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Abstract. In this paper, anti-Gaussian quadrature rules for trigonometric polynomials are introduced.
Special attention is paid to an even weight function on [−π, π). The main properties of such quadrature
rules are proved and a numerical method for their construction is presented. That method is based
on relations between nodes and weights of the quadrature rule for trigonometric polynomials and the
quadrature rule for algebraic polynomials. Some numerical examples are included. Also, we compare our
method with other available methods.

1. Introduction

Let u be a given weight function over an interval [a, b]. ByPn andTn, n ∈N0, we denote the linear space
of all algebraic and trigonometric polynomials of degree less than or equal to n, respectively. Let Gn be the
corresponding n-point Gaussian quadrature rule:

Gn( f ) =

n∑
k=1

ωk f (xk)

of degree 2n − 1 for the integral

I( f ) =

∫ b

a
f (x)u(x) dx.

The formula Gn has property Gn(p) = I(p), for all p ∈ P2n−1. This famous method for numerical integration
was derived by C.F. Gauss in 1814 in [7]. During the period of more than 200 years, such rules were
considered by large number of mathematicians, and were generalized in different ways.

For an arbitrary function f , it may be very difficult to determine an accurate estimate of the error
I( f ) − Gn( f ). By using some quadrature rule A with at least n + 1 additional points and degree greater
than 2n − 1, this error can be estimated by difference A( f ) − Gn( f ). In order to increase the accuracy of the
approximation value of a desired integral, Laurie [14] introduced an anti-Gaussian quadrature rule, with
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algebraic degree of exactness 2n + 1, that gives an error equal in magnitude but of opposite sign to that of
the corresponding Gaussian rule. A similar idea has been used in the numerical solution of initial value
problems in ordinary differential equations [5, 18, 20].

The anti-Gaussian quadrature rule

Hn+1( f ) =

n+1∑
k=1

λk f (ξk)

is an (n + 1)-point formula such that I(p) − Hn+1(p) = −(I(p) − Gn(p)), for all p ∈ P2n+1. Here, we see that
Hn+1(p) = (2I − Gn)(p), for each p ∈ P2n+1. Because of that, we introduce the following inner product:(

f , 1
)

u = (2I − Gn)( f1). (1)

Let us denote by (pk) the sequence of monic polynomials orthogonal with respect to the inner product〈
f , 1

〉
u = I( f1). It is well known that such polynomials satisfy the following three-term recurrence relation

of the following form (see, e.g., [8]):

pk+1(x) = (x − ak)pk(x) − bkpk−1(x), k = 0, 1, . . . , p0(x) = 1, p−1(x) = 0.

Let (πk) be the sequence of monic polynomials orthogonal with respect to the inner product (1). They also
satisfy the three-term recurrence relation (see [14]):

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k = 0, 1, . . . ,n, π0(x) = 1, π−1(x) = 0.

Coefficients {ak | k = 0, 1, . . .}, {bk | k = 1, 2, . . .}, {αk | k = 0, 1, . . . ,n} and {βk | k = 1, . . . ,n} are given by:

ak =
I(xp2

k)

I(p2
k)
, bk =

I(p2
k)

I(p2
k−1)

, αk =
(2I − Gn)(xπ2

k)

(2I − Gn)(π2
k)
, βk =

(2I − Gn)(π2
k)

(2I − Gn)(π2
k−1)

.

It is easy to see that these coefficients satisfy:

αk = ak, k = 0, . . . ,n; βk = bk, k = 0, . . . ,n − 1; βn = 2bn,

and, therefore πk = pk, for k = 0, 1, . . . ,n (see [14]).
Modified and generalized anti-Gaussian quadrature rules for real-valued measures were investigated

in [2] and [17]. Other generalizations to matrix-valued measures were given in [6] and [1]. Applications
of anti-Gaussian quadrature rules for the estimates of the error I( f ) − Gn( f ) can be found in [23]. Based on
anti-Gaussian quadrature rule, Laurie in [14] introduced an averaged Gaussian rule. Different averaged
Gaussian quadrature rules relative to those introduced by Laurie in [14] can be found in [19, 22, 24, 25].

Sun-mi Kim and Reichel in [12] introduced anti-Szegő quadrature rules which were characterized by
the property that the quadrature error for Laurent polynomials of order at most n is a specified negative
multiple of the quadrature error obtained with the n-node Szegő rule. By using Szegő and anti-Szegő
quadrature rules, Jages, Reichel, and Tang in [13] defined generalized averaged Szegő quadrature rules
which are exact for all Laurent polynomial in Λ−n+1,n−1.

In this paper, we combine two different types of generalizations of Gaussian rules: generalizations to
the rules which are exact on spaces of functions different from the space of algebraic polynomials as well
as generalizations to an anti-Gaussian quadrature rule. Our attention is restricted to the anti-Gaussian
quadrature rules with trigonometric degree of exactness for an even weight function on [−π, π). Also, we
introduce the averaged Gaussian quadrature formula with trigonometric degree of exactness.

The paper is organized as follows. In Section 2 we introduce and consider an anti-Gaussian quadrature
rule for trigonometric polynomials. In Section 3, we present method for numerical construction of the
anti-Gaussian quadrature rules with respect to symmetric weight function. Some numerical examples and
comparisons with other available methods are presented in Section 4.
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2. Anti-Gaussian quadrature rule for trigonometric polynomials

Let w be a weight function, integrable and nonnegative on the interval [−π, π). For every nonnegative
integer n and γ ∈ {0, 1/2} byTn,γ we denote the linear span of the set {cos (k + γ)x, sin (k + γ)x | k = 0, 1, . . . ,n}.
Thus, Tn,0 = Tn is the linear space of all trigonometric polynomials of degree less than or equal to n, and
Tn,1/2 is the linear space of all trigonometric polynomials of semi-integer degree less than or equal to n+1/2.

Let us consider the integral:

Î( f ) =

∫ π

−π
f (x)w(x) dx.

By (Ak,γ), Ak,γ ∈ Tn,γ, k = 0, 1, . . ., we denote the sequence of trigonometric polynomials orthogonal on
[−π, π) with respect to the inner product〈

f , 1
〉

w = Î( f1). (2)

The corresponding Gaussian quadrature rule

Ĝñ+1( f ) =

ñ∑
k=0

ωk f (xk), ñ = 2n − 1 + 2γ, γ ∈ {0, 1/2}, (3)

is exact for every t ∈ T2n−1+2γ if and only if the nodes xk, k = 0, 1, . . . , ñ are the zeros of the trigonometric
polynomial An,γ ∈ Tn,γ (see [3, 4, 16, 26–28]).

For the fixed positive integer n, we introduce the inner product (∗, ∗)ω as follows:

( f , 1)w = (2̂I − Ĝñ+1)( f1). (4)

Remark 2.1. It is important to emphasize that the inner product (4) depends on the number n. Because of that, in
what follows when we write that positive integer n is fixed in advance, we assume that we consider the inner product
(4) with respect to that fixed number n.

Let positive integer n be fixed in advance. By (Bk,γ) we denote the sequence of trigonometric polynomials
orthogonal with respect to the inner product (4). The corresponding Gaussian rule has ñ + 1 nodes, while
the corresponding anti-Gaussian rule (where n 7→ n + 1) has ñ + 3 nodes (so we denote it by Ĥñ+3, and it is
exact for all t ∈ T2n+1+2γ), which are the zeros of the trigonometric polynomial

Bn+1,γ(x) =

n+1∑
k=0

(
pk,γ cos

(
k + γ

)
x + qk,γ sin

(
k + γ

)
x
)
, |pn+1,γ| + |qn+1,γ| , 0.

Specially, for (pn+1,γ, qn+1,γ) = (1, 0) and (pn+1,γ, qn+1,γ) = (0, 1) we get

BC
n+1,γ(x) = cos

(
n + 1 + γ

)
x +

n∑
k=0

(
p(n+1)

k,γ cos
(
k + γ

)
x + q(n+1)

k,γ sin
(
k + γ

)
x
)

and

BS
n+1,γ(x) = sin

(
n + 1 + γ

)
x +

n∑
k=0

(
r(n+1)

k,γ cos
(
k + γ

)
x + s(n+1)

k,γ sin
(
k + γ

)
x
)
,

respectively. For k, ` ∈N0 we define:

Î C,γ
k =

(
BC

k,γ,B
C
k,γ

)
w
, Î S,γ

k =
(
BS

k,γ,B
S
k,γ

)
w
, Î γk =

(
BC

k,γ,B
S
k,γ

)
w
,

Ĵ C,γ
k, ` =

(
2 cos xBC

k,γ,B
C
`,γ

)
w
, Ĵ S,γ

k, ` =
(
2 cos xBS

k,γ,B
S
`,γ

)
w
, Ĵ γk, ` =

(
2 cos xBC

k,γ,B
S
`,γ

)
w
.
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By IC,γ
k , IS,γ

k , Iγk , JC,γ
k, ` , JS,γ

k, ` , Jγk, `, k, ` ∈ N0, we denote the corresponding values related to the inner product (2)

(e.g., IC,γ
k =

〈
AC

k,γ,A
C
k,γ

〉
w

, . . . ).

Theorem 2.2. Let positive integer n be fixed in advance. Trigonometric polynomials BC
k,γ(x) and BS

k,γ(x), k > 1,
orthogonal with respect to the inner product (4), satisfy the following recurrence relations:

BC
k,γ(x) =

(
2 cos x − a(1)

k,γ

)
BC

k−1,γ(x) − b(1)
k,γBS

k−1,γ(x) − a(2)
k,γBC

k−2,γ(x) − b(2)
k,γBS

k−2,γ(x), (5)

BS
k,γ(x) =

(
2 cos x − d(1)

k,γ

)
BS

k−1,γ(x) − c(1)
k,γBC

k−1,γ(x) − d(2)
k,γBS

k−2,γ(x) − c(2)
k,γBC

k−2,γ(x), (6)

where the coefficients are the solutions of the following systems for j = 1, 2:

Ĵ C,γ
k−1, k− j = a( j)

k,γ̂I C,γ
k− j + b( j)

k,γ̂I γk− j, Ĵ γk−1, k− j = a( j)
k,γ̂I γk− j + b( j)

k,γ̂I S,γ
k− j, (7)

Ĵ γk−1, k− j = c( j)
k,γ̂I C,γ

k− j + d( j)
k,γ̂I γk− j, Ĵ S,γ

k−1, k− j = c( j)
k,γ̂I γk− j + d( j)

k,γ̂I S,γ
k− j,

with a(2)
1,γ = b(2)

1,γ = c(2)
1,γ = d(2)

1,γ = 0.

Proof. The polynomials BC
j,γ(x) and BS

j,γ(x), for j = 0, . . . , k, are linearly independent, so we have

2 cos xBC
k−1,γ(x) = BC

k,γ(x) +

k−1∑
j=0

[
a(k− j)

k,γ BC
j,γ(x) + b(k− j)

k,γ BS
j,γ(x)

]
. (8)

Applying the inner product (4) for i = 0, 1, . . . , k − 1 we get:

(
2 cos xBC

k−1,γ(x),BC
i,γ(x)

)
w

=
(
BC

k,γ(x),BC
i,γ(x)

)
w

+

k−1∑
j=0

a(k− j)
k,γ

(
BC

j,γ(x),BC
i,γ(x)

)
w

+

k−1∑
j=0

b(k− j)
k,γ

(
BS

j,γ(x),BC
i,γ(x)

)
w
.

Now, for i = 0, . . . , k − 3, one has:

a(k−i)
k,γ Î C,γ

i + b(k−i)
k,γ Î γi = 0. (9)

Similarly, for i = 0, 1, . . . , k − 1 we get:

(
2 cos xBC

k−1,γ(x),BS
i,γ(x)

)
w

=
(
BC

k,γ(x),BS
i,γ(x)

)
w

+

k−1∑
j=0

a(k− j)
k,γ

(
BC

j,γ(x),BS
i,γ(x)

)
w

+

k−1∑
j=0

b(k− j)
k,γ

(
BS

j,γ(x),BS
i,γ(x)

)
w
.

Again, for i = 0, . . . , k − 3, one has

a(k−i)
k,γ Î γi + b(k−i)

k,γ Î S,γ
i = 0. (10)

Therefore, we get homogeneous systems of linear equations:

Î C,γ
i · a(k−i)

k,γ + Î γi · b
(k−i)
k,γ = 0,

Î γi · a
(k−i)
k,γ + Î S,γ

i · b(k−i)
k,γ = 0,

i = 0, . . . , k − 3, (11)

and the corresponding determinants of these systems are given by

D̂γ
i =

∣∣∣∣∣∣ Î C,γ
i Î γi
Î γi Î S,γ

i

∣∣∣∣∣∣ .
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Since Î( f ) = Ĝñ+1( f ) for all f ∈ Tñ, we have

Ĥñ+3( f ) = (2̂I − Ĝñ+1)( f ) = Î( f ) + (̂I − Ĝñ+1)( f ) = Î( f ) for each f ∈ Tñ.

Further, BC
k,γ(x) = AC

k,γ(x) and BS
k,γ(x) = AS

k,γ(x), for every k = 0, . . . ,n. For 2k + 1 < 2n it follows:

Î C,γ
k =

(
BC

k,γ,B
C
k,γ

)
w

= (2̂I − Ĝñ+1)
(
BC

k,γ · B
C
k,γ

)
= Î

(
BC

k,γ · B
C
k,γ

)
= IC,γ

k .

Similarly, Î S,γ
k = IS,γ

k and Î γk = Iγk . Now, using Cauchy-Schwarz-Bunyakovsky integral inequality, for
i = 0, . . . , k − 3, we have:

D̂γ
i =̂I C,γ

i Î S,γ
i − (̂I γi )2 = IC,γ

i IS,γ
i − (Iγi )2

=

(∫ π

−π

(
AC

i,γ(x)
)2

w(x) dx
)
·

(∫ π

−π

(
AS

i,γ(x)
)2

w(x) dx
)
−

(∫ π

−π
AC

i,γ(x)AS
i,γ(x)w(x) dx

)2

>

(∫ π

−π

(
AC

i,γ(x)
)2

w(x) dx
)
·

(∫ π

−π

(
AS

i,γ(x)
)2

w(x) dx
)
−

(∫ π

−π

(
AC

i,γ(x)
)2

w(x) dx
)
·

(∫ π

−π

(
AS

i,γ(x)
)2

w(x) dx
)

=0.

Therefore, for all i = 0, . . . , k−3 the system (11) has only the trivial solutions a(k−i)
k,γ = b(k−i)

k,γ = 0. Thus, equality
(8) gets the following form

2 cos xBC
k−1,γ(x) = BC

k,γ(x) + a(1)
k,γBC

k−1,γ(x) + b(1)
k,γBS

k−1,γ(x) + a(2)
k,γBC

k−2,γ(x) + b(2)
k,γBS

k−2,γ(x), (12)

i.e., form (5). Analogously, one can obtain the recurrence relation (6) for BS
k,γ(x).

Using recurrence relation (12), for j = 1, 2, we have:(
2 cos xBC

k−1,γ(x),BC
k− j,γ(x)

)
w

= a(1)
k,γ

(
BC

k−1,γ(x),BC
k− j,γ(x)

)
w

+ b(1)
k,γ

(
BS

k−1,γ(x),BC
k− j,γ(x)

)
w

+ a(2)
k,γ

(
BC

k−2,γ(x),BC
k− j,γ(x)

)
w

+ b(2)
k,γ

(
BS

k−2,γ(x),BC
k− j,γ(x)

)
w
,

i.e., Ĵ C,γ
k−1, k− j = a( j)

k,γ̂I C,γ
k− j + b( j)

k,γ̂I γk− j, j = 1, 2.

Analogously, one gets Ĵ γk−1, k− j = a( j)
k,γ̂I γk− j + b( j)

k,γ̂I S,γ
k− j, j = 1, 2.

Similarly, starting from (6) one can obtain Ĵ γk−1, k− j = c( j)
k,γ̂I C,γ

k− j +d( j)
k,γ̂I γk− j, Ĵ S,γ

k−1, k− j = c( j)
k,γ̂I γk− j +d( j)

k,γ̂I S,γ
k− j, j = 1, 2.

Using the recurrence relations (5), (6) and orthogonality conditions, the following Lemma could be
easily proved.

Lemma 2.3. For k > 1 the following equations hold:

Î C,γ
k = Ĵ C,γ

k, k−1, Î S,γ
k = Ĵ S,γ

k, k−1, Îγk = Ĵγk, k−1.

Let us denote Ĵ C,γ
k = Ĵ C,γ

k, k , Ĵ S,γ
k = Ĵ S,γ

k, k , Ĵ γk = Ĵ γk, k.

Corollary 2.4. The recurrence coefficients in (5) and (6) are given as follows:

a(1)
k,γ =

Î S,γ
k−1 Ĵ C,γ

k−1 − Î γk−1 Ĵ γk−1

D̂γ
k−1

, a(2)
k,γ =

Î C,γ
k−1̂I S,γ

k−2 − Î γk−1̂I γk−2

D̂γ
k−2

, b(1)
k,γ =

Î C,γ
k−1 Ĵ γk−1 − Î γk−1 Ĵ C,γ

k−1

D̂γ
k−1

, b(2)
k,γ =

Î γk−1̂I C,γ
k−2 − Î C,γ

k−1̂I γk−2

D̂γ
k−2

,

c(1)
k,γ =

Î S,γ
k−1 Ĵ γk−1 − Î γk−1 Ĵ S,γ

k−1

D̂γ
k−1

, c(2)
k,γ =

Î γk−1̂I S,γ
k−2 − Î S,γ

k−1̂I γk−2

D̂γ
k−2

, d(1)
k,γ =

Î C,γ
k−1 Ĵ S,γ

k−1 − Î γk−1 Ĵ γk−1

D̂γ
k−1

, d(2)
k,γ =

Î S,γ
k−1̂I C,γ

k−2 − Î γk−1̂I γk−2

D̂γ
k−2

,

where D̂γ
k− j = Î C,γ

k− j Î
S,γ
k− j − (̂I γk− j)

2, j = 1, 2, for k > 1.
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Proof. Formulas can be obtained solving systems (7).

Let positive integer n be fixed in advance. Since BC
k,γ(x) = AC

k,γ(x) and BS
k,γ(x) = AS

k,γ(x), for every
k = 0, . . . ,n, we have:

a( j)
k,γ = α( j)

k,γ, b( j)
k,γ = β( j)

k,γ, c( j)
k,γ = γ( j)

k,γ, d( j)
k,γ = δ( j)

k,γ, j = 1, 2, (13)

where α( j)
k,γ, β( j)

k,γ, γ( j)
k,γ and δ( j)

k,γ are the coefficients in the corresponding recurrence relations for polynomials

AC
k,γ and AS

k,γ (see [16, 28]).

Lemma 2.5. Let positive integer n be fixed in advance. For k = 0, . . . ,n − 1 the following equations

Î S,γ
k = IS,γ

k , Ĵ S,γ
k = JS,γ

k , Î C,γ
k = IC,γ

k , Ĵ C,γ
k = JC,γ

k , Î γk = I γk , Ĵ γk = J γk ,

hold, while

Î S,γ
n = 2IS,γ

n , Ĵ S,γ
n = 2JS,γ

n , Î C,γ
n = 2IC,γ

n , Ĵ C,γ
n = 2JC,γ

n , Î γn = 2I γn , Ĵ γn = 2J γn ,

and for k = n + 1 coefficients in the five-term recurrence relations (5) and (6) satisfy

a(1)
n+1,γ = α(1)

n+1,γ, a(2)
n+1,γ = 2α(2)

n+1,γ, b(1)
n+1,γ = β(1)

n+1,γ, b(2)
n+1,γ = 2β(2)

n+1,γ,

c(1)
n+1,γ = γ(1)

n+1,γ, c(2)
n+1,γ = 2γ(2)

n+1,γ, d(1)
n+1,γ = δ(1)

n+1,γ, d(2)
n+1,γ = 2δ(2)

n+1,γ.
(14)

Proof. For k = 0, . . . ,n − 1, we have

Î γk =
(
BC

k,γ ,B
S
k,γ

)
w

=
(
2̂I − Ĝñ+1

) (
BC

k,γBS
k,γ

)
=

(
2̂I − Ĝñ+1

) (
AC

k,γAS
k,γ

)
=̂I

(
AC

k,γAS
k,γ

)
+

(̂
I − Ĝñ+1

) (
AC

k,γAS
k,γ

)
=

〈
AC

k,γ ,A
S
k,γ

〉
w

= I γk .

In a similar way, one can prove the other equalities for k 6 n − 1.
Due to the fact that the nodes of the Gaussian quadrature rule are the zeros of trigonometric polynomial

An,γ(x), for k = n, we have

Î γn =
(
BC

n,γ ,B
S
n,γ

)
w

= (2̂I − Ĝñ+1)
(
BC

n,γBS
n,γ

)
= (2̂I − Ĝñ+1)

(
AC

n,γAS
n,γ

)
= 2I γn .

Analogously, the other equalities can be proved.
Using the previous equalities, we deduce:

D̂γ
k = Î C,γ

k Î S,γ
k − (̂I γk ) 2 = IC,γ

k IS,γ
k − (I γk )2 = Dγ

k , k = 0, . . . ,n − 1,

D̂γ
n = Î C,γ

n Î S,γ
n − (̂I γn ) 2 = 2IC,γ

n · 2IS,γ
n − (2I γn )2 = 4Dγ

n ,

where Dγ
k = I C,γ

k I S,γ
k − (I γk )2, k = 0, 1, . . . ,n.

Finally, for the coefficients a(1)
n+1,γ and a(2)

n+1,γ we have

a(1)
n+1,γ =

Î S,γ
n Ĵ C,γ

n − Î γn Ĵ γn
D̂γ

n

=
2IS,γ

n · 2JC,γ
n − 2I γn · 2J γn
4 ·Dγ

n
= α(1)

n+1,γ

and

a(2)
n+1,γ =

Î C,γ
n Î S,γ

n−1 − Î γn Î γn−1

D̂γ
n−1

=
2IC,γ

n IS,γ
n−1 − 2I γn I γn−1

Dγ
n−1

= 2α(2)
n+1,γ.

The equalities for other coefficients can be proved in a similar way.
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3. Numerical construction of anti-Gaussian quadrature rule

In this section we consider only even weight functions w on (−π, π). Let positive integer n be fixed in
advance. Using equalities BC

k,γ(x) = AC
k,γ(x), BS

k,γ(x) = AS
k,γ(x), for k = 0, . . . ,n, and (14), we get

BC
n+1,γ(x) =

(
2 cos x − a(1)

n+1,γ

)
BC

n,γ(x) − b(1)
n+1,γBS

n,γ(x) − a(2)
n+1,γBC

n−1,γ(x) − b(2)
n+1,γBS

n−1,γ(x)

=
(
2 cos x − α(1)

n+1,γ

)
AC

n,γ(x) − β(1)
n+1,γAS

n,γ(x) − 2α(2)
n+1,γAC

n−1,γ(x) − 2β(2)
n+1,γAS

n−1,γ(x)

=AC
n+1,γ(x) − α(2)

n+1,γAC
n−1,γ(x) − β(2)

n+1,γAS
n−1,γ(x).

Due to [16, Lemma 4.1.] and [28, Lemma 2.5.] we know that β( j)
k,γ = 0, j = 1, 2, for each k ∈ N, so β(2)

n+1,γ is

equal to zero. Now, because of the form AC
k,γ(x) =

k∑
j=0

u(k)
j,γ cos

(
j + γ

)
x, with u(k)

k,γ = 1, we have:

BC
n+1,γ(x) = AC

n+1,γ(x) − α(2)
n+1,γAC

n−1,γ(x) =

n+1∑
k=0

p(n+1)
k,γ cos

(
k + γ

)
x,

with p(n+1)
n+1,γ = 1. Similarly, using (14), [16, Lemma 4.1] and [28, Lemma 2.5.], we get:

BS
n+1,γ(x) = AS

n+1,γ(x) − δ(2)
n+1,γAS

n−1,γ(x) =

n+1∑
k=0

s(n+1)
k,γ sin

(
k + γ

)
x,

with s(n+1)
n+1,γ = 1.

Also, polynomials BC
n+1,γ and BS

n+1,γ satisfy the following three-term recurrence relations:

BC
n+1,γ(x) =

(
2 cos x − a(1)

n+1,γ

)
BC

n,γ(x) − a(2)
n+1,γBC

n−1,γ(x), (15)

BS
n+1,γ(x) =

(
2 cos x − d(1)

n+1,γ

)
BS

n,γ(x) − d(2)
n+1,γBS

n−1,γ(x). (16)

The following result is obvious.

Lemma 3.1. For every k ∈N0 we have

BC
k+1,γ(π) = 0, BS

k+1,γ(0) = 0.

3.1. Quadrature rule with an even number of nodes
Let positive integer n be fixed in advance. For γ = 0 we get a quadrature formula with an even number

of nodes.
Let us introduce the following notation for k = 0, 1, . . .:

Ck,0(x) =

k∑
j=0

p(k)
j,0T j(x), Sk,0(x) =

k∑
j=0

s(k)
j,0U j−1(x),

u1(x) =
w(arccos x)
√

1 − x2
, u2(x) =

√

1 − x2 w(arccos x),

where Tk(x) = cos (k · arccos x) and Uk(x) = sin ((k + 1) arccos x)/
√

1 − x2, x ∈ (−1, 1), are Chebyshev poly-
nomials of the first and second kind, respectively. Also, by τ(i)

k and σ(i)
k , k = 1, . . . ,n, we denote the nodes

and weights of the Gaussian quadrature rule constructed for the algebraic polynomials with respect to the
weight function ui(x), i = 1, 2.

The connections of quadrature rule (3) with certain Gaussian quadrature rule for algebraic polynomials
in the case γ = 0 were considered in [27]. Using these connections we get the following results.
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Theorem 3.2. Let positive integer n be fixed in advance. For an even weight function w(x) on (−π, π), the following
equalities(

Cn,0(x),Ck,0(x)
)

u1
= 0 and

(
Sn,0(x),Sk,0(x)

)
u2

= 0 (17)

hold for all k = 0, 1, . . . ,n − 1.

Proof. Using [27, Lemma 2.4.], orthogonality of the polynomials BC
k,0(x) and substitution x = arccos t, for

each k = 0, . . . ,n − 1, we have

0 =
(
BC

n,0(x),BC
k,0(x)

)
w

=
(
2̂I − Ĝ2n

) (
BC

n,0(x)BC
k,0(x)

)
= 4

∫ π

0
BC

n,0(x)BC
k,0(x)w(x) dx −

2n−1∑
j=0

ω jBC
n,0(x j)BC

k,0(x j)

=4
∫ 1

−1
BC

n,0(arccos t)BC
k,0(arccos t)

w(arccos t)
√

1 − t2
dt − 2

n∑
j=1

σ(1)
j BC

n,0

(
arccos τ(1)

j

)
BC

k,0

(
arccos τ(1)

j

)
=2 (2I − Gn)

(
BC

n,0(arccos x)BC
k,0(arccos x)

)
= 2

(
BC

n,0(arccos x),BC
k,0(arccos x)

)
u1
.

Now, using BC
k,0(arccos x) =

k∑
j=0

p(k)
j,0 cos ( j arccos x) =

k∑
j=0

p(k)
j,0T j(x), for all k = 0, . . . ,n − 1 we get:

(
BC

n,0(arccos x),BC
k,0(arccos x)

)
u1

=

 n∑
j=0

p(n)
j,0 T j(x),

k∑
j=0

p(k)
j,0T j(x)


u1

=
(
Cn,0(x),Ck,0(x)

)
u1
,

i.e., (Cn(x),Ck(x))u1
= 0.

The second equality can be proved in the similar way, using [27, Lemma 2.5.]:

0 =
(
BS

n,0(x),BS
k,0(x)

)
w

=
(
2̂I − Ĝ2n

) (
BS

n,0(x)BS
k,0(x)

)
= 4

∫ π

0
BS

n,0(x)BS
k,0(x)w(x) dx −

2n−1∑
j=0

ω jBS
n,0(x j)BS

k,0(x j)

=2 ·

2
∫ 1

−1

BS
n,0(arccos t)
√

1 − t2
·

BS
k,0(arccos t)
√

1 − t2
u2(t) dt −

n∑
j=1

σ(2)
j

BS
n,0

(
arccos τ(2)

j

)
√

1 −
(
τ(2)

j

)2
·

BS
k,0

(
arccos τ(2)

j

)
√

1 −
(
τ(2)

j

)2


=2 · (2I − Gn)

BS
n,0(arccos x)
√

1 − x2
·

BS
k,0(arccos x)
√

1 − x2

 = 2

BS
n,0(arccos x)
√

1 − x2
,

BS
k,0(arccos x)
√

1 − x2


u2

.

Now, using

BS
k,0(arccos x) =

k∑
j=0

s(k)
j,0 sin ( j arccos x) =

k∑
j=0

s(k)
j,0

√

1 − x2Uk−1(x),

i.e.,

BS
k,0(arccos x)
√

1 − x2
=

k∑
j=0

s(k)
j,0U j−1(x),

for all k = 0, . . . ,n − 1 we get:BS
n,0(arccos x)
√

1 − x2
,

BS
k,0(arccos x)
√

1 − x2


u2

=

 n∑
j=0

s(n)
j,0 U j−1(x),

k∑
j=0

s(k)
j,0U j−1(x)


u2

=
(
Sn,0(x),Sk,0(x)

)
u2
,

i.e., (Sn(x),Sk(x))u2
= 0.
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If we put x := arccos x in (15), using equality BC
n,0(arccos x) = Cn,0(x), we get:

Cn,0(x) =
(
2x − a(1)

n,0

)
Cn−1,0(x) − a(2)

n,0Cn−2,0(x), a(2)
1,0 = 0, C0,0(x) = 1.

Therefore, the zeros of the polynomial Cn+1,0(x) (and hence the zeros of the trigonometric polynomial
BC

n+1,0(x)) can be calculated using QR-algorithm.

Lemma 3.3. Let w be the even weight function on (−π, π) and let τk and σk, k = 1, . . . ,n + 1, be the nodes and
weights of the (n + 1)-point anti-Gaussian quadrature rule constructed for algebraic polynomials with respect to the
weight function u1(x) = w(arccos x)/

√

1 − x2 on (−1, 1). Then the weights ωk and the nodes xk, k = 0, 1, . . . , 2n + 1,
of the (2n + 2)-point anti-Gaussian quadrature rule with respect to w are given as follows:

ωk = ω2n+1−k = σk+1, k = 0, . . . ,n,
xk = −x2n+1−k = − arccos τk+1, k = 0, . . . ,n.

Proof. Due to the equality BC
n+1,0(arccos x) = Cn+1,0(x) it is easy to see that the nodes of the anti-Gaussian

quadrature rule for trigonometric polynomials are given by

xk = −x2n+1−k = − arccos τk+1, k = 0, . . . ,n.

Weights can be constructed using Shohat formula (see [16, 21]):

σk = µ0


n∑

j=0


C j,0(τk)

j∏
i=2

a(2)
i,0


2 
−1

=
µ0

n∑
j=0

BC
j,0(arccos τk)

j∏
i=2

a(2)
i,0


2 , k = 1, . . . ,n + 1,

where

µ0 =

∫ 1

−1

w(arccos x)
√

1 − x2
dx.

Due to the fact that the function w(x) is even on (−π, π), we have

ω2n+1−k =
µ̂0

2 ·
n∑

j=0

BC
j,0(x2n+1−k)

j∏
i=2

a(2)
i,0


2 , k = 0, . . . ,n,

where

µ̂0 =

∫ π

−π
w(x) dx = 2

∫ 1

−1
w(arccos t)

dt
√

1 − t2
= 2µ0.

Therefore we get ω2n+1−k = ωk = σk+1, for k = 0, . . . ,n.

The following result could be proved by using the similar arguments.

Lemma 3.4. Let w be the even weight function on (−π, π) and let τk and σk, k = 1, . . . ,n + 1, be the nodes and
weights of the (n + 1)-point anti-Gaussian quadrature rule constructed for algebraic polynomials with respect to the
weight function u2(x) =

√

1 − x2 w(arccos x) on (−1, 1). Then the weights ωk and the nodes xk, k = 0, 1, . . . , 2n + 1,
of the (2n + 2)-point anti-Gaussian quadrature rule with respect to w are given as follows:

ωk = ω2n+1−k =
σk+1

1 − τ2
k+1

, k = 0, . . . ,n,

xk = −x2n+1−k = − arccos τk+1, k = 0, . . . ,n.
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3.2. Quadrature rule with an odd number of nodes
In the case γ = 1/2, we get quadrature rule with an odd number of nodes.
Let us introduce the following notation for k = 0, 1, . . .:

Ck,1/2(x) =
k∑

j=0
p(k)

j,1/2

(
T j(x) − (1 − x)U j−1(x)

)
, u3(x) =

√
1 + x
1 − x

w(arccos x),

Sk,1/2(x) =
k∑

j=0
s(k)

j,1/2

(
T j(x) + (1 + x)U j−1(x)

)
, u4(x) =

√
1 − x
1 + x

w(arccos x).

Also, by τ(i)
k and σ(i)

k , k = 1, . . . ,n, we denote the nodes and weights of the Gaussian quadrature rule
constructed for algebraic polynomials with respect to the weight function ui(x), i = 3, 4.

Theorem 3.5. Let positive integer n be fixed in advance. For an even weight function w(x) on (−π, π), the following
equalities(

Cn,1/2(x),Ck,1/2(x)
)

u3
= 0 and

(
Sn,1/2(x),Sk,1/2(x)

)
u4

= 0

hold for all k = 0, 1, . . . ,n − 1.

Proof. Using the following simple trigonometric equality:

cos
((

k +
1
2

)
arccos x

)
= Tk(x)

√
1 + x

2
−

√

1 − x2 ·Uk−1(x)

√
1 − x

2
,

we have

BC
k,1/2(arccos x) =

k∑
j=0

p(k)
j,1/2 cos

(
j +

1
2

)
arccos x =

√
1 + x

2
Ck,1/2(x), (18)

i.e., BC
k,1/2(arccos x)/

√
1 + x = Ck,1/2(x)/

√
2. Using these equalities, orthogonality of the polynomials BC

k,1/2(x),
Lemma 3.1, and [16, Lemma 5.2], for every k = 0, . . . ,n − 1, we get:

0 =
(
BC

n,1/2(x),BC
k,1/2(x)

)
w

=
(
2̂I − Ĝ2n+1

) (
BC

n,1/2(x) · BC
k,1/2(x)

)
=4

∫ π

0
BC

n,1/2(x)BC
k,1/2(x)w(x) dx −

2n∑
j=0

ω jBC
n,1/2(x j)BC

k,1/2(x j)

=4
∫ 1

−1

BC
n,1/2(arccos t)
√

1 + t
·

BC
k,1/2(arccos t)
√

1 + t

√
1 + t
1 − t

w(arccos t) dt

− 2
n∑

j=1

σ(3)
j

BC
n,1/2

(
arccos τ(3)

j

)
√

1 + τ(3)
j

·

BC
k,1/2

(
arccos τ(3)

j

)
√

1 + τ(3)
j

=2
∫ 1

−1
Cn,1/2(t)Ck,1/2(t)u3(t) dt −

n∑
j=1

σ(3)
j Cn,1/2(τ(3)

j )Ck,1/2(τ(3)
j )

= (2I − Gn)
(
Cn,1/2(x)Ck,1/2(x)

)
=

(
Cn,1/2(x),Ck,1/2(x)

)
u3
,

i.e.,
(
Cn,1/2(x),Ck,1/2(x)

)
u3

= 0.
For the second part, we use the following trigonometric equality

sin
((

k +
1
2

)
arccos x

)
=
√

1 − x2Uk−1(x)

√
1 + x

2
+ Tk(x)

√
1 − x

2
,
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and get

BS
k,1/2(arccos x) =

k∑
j=0

s(k)
j,1/2 sin

((
j +

1
2

)
arccos x

)
=

√
1 − x

2
Sn,1/2(x), (19)

i.e., BS
k,1/2(arccos x)/

√
1 − x = Sk,1/2(x)/

√
2. Now, using these equalities, the orthogonality of the polynomials

BS
k,1/2(x), Lemma 3.1, and [16, Lemma 5.3], for every k = 0, . . . ,n − 1, we get:

0 =
(
BS

n,1/2(x),BS
k,1/2(x)

)
w

=
(
Sn,1/2(x),Sk,1/2(x)

)
u4
.

If we put x := arccos x in (15), using equality (18), and dividing both sides by
√

(1 + x)/2, we get

Cn+1,1/2(x) =
(
2x − a(1)

n+1,1/2

)
Cn,1/2(x) − a(2)

n+1,1/2Cn−1,1/2(x), a(2)
1,1/2 = 0, C0,1/2(x) = 1. (20)

Lemma 3.6. Let w be the even weight function on (−π, π) and let τk and σk, k = 1, . . . ,n + 1, be the nodes and weights
of the (n + 1)-point anti-Gaussian quadrature rule constructed for algebraic polynomials with respect to the weight
function u3(x) = w(arccos x)

√
1 + x/

√
1 − x on (−1, 1). Then the weights ωk and the nodes xk, k = 0, 1, . . . , 2n + 2,

of the (2n + 3)-point anti-Gaussian quadrature rule with respect to w are given as follows:

ωk = ω2n+2−k−1 =
σk+1

1 + τk+1
, k = 0, . . . ,n, ω2n+2 =

∫ π

−π
w(x) dx −

2n+1∑
k=0

ωk,

xk = −x2n+2−k−1 = − arccos τk+1, k = 0, . . . ,n, x2n+2 = π.

Proof. Using the three-term recurrence relation (20), we can construct the sequence of the polynomials
(Ck,1/2(x)), and using QR-algorithm we can obtain the zeros of the polynomial Cn+1,1/2(x), i.e., nodes τk,
k = 1, . . . ,n + 1. According to (18) it is easy to see that xk = −x2n+2−k−1 = − arccos τk+1, k = 0, . . . ,n. Due to
Lemma 3.1 we have x2n+2 = π.

The weights can be constructed using Shohat formula (see [16, 21]):

σk = µ0


n∑

j=0


C j,1/2(τk)

j∏
i=2

a (2)
i,1/2


2 
−1

=
µ0(1 + τk)

2
n∑

j=0

BC
j,1/2(x2n+2−k)

j∏
i=2

a (2)
i,1/2


2 , k = 1, . . . ,n + 1,

where

µ0 =

∫ 1

−1

√
1 + x
1 − x

w(arccos x) dx.

Since the function w(x) is even on (−π, π), we have

ω2n+2−k−1 =
µ̂0

2
n∑

j=0

BC
j,1/2(x2n+2−k−1)

j∏
i=2

a(2)
i,1/2


2 , k = 0, . . . ,n,

where

µ̂0 =

∫ π

−π
cos2 x

2
w(x) dx = 2

∫ 1

−1

1 + t
2

w(arccos t)
dt

√

1 − t2
= µ0,
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so we obtain:

ω2n+2−k−1 = ωk =
σk+1

1 + τk+1
, k = 0, . . . ,n.

Finally, using equality
2n+2∑
k=0

ωk =
π∫
−π

w(x) dx, we get the last weight

ω2n+2 =

∫ π

−π
w(x) dx −

2n+1∑
k=0

ωk.

Lemma 3.7. Let w be the even weight function on (−π, π) and let τk and σk, k = 1, . . . ,n + 1, be the nodes and weights
of the (n + 1)-point anti-Gaussian quadrature rule constructed for algebraic polynomials with respect to the weight
function u4(x) = w(arccos x)

√
1 − x/

√
1 + x on (−1, 1). Then the weights ωk and the nodes xk, k = 0, 1, . . . , 2n + 2,

of the (2n + 3)-point anti-Gaussian quadrature rule with respect to w are given as follows:

ωk = ω2n+2−k =
σk+1

1 − τk+1
, k = 0, . . . ,n, ωn+1 =

∫ π

−π
w(x) dx −

2n+2∑
k=0

k,n+1

ωk,

xk = −x2n+2−k = − arccos τk+1, k = 0, . . . ,n, xn+1 = 0.

Proof. This lemma can be proved in the same way as the previous one, using polynomials BS
j,1/2(x), relation

(19) and µ̂0 =
π∫
−π

sin2 x
2 w(x) dx.

Finally, using Gaussian (Ĝñ+1( f )) and anti-Gaussian (Ĥñ+3( f )) quadrature rule, we can introduce the
so-called averaged Gaussian rule for trigonometric polynomials:

Â2ñ+4( f ) =
1
2

(Ĝñ+1 + Ĥñ+3)( f ).

4. Numerical examples

4.1. Quadrature formulas with an even number of nodes

The errors in the Gaussian (Ĝñ+1), anti-Gaussian (Ĥñ+3) and averaged (Â2ñ+4) quadrature rules in the
case

w(x) = 1 − cos2 x, for x ∈ (−π, π) and

u1 =
w(arccos x)
√

1 − x2
=
√

1 − x2, for x ∈ (−1, 1)

for the integrand f (x) = (1 + cos x)(e−x + 4/3) are given in Table 1.
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Table 1: Errors in the Gaussian (Ĝñ+1), anti-Gaussian (Ĥñ+3) and averaged (Â2ñ+4) formula for w(x) = 1 − cos2 x, x ∈ (−π, π) and
f (x) = (1 + cos x)(e−x + 4/3)

ñ + 1 Î( f ) − Ĝñ+1( f ) Î( f ) − Ĥñ+3( f ) Î( f ) − Â2ñ+4( f )
80 −9.30463 · 10−9 8.99386 · 10−9

−1.55389 · 10−10

60 −4.97942 · 10−8 4.82213 · 10−8
−7.86464 · 10−10

40 −5.16734 · 10−7 5.00653 · 10−7
−8.04024 · 10−9

20 −0.0000254069 0.0000246255 −3.90685 · 10−7

4.2. Quadrature formulas with odd number of nodes

Errors in the Gaussian (Ĝñ+1), anti-Gaussian (Ĥñ+3) and averaged (Â2ñ+4) quadrature rules in the case

w(x) = 1 + cos x, for x ∈ (−π, π) and

u4(x) = w(arccos x)

√
1 − x
1 + x

=
√

1 − x2, for x ∈ (−1, 1)

for the integrand f (x) = (1 + cos x)(e−x + 4/3) are given in Table 2.

Table 2: Errors in the Gaussian (Ĝñ+1), anti-Gaussian (Ĥñ+3) and averaged (Â2ñ+4) formula for w(x) = 1 + cos x, x ∈ (−π, π) and
f (x) = (1 + cos x)(e−x + 4/3)

ñ + 1 Î( f ) − Ĝñ+1( f ) Î( f ) − Ĥñ+3( f ) Î( f ) − Â2ñ+4( f )
81 −4.63804 · 10−9 4.49229 · 10−9

−7.28786 · 10−11

61 −2.48222 · 10−8 2.40457 · 10−8
−3.88281 · 10−10

41 −2.56852 · 10−7 2.48826 · 10−7
−4.01318 · 10−9

21 −0.0000124339 0.0000120453 −1.94297 · 10−7

Finally, we compare our method with the other methods.
The nodes of the generalized averaged Szegő quadrature rule are the eigenvalues of (2n − 2) × (2n − 2)

unitary upper Hessenberg matrix H̆2n−2(τ), determined by parameter τ from unit circle and the so-called
Schur parameters γ1, . . . , γn−1. Weights are determined by the square of the first component of associated
unit eigenvectors (see [12, 13]). Matrix H̆2n−2(τ) is given by H̆2n−2(τ) = D̂−1/2

2n−2Ĥ2n−2(τ)D̂1/2
2n−2, where

Ĥ2n−2(τ) =


−γ̄0γ1 −γ̄0γ2 · · · −γ̄0γn−1 −γ̄0γn−2 · · · −γ̄0γ1 −γ̄0τ

1 − |γ1|
2
−γ̄1γ2 · · · −γ̄1γn−1 −γ̄1γn−2 · · · −γ̄1γ1 −γ̄1τ

0 1 − |γ2|
2
· · · −γ̄2γn−1 −γ̄2γn−2 · · · −γ̄2γ1 −γ̄2τ

...
0 0 · · · 0 1 − |γ1|

2
−γ̄1τ


,

γ0 = 1, D̂2n−2 = diag[δ̂0, δ̂1, . . . , δ̂2n−3], δ̂0 = 1, δ̂ j = δ̂ j−1

(
1 − |γ̂ j|

2
)
, j = 1, . . . , 2n − 3, γ̂ j = γ j, j = 1, . . . ,n − 1

and γ̂ j = γ2n−2− j, j = n, . . . , 2n − 3. There are several algorithms for the eigen decomposition of such kind
of matrices (see [9–11]). Computation of eigensystem can be performed very efficiently by using compact
representation of Hessenberg matrices (see e.g., [9, 11]).

In our method we use recurrence relations to obtain wanted orthogonal systems in order to escape nu-
merical non-stability which is characteristic for Gram-Schmidt method. Also, recurrence relations provide
a stable way for computation of values of trigonometric polynomials in contrast to using expanded forms.
We demonstrated how in the case of symmetric weight function the anti-Gaussian quadrature rules can be
constructed using orthogonal polynomials on the real line.

Using averaged Gaussian quadrature rules for trigonometric polynomials introduced in this article,
we were able to achieve much greater accuracy in comparison with averaged Szegő quadrature rules on



N. Z. Petrović et al. / Filomat 36:3 (2022), 1005–1019 1018

the class of symmetric weight functions, which we will demonstrate with the following example. Also,
introducing the anti-Gaussian quadrature rules with an odd number of nodes (the caseγ = 1/2) we achieved
accuracy for the trigonometric polynomials of higher degree, for all t ∈ T2n+2. We give one example from
[12] supplemented by our results.

Consider the weight function w(x) = 2 sin2 (x/2) on the interval (−π, π) and the integrand f (x) =
1
2 log (5 + 4 cos x). In Table 3 we give errors in Szegő (Sn

1( f )), anti-Szegő (An
1( f )), generalized averaged

Szegő (Ŝ(2n−2)
1 ( f )); Gaussian (Ĝñ+1( f )), anti-Gaussian (Ĥñ+3( f )) and averaged Gaussian (Â2ñ+4) formula, with

ñ + 1 = n. One can see that errors obtained by using Gaussian and Szegő are similar with those obtained
by using anti-Gaussian and anti-Szegő quadrature rules, respectively. However, it is obvious that averaged
Gaussian quadrature rules for trigonometric polynomials give a significant improvement over the gener-
alized averaged Szegő quadrature rules (which gave the best results in [12]). That improvement is more
significant with increasing number of nodes. Also, we can see that in this example quadrature rules with
an even number of nodes lead to a greater improvement of results than rules with an odd number of nodes.

Table 3: Errors for several quadrature rules for w(x) = 2 sin2 (x/2), x ∈ (−π, π) and f (x) = 1
2 log (5 + 4 cos x)

Rule n = 12 n = 15 n = 18
Sn

1( f ) −2.2 · 10−5 2.2 · 10−6
−2.3 · 10−7

An
1( f ) 2.3 · 10−5

−2.3 · 10−6 2.4 · 10−7

Ŝ(2n−2)
1 ( f ) −1.5 · 10−7 9.2 · 10−9

−6.7 · 10−10

Ĝñ+1( f ) −1.98 · 10−5 1.38 · 10−5
−2 · 10−7

Ĥñ+3( f ) 1.98 · 10−5
−1.38 · 10−5 2 · 10−7

Â2ñ+4 −5.31 · 10−10 1.04 · 10−10
−8.75 · 10−14
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