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Abstract. Characterizations and explicit expressions of the generalized B-T inverse are given, this gener-
alized inverse exists for any square matrix and any integer. The relationships between the generalized B-T
inverse and some well-known generalized inverses are investigated. Moreover, an explicit formula of the
generalized B-T inverse is given by using Hartwig-Spindelböck decomposition.

1. Introduction

Let Cm×n denote the set of all m × n matrices over the complex field C. Let A∗, R(A), N(A) and rank(A)
denote the conjugate transpose, column space, null space and rank of A ∈ Cm×n, respectively. For A ∈ Cm×n,
if X ∈ Cn×m satisfies AXA = A, XAX = X, (AX)∗ = AX and (XA)∗ = XA, then X is called a Moore-Penrose
inverse of A [14, 15]. This matrix X is unique and denoted by A†.

The core inverse and the dual core inverse for a complex matrix were introduced by Baksalary and
Trenkler [1]. Let A ∈ Cn×n. A matrix X ∈ Cn×n is called a core inverse of A, if it satisfies AX = PA and
R(X) ⊆ R(A), where R(A) denotes the column space of A, and PA is the orthogonal projector onto R(A).
And if such a matrix exists, then it is unique (and denoted by A #©). Baksalary and Trenkler gave several
characterizations of the core inverse by using the decomposition of Hartwig and Spindelböck. Many
existence criteria and properties of the core inverse can be found in [1, 2, 11, 12, 17, 18, 20] etc.

Let A ∈ Cn×n. A matrix X ∈ Cn×n such that XAk+1 = Ak, XAX = X and AX = XA is called the Drazin
inverse of A and denoted by AD[5]. The Drazin inverse of a square matrix always exists and it is unique.
The smallest such integer k is called the Drazin index of A, denoted by ind(A). If ind(A) ≤ 1, then the Drazin
inverse of A is called the group inverse and denoted by A#.

The DMP-inverse for a complex matrix was introduced by Malik and Thome [10]. Let A ∈ Cn×n with
ind(A) = k. A matrix X ∈ Cn×n is called a DMP-inverse of A, if it satisfies XAX = X, XA = ADA and
AkX = AkA†. It is unique and denoted by AD,†. Malik and Thome gave several characterizations of the
DMP-inverse by using the decomposition of Hartwig and Spindelböck [9].

The notion of the core-EP inverse for a complex matrix was introduced by Manjunatha Prasad and
Mohana [11]. A matrix X ∈ Cn×n is a core-EP inverse of A ∈ Cn×n if X is an outer inverse of A satisfying
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R(X) = R(X∗) = R(Ak), where k is the index of A. The such matrix X always exists, it is unique and denoted
by A †©.

The 〈i,m〉-core inverse was introduced in [18] for a complex matrix. Let A ∈ Cn×n and m, i ∈N. A matrix
X ∈ Cn×n is called an 〈i,m〉-core inverse of A, if it satisfies X = ADAX and AmX = Ai(Ai)†. If such X exists,
then it is unique and denoted by A⊕i,m.

In [6, Definition 1.3], Drazin introduced a new class of outer inverses in the setting of semigroups,
namely, the (b, c)-inverse. Let R be a ring and a, b, c ∈ R. We say that y ∈ R is the (b, c)-inverse of a if we have

y ∈ (bRy) ∩ (yRc), yab = b and cay = c. (1)

If such y ∈ R exists, then it is unique and denoted by a‖(b,c). The (b, c)-inverse is a generalization of the
Moore-Penrose inverse, the Drazin inverse, the group inverse and the core inverse. Many existence criteria
and properties of the (b, c)-inverse can be found in [3, 4, 6, 16, 19] etc.

The core inverse has several generalized forms, such as the DMP-inverse, the core-EP inverse and 〈i,m〉-
core inverse. In the paper, we will investigate a generalization of the core inverse, namely, the generalized
B-T inverse, which also is a generalization of B-T inverse [2], the B-T inverse also called generalized core
inverse, let A ∈ Cn×n, a matrix A�1n ∈ Cn×n which is equal to (A2A†)† is called the generalized core inverse of
A.

2. Characterizations and expressions of the generalized B-T inverse

In this section, we introduce a new inverse, which is a generalization of B-T inverse [2].

Definition 2.1. Let A ∈ Cm×m and m,n ∈ N. A matrix A�1n ∈ Cm×m satisfying

A�1n = (An+1A†)† (2)

is called the generalized B-T inverse of A.

It is seen from Definition 2 that A�1n exists for every A ∈ Cm×m for m,n ∈ N and is unique.
The next example says that the generalized B-T inverse of A is different from the generalized core inverse

of A.

Example 2.2. Let R be the ring of all bi-finite real matrices with transpose as involution and let ei, j be the

matrix in R with 1 in the (i, j) position and 0 elsewhere. Let A =
∞∑

i=1
ei+1,i and B = A∗, now AB =

∞∑
i=2

ei,i, BA = I.

It is easy to check that A2A† =
∞∑

i=3
ei+1,i and A3A† =

∞∑
i=4

ei+1,i, that is A2A† , A3A†, which we can get that

A�1n , A�, thus the generalized B-T inverse of A is different from the generalized core inverse of A.

Example 2.3. The generalized B-T inverse is different from the DMP-inverse, core-EP inverse and 〈i,m〉-core inverse,

where i,m are arbitrary. Let A =

 1 2 3
0 0 1
0 0 0

 ∈ C3×3. Then it is easy to check that A�
12 =

 1/5 0 0
2/5 0 0
0 0 0

, but

Ad,† =

 1 2 0
0 0 0
0 0 0

 and A †© = A⊕i,m =

 1 0 0
0 0 0
0 0 0

.
Proposition 2.4. Let A ∈ Cm×m and n ∈ N. ThenN(A�1n) = N((An+1)∗).

Proof. Let X ∈ N(A�1n), then A�1nX = (An+1A†)†X = 0, which implies (An+1A†)∗X = 0. Taking involution on
(An+1A†)∗X = 0, we can get X∗((An+1A†)∗)∗ = 0, that is X∗An+1A† = 0. Multiplying by A on the right side
of X∗An+1A† = 0, we can get X∗An+1 = 0, hence X ∈ N((An+1)∗). Conversely, let Y ∈ N((An+1)∗), that is
(An+1)∗Y = 0. Then Y∗An+1 = 0 by taking involution on (An+1)∗Y = 0. Multiplying by A† on the right side of
Y∗An+1 = 0, we can get Y∗An+1A† = 0. Taking involution on Y∗An+1A† = 0, we have (An+1A†)∗Y = 0, that is
A�1nY = 0. Thus,N(A�1n) = N((An+1)∗).
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Remark 2.5. Let A ∈ Cm×m and n ∈ N. Then, we have A�1n = 0⇔ (An+1A†)† ⇔ An+1A† = 0⇔ An+1 = 0. Thus,
A�1n = 0 if and only if An+1 = 0. That is, we can use the generalized B-T inverse of A to character the nilpotent matrix.

Proposition 2.6. Let A,B,U ∈ Cn×n with B = UAU∗ and U is unitary matrix. Then for n ∈ N, we have
B�1n = UA�1nU∗.

Proof. Since
B�1n = (Bn+1B†)† = ((UAU∗)n+1(UAU∗)†)† = (UAn+1A†U∗)† = U(An+1A†)†U∗,

so we have B�1n = UA�1nU∗.

Theorem 2.7. Let A ∈ Cm×m and n ∈ N. Then the generalized B-T inverse of A is the (PA(An)∗,PA(An)∗)-inverse of
PA(An)∗.

Proof. Since the generalized B-T inverse of A is the Moore-Penrose inverse of An+1A†, and the Moore-Penrose
inverse of An+1A† is the ((An+1A†)∗, (An+1A†)∗)-inverse of An+1A†, so we can get the generalized B-T inverse
of A is the (PA(An)∗,PA(An)∗)-inverse of PA(An)∗.

By [1, Theorem 1], we have (A #©)n = (An) #© for any n ∈ N, but it is not true for the generalized B-T inverse

of A, a counterexample can be found as follows: Let A =

 1 2 3
0 0 1
0 0 0

 ∈ C3×3. Then it is easy to check that

A�
12 =

 1/5 0 0
2/5 0 0
0 0 0

, then (A�
12)2 =

 1/25 0 0
2/25 0 0

0 0 0

, it is trivial that (A�
12)2 is not an idempotent matrix. By

the definition of the generalized B-T inverse of A, we have (A2)�
12 = [(A2)3(A2)†]† = [A2(A2)†]† = A2(A2)†,

which is an idempotent matrix, thus we have (A2)�
12 , (A�

12)2 by (A�
12)2 is not an idempotent matrix.

3. How to compute the generalized B-T inverse of A

Every matrix A ∈ Cn×n of rank r can be represented in the form

A = U
[

ΣK ΣL
0 0

]
U∗, (3)

where U ∈ Cn×n is unitary, Σ = σ1Ir1 ⊕ · · · ⊕ σtIrt is the diagonal matrix of the nonzero singular values of A,
where σ1 > σ1 > · · · > σt > 0, r1 + · · · + rt = r, and K ∈ Cr×r and L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir.

The decomposition in (3) is known as the Hartwig-Spindelböck decomposition [9].

Theorem 3.1. Let A = U
[

ΣK ΣL
0 0

]
U∗ be the Hartwig-Spindelböck decomposition of A as in (3) and n ∈ N.

Then, we have

A�1n = U
[

((ΣK)n)† 0
0 0

]
U∗. (4)

Proof. Let A = U
[

ΣK ΣL
0 0

]
U∗ be the Hartwig-Spindelböck decomposition of A as in (3) and n ∈ N. Then

we have

An+1 = U
[

(ΣK)n+1 (ΣK)nΣL
0 0

]
U∗, (5)
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and

A† = U
[

K∗Σ−1 0
L∗Σ−1 0

]
U∗, (6)

By (5) and (6), we have

An+1A† = U
[

(ΣK)n+1 (ΣK)nΣL
0 0

]
U∗U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗

= U
[

(ΣK)n (ΣK)n−1ΣL
0 0

]
U∗U

[
ΣK ΣL
0 0

]
U∗U

[
K∗Σ−1 0
L∗Σ−1 0

]
U∗

= U
[

(ΣK)n (ΣK)n−1ΣL
0 0

]
U∗U

[
Ir 0
0 0

]
U∗

= U
[

(ΣK)n 0
0 0

]
U∗.

(7)

The rest is clear by the properties of the Moore-Penrose inverse.

Theorem 3.2. Let A ∈ Cm×m, A�1n is the generalized B-T inverse of A and m,n ∈ N, then A�1n is a {2, 3}-inverse of
An.

Proof. Let A = U
[

ΣK ΣL
0 0

]
U∗ be the Hartwig-Spindelböck decomposition of A as in (3) and n ∈ N. Then

we have

An = U
[

(ΣK)n (ΣK)n−1ΣL
0 0

]
U∗. (8)

By Theorem 3.1, we have

A�1n = U
[

((ΣK)n)† 0
0 0

]
U∗. (9)

By (8) and (9), we have

AnA�1n = U
[

(ΣK)n (ΣK)n−1ΣL
0 0

]
U∗U

[
((ΣK)n)† 0

0 0

]
U∗

= U
[

(ΣK)n((ΣK)n)† 0
0 0

]
U∗,

By (9), we have

A�1nAnA�1n = U
[

((ΣK)n)† 0
0 0

]
U∗U

[
(ΣK)n((ΣK)n)† 0

0 0

]
U∗

= U
[

((ΣK)n)† 0
0 0

] [
(ΣK)n((ΣK)n)† 0

0 0

]
U∗

= U
[

((ΣK)n)† 0
0 0

]
U∗ = A�1n,

that is,

A�1nAnA�1n = A�1n. (10)

By (10), we have A�1n is a {2, 3}-inverse of An for n ∈ N
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In the following theorem, we will give the relationship between the generalized B-T inverse and Moore-
Penrose inverse.

Theorem 3.3. Let A has the Hartwig-Spindelböck decomposition of A as in (3) and A�1n be the generalized B-T inverse
of A with n ∈ N. If ((ΣK)n)∗(ΣK)n−1ΣL = 0, then A�1n is the Moore-Penrose inverse of An.

Proof. In the proof of Theorem 3.2, we have

AnA�1nAn = U
[

(ΣK)n((ΣK)n)† 0
0 0

]
U∗U

[
(ΣK)n (ΣK)n−1ΣL

0 0

]
U∗

= U
[

(ΣK)n((ΣK)n)† 0
0 0

] [
(ΣK)n (ΣK)n−1ΣL

0 0

]
U∗

= U
[

(ΣK)n((ΣK)n)†(ΣK)n (ΣK)n((ΣK)n)†(ΣK)n−1ΣL
0 0

]
U∗

= U
[

(ΣK)n (ΣK)n((ΣK)n)†(ΣK)n−1ΣL
0 0

]
U∗,

thus, the condition such that AnA�1nAn = An is (ΣK)n((ΣK)n)†(ΣK)n−1ΣL = 0, which is equivalent to
((ΣK)n)†(ΣK)n((ΣK)n)†(ΣK)n−1ΣL = 0, that is ((ΣK)n)†(ΣK)n−1ΣL = 0, so if ((ΣK)n)∗(ΣK)n−1ΣL = 0, then

AnA�1nAn = An (11)

By (8) and (9), we have

A�1nAn = U
[

((ΣK)n)† 0
0 0

]
U∗U

[
(ΣK)n (ΣK)n−1ΣL

0 0

]
U∗

= U
[

((ΣK)n)† 0
0 0

] [
(ΣK)n (ΣK)n−1ΣL

0 0

]
U∗

= U
[

((ΣK)n)†(ΣK)n ((ΣK)n)†(ΣK)n−1ΣL
0 0

]
U∗.

(12)

If ((ΣK)n)†ΣK(ΣL)n−1 = 0, then by (12), we have

A�1nAn = U
[

((ΣK)n)†(ΣK)n ((ΣK)n)†(ΣK)n−1ΣL
0 0

]
U∗

= U
[

((ΣK)n)†(ΣK)n 0
0 0

]
U∗.

So,

(A�1nAn)∗ = A�1nAn. (13)

By Theorem 3.2, (11) and (13), one can prove A�1n is the Moore-Penrose inverse of An by the definition of the
Moore-Penrose inverse.

References

[1] O.M. Baksalary, G. Trenkler. Core inverse of matrices, Linear Multilinear Algebra. 2010;58(6):681-697.
[2] O.M. Baksalary, G. Trenkler. On a generalized core inverse, Appl Math Comput. 2014:236:450-457.
[3] J. Benı́tez, E. Boasso , H.W. Jin. On one-sided (B,C)-inverses of arbitrary matrices, Electron J Linear Algebra. 2017;32:391-422.
[4] E. Boasso, G. Kantún-Montiel. The (b, c)-inverse in rings and in the Banach context, Mediterranean Journal of Mathematics.

2017,14:112.



S.Z. Xu, D.G. Wang / Filomat 36:3 (2022), 945–950 950

[5] M.P. Drazin. Pseudo-inverses in associative rings and semigroups, Amer Math Monthly. 1958;65:506-514.
[6] M.P. Drazin. A class of outer generalized inverses, Linear Algebra Appl. 2012;436:1909-1923.
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[16] D.S. Rakić. A note on Rao and Mitra’s constrained inverse and Drazin’s (b, c) inverse, Linear Algebra Appl. 2017;523:102-108.
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