) are replaced by (16) and (17), respectively.
Motivated by the definition of a slowly decreasing sequence (see, e.g., [21]), we say that a sequence (un)

of real numbers is deferred slowly decreasing if

lim
γ↓1

lim inf
n→∞

min
qn<k≤qγn

(uk − uqn ) ≥ 0. (18)

Using ε’s and γ’s this is: For given ε > 0, there exist n0 = n0(ε) > 0 and γ = γ(ε) > 1 such that uk−uqn ≥ −ε
whenever n0 ≤ n and qn < k ≤ qγn .

An equivalent reformulation of (18) is the following:

lim
γ↑1

lim inf
n→∞

min
qγn<k≤qn

(uqn − uk) ≥ 0. (19)

Conditions (12) and (13) are trivially satisfied if (un) is deferred slowly decreasing.
Next, we show that condition of being deferred slowly decreasing is sufficient for a deferred Cesàro

summable sequence to be convergent.

Theorem 3.2. Let condition (7) be satisfied. If a sequence (un) of real numbers is deferred Cesàro summable to a finite
limit ` and deferred slowly decreasing, then (un) converges to `.

It is easy to verify that if the classical one-sided Tauberian condition

n(un − un−1) ≥ −H

of Landau [19] is satisfied for some H > 0 and all n = 1, 2, ..., then (un) is deferred slowly decreasing,
provided that (qn) is regularly varying of positive index ρ.

Indeed, in this case we have

uk − uqn =

k∑
j=qn+1

(u j − u j−1) ≥ −H
k∑

j=qn+1

1
j
≥ −H

(
k − qn

qn

)
. (20)

It follows from (20) that

min
qn<k≤qγn

(uk − uqn ) ≥ −H
(

qγn

qn
− 1

)
and then

lim inf
n→∞

min
qn<k≤qγn

(uk − uqn ) ≥ −H
(
γρ − 1

)
.

Since γ can be chosen as close to 1 as we want, (18) easily follows.
In the case of complex sequences, we prove the following two-sided theorems.
First, we give necessary and sufficient Tauberian conditions under which convergence of a certain

subsequence of a sequence of complex numbers follows from its deferred Cesàro summability.
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Theorem 3.3. Let condition (7) be satisfied. If a sequence (un) of complex numbers is deferred Cesàro summable to a
finite limit `, then (uqn ) converges to ` if and only if at least one of the following two conditions is satisfied:

lim inf
γ↓1

lim sup
n→∞

∣∣∣∣∣∣∣∣ 1
qγn − qn

qγn∑
k=qn+1

(uk − uqn )

∣∣∣∣∣∣∣∣ = 0 (21)

and

lim inf
γ↑1

lim sup
n→∞

∣∣∣∣∣∣∣∣ 1
qn − qγn

qn∑
k=qγn +1

(uqn − uk)

∣∣∣∣∣∣∣∣ = 0, (22)

in which case we necessarily have (14) for all γ > 1, and (15) for all 0 < γ < 1.

We can reformulate conditions (21) and (22) as follows: To every ε > 0 and γ0 > 1, there exist n0(ε) > 0
and γ = γ(ε) with 1 < γ < γ0 such that for every n ≥ n0 we have∣∣∣∣∣∣∣∣ 1

qγn − qn

qγn∑
k=qn+1

(uk − uqn )

∣∣∣∣∣∣∣∣ ≤ ε
and for another 1 < γ < γ0 we have∣∣∣∣∣∣∣∣∣

1
qn − qγ−1

n

qn∑
k=q

γ−1
n

+1

(uqn − uk)

∣∣∣∣∣∣∣∣∣ ≤ ε,
where γ−1

n := [γ−1n].
The symmetric counterparts of conditions (21) and (22) are the following:

lim sup
γ↓1

lim inf
n→∞

∣∣∣∣∣∣∣∣ 1
qγn − qn

qγn∑
k=qn+1

(uk − uqn )

∣∣∣∣∣∣∣∣ = 0 (23)

and

lim sup
γ↑1

lim inf
n→∞

∣∣∣∣∣∣∣∣ 1
qn − qγn

qn∑
k=qγn +1

(uqn − uk)

∣∣∣∣∣∣∣∣ = 0, (24)

respectively.
Theorem 3.3 remains valid if conditions (21) and (22) are replaced by (23) and (24), respectively.
Motivated by the definition of a slowly oscillating sequence (see, e.g., [21]), we say that a sequence (un)

of complex numbers is deferred slowly oscillating if

lim
γ↓1

lim sup
n→∞

max
qn<k≤qγn

|uk − uqn | = 0. (25)

Using ε’s and γ’s this is: For given ε > 0, there exist n0 = n0(ε) > 0 and γ = γ(ε) > 1 such that |uk−uqn | ≤ ε
whenever n0 ≤ n and qn < k ≤ qγn .

An equivalent reformulation of (25) is the following:

lim
γ↑1

lim sup
n→∞

min
qγn<k≤qn

|uqn − uk| = 0. (26)

Conditions (21) and (22) are trivially satisfied if (un) is deferred slowly oscillating.
Next, we show that condition of being deferred slowly oscillating is sufficient for a deferred Cesàro

summable sequence to be convergent.
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Theorem 3.4. Let condition (7) be satisfied. If a sequence (un) of complex numbers is deferred Cesàro summable to a
finite limit ` and deferred slowly oscillating, then (un) converges to `.

If the classical two-sided Tauberian condition

n|un − un−1| ≤ H

of Hardy [10] is satisfied for some H > 0 and all n = 1, 2, ..., then (un) is deferred slowly oscillating, provided
that (qn) is regularly varying of positive index ρ.

Indeed, in this case we have

|uk − uqn | ≤

k∑
j=qn+1

|u j − u j−1| ≤ H
k∑

j=qn+1

1
j
≤ H

(
k − qn

qn

)
. (27)

It follows from (27) that

max
qn<k≤qγn

|uk − uqn | ≤ H
(

qγn

qn
− 1

)
and then

lim sup
n→∞

max
qn<k≤qγn

|uk − uqn | ≤ H
(
γρ − 1

)
.

Since γ can be chosen as close to 1 as we want, (25) easily follows.
In the special case of pn = 0 and qn = n, we have (C, 1) summability of (un). In this case, Theorems 3.1

and 3.3 were proved in [21].
Furthermore, we determine the limiting behavior of deferred moving averages of complex sequences.

Theorem 3.5. Let condition (7) be satisfied. If a sequence (un) of complex numbers is deferred Cesàro summable to a
finite limit `, then for each γ > 1,

lim
n→∞

1
qγn − qn

qγn∑
k=qn+1

uk = `, (28)

and for each 0 < γ < 1,

lim
n→∞

1
qn − qγn

qn∑
k=qγn +1

uk = `. (29)

4. Proofs of Theorems

Proof of Theorem 3.1. Necessity. It follows from (4) and (11) that

lim
n→∞

(
uqn −Dp,q

n (u)
)

= 0. (30)

Assuming (7) we have

lim sup
n→∞

qγn − pn

qγn − qn
≤ lim sup

n→∞

qγn

qγn − qn

=

{
lim inf

n→∞

(
1 −

qn

qγn

)}−1

=

1 −
(
lim inf

n→∞

qγn

qn

)−1

−1

< ∞. (31)
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By (4) and (31), for each γ > 1,

lim
n→∞

qγn − pn

qγn − qn

(
Dp,qγ

n (u) −Dp,q
n (u)

)
= 0. (32)

The same holds for each 0 < γ < 1. Then, (14) (respectively (15)) is obtained from (5) (respectively (6)), (30)
and (32).

Sufficiency. Assume that (4), (12) and (13) are satisfied. It follows from (12) that there exists a sequence
γ j ↓ 1 satisfying

lim
j→∞

lim inf
n→∞

1
qγ jn − qn

qγ jn∑
k=qn+1

(uk − uqn ) ≥ 0, (33)

where γ jn := [γ jn].
By (5), we have

lim sup
n→∞

(
uqn −Dp,q

n (u)
)
≤ lim

j→∞
lim sup

n→∞

qγ jn − pn

qγ jn − qn

(
D

p,qγ j
n (u) −Dp,q

n (u)
)
+ lim

j→∞
lim sup

n→∞

− 1
qγ jn − qn

qγ jn∑
k=qn+1

(uk − uqn )

 .
Considering (4), (32) and (33), we obtain

lim sup
n→∞

(
uqn −Dp,q

n (u)
)

= − lim
j→∞

lim inf
n→∞

 1
qγ jn − qn

qγ jn∑
k=qn+1

(uk − uqn )

 ≤ 0. (34)

It follows from (13) that for some sequence γ j ↑ 1, we have

lim
j→∞

lim inf
n→∞

1
qn − qγ jn

qn∑
k=qγ jn +1

(uqn − uk) ≥ 0.

In a similar way, we find that

lim inf
n→∞

(
uqn −Dp,q

n (u)
)
≥ lim

j→∞
lim inf

n→∞

qγ jn − pn

qn − qγn

(
Dp,q

n (u) −Dp,qγ
n (u)

)
+ lim

j→∞
lim inf

n→∞

1
qn − qγ jn

qn∑
k=qγ jn +1

(uqn −uk) ≥ 0.

(35)

Combining (34) and (35) yields (30), which implies (11) since (4).

Proof of Theorem 3.2. Assume (18) is satisfied, then so is (19). It is clear that conditions (18) and (19) imply
(12) and (13), respectively. Then, from Theorem 3.1, we have convergence of (uqn ) to `: For given ε > 0,
there exists N = N(ε) > 0 such that

−
ε
2
≤ uqn − ` ≤

ε
2

(36)

whenever n ≥ N.
It follows from the equivalent form of (18) that for given ε > 0, there exist n0 = n0(ε) > 0 and γ = γ(ε) > 1

such that

uk − uqn ≥ −
ε
2

(37)
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whenever n ≥ n0 and qn < k ≤ qγn .
It follows from the equivalent form of (19) that for given ε > 0, there exist n1 = n1(ε) > 0 and 0 < γ =

γ(ε) < 1 such that

uqn − uk ≥ −
ε
2

(38)

whenever n ≥ n1 and qγn < k ≤ qn.
Taking (36) and (37) into account, we have

uk − ` = uk − uqn + uqn − ` ≥ −
ε
2
−
ε
2

= −ε (39)

whenever k ≥ n ≥ N1 = max{n0,N}.
Also, taking (36) and (38) into account, we have

uk − ` = uk − uqn + uqn − ` ≤
ε
2

+
ε
2

= ε (40)

whenever k ≥ n ≥ N2 = max{n1,N}.
By (39) and (40), we have for given ε > 0 there exists N3 = max{N1,N2} such that

−ε ≤ un − ` ≤ ε

whenever n ≥ N3. This completes the proof.

Proof of Theorem 3.3. Necessity. The proof runs along similar lines to the proof of the necessity part in
Theorem 3.1.

Sufficiency. Assume that (4) and (21) are satisfied. It follows from (21) that there exists a sequence γ j ↓ 1
satisfying

lim
j→∞

lim sup
n→∞

∣∣∣∣∣∣∣∣ 1
qγ jn − qn

qγ jn∑
k=qn+1

(uk − uqn )

∣∣∣∣∣∣∣∣ = 0. (41)

By (5), we have

lim sup
n→∞

∣∣∣uqn −Dp,q
n (u)

∣∣∣ ≤ lim
j→∞

lim sup
n→∞

qγ jn − pn

qγ jn − qn

∣∣∣∣Dp,qγ j
n (u) −Dp,q

n (u)
∣∣∣∣ + lim

j→∞
lim sup

n→∞

∣∣∣∣∣∣∣∣ 1
qγ jn − qn

qγ jn∑
k=qn+1

(uk − uqn )

∣∣∣∣∣∣∣∣ .
Taking (4), (32) and (41) into account, we obtain

lim sup
n→∞

∣∣∣uqn −Dp,q
n (u)

∣∣∣ ≤ lim
j→∞

lim sup
n→∞

∣∣∣∣∣∣∣∣ 1
qγ jn − qn

qγ jn∑
k=qn+1

(uk − uqn )

∣∣∣∣∣∣∣∣ = 0,

which concludes the proof of convergence of (uqn ) to `.
A similar proof can be given if (22) is satisfied.

Proof of Theorem 3.4. Assume that (un) is deferred Cesàro summable to ` and condition (25) is satisfied.
By Theorem 3.2, we have convergence of (uqn ) to ` : For given ε > 0 there exists N = N(ε) > 0 such that

|uqn − `| ≤
ε
2

(42)

whenever n ≥ N.
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It follows from the equivalent form of (25) that for given ε > 0, there exist n0 = n0(ε) > 0 and γ = γ(ε) > 1
such that

|uk − uqn | ≤
ε
2

(43)

whenever n ≥ n0 and qn < k ≤ qγn .
Taking (42) and (43) into account, we have

|uk − `| ≤ |uk − uqn | + |uqn − `| ≤
ε
2

+
ε
2

= ε

whenever k ≥ n ≥ N1 = max{n0,N}.
A similar proof can be given if (26) is satisfied.

Proof of Theorem 3.5. If γ > 1 and n is large enough such that qγn > qn, then from Lemma 2.1

1
qγn − qn

qγn∑
k=qn+1

uk = Dp,q
n (u) +

qγn − pn

qγn − qn

(
Dp,qγ

n (u) −Dp,q
n (u)

)
.

Thus (28) is obtained from (31) and the assumed convergence of (Dp,q
n (u)).

If 0 < γ < 1 and n is large enough such that qn > qγn , then from Lemma 2.1

1
qn − qγn

qn∑
k=qγn +1

uk = Dp,q
n (u) +

qγn − pn

qn − qγn

(
Dp,q

n (u) −Dp,qγ
n (u)

)
.

By (8) we have

lim sup
n→∞

qγn − pn

qn − qγn

≤ lim sup
n→∞

qγn

qn − qγn

=

{
lim inf

n→∞

(
qn

qγn

− 1
)}−1

=


(
lim sup

n→∞

qγn

qn

)−1

− 1


−1

< ∞. (44)

Thus (29) is obtained from (44) and the assumed convergence of (Dp,q
n (u)).

Following Maddox [20], the theory developed in Section 3 can be extended to sequences in ordered
linear spaces. We leave this discussion to the readers.
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[18] M. Küçükaslan, M. Yılmaztürk, On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016) 357–366.
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[24] S.A. Sezer, İ. Çanak, On a Tauberian theorem for the weighted mean method of summability, Kuwait J. Sci. 42 (2015) 1–9.
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