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Abstract. This paper mainly gives some sufficient and necessary conditions for an element in a ring with

involution to be partial isometry and strongly EP element by using some invertible elements and solutions
of certain equations.

1. Introduction

Let R be an associative ring with 1. An element a € R is said to be group invertible if there is a* € R
satisfying the following conditions:

adta =a, a*ad® =a, ad® =a'a.

If a* exists, it is unique. Denote by R the set of group invertible elements of R [1].
An involution * : 4 — a* in R is an anti-isomorphism of degree 2, that is,

@)y =a (a+b)y=a+b", (@) =0ba".
An element a* € R is called the Moore-Penrose inverse (or MP-inverse) of a [5], if

aata=a, a*aa* =a*, (aa*) =aa*, (a*a) =ata

7

Also, if a* exists, it is unique. Denote by R the set of all MP-invertible elements of R [5].
Ifa € R* M R* and a” = a*, then a is called an EP element [2]. Denote by RE? the set of all EP elements of
R.

Ifa = aa*a, then a is called a partial isometry element of R [4]. Denote by R the set of all partial isometry
elements of R.

Ifa € REPNRP!, then a is called a strongly partial isometry element. Denote by R°E the set of all strongly
partial isometry elements of R.

In [9], by discussing the solutions of some equations in a fixed set, we give some new characterizations
of EP element. In [8], EP elements are studies by using principally one-sided ideals and annihilators; More
results on EP elements can be founded in [3, 4].

In [4, 6, 7], many characterizations of partial isometry elements are given. Motivated by the above

results, this paper is aimed to provide some equivalent conditions for an element a to be PI by using some
invertible elements and the solutions of certain equations.
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2. Partial isometry and construction of EP elements

Lemma 2.1. Leta € R*NR*. Then
(1) a*a*a € RE? and (a*a*a)* = (a#) ata.

(2) ata*ta € RFPand (a*ata)” = (a#)* asa.

Proof. (1) Noting that a*(a*)*a* = a*™ = a*a*(a")* and a*a(a®)* = (a*)* = (a*)aa*. Then

*

(a*a*a) ((a#) a*a) (a'a*ta) =a' (a#) ataatata = a'a*a;

((a#)* a*a) (a*a*a) ((a#)*a*a) = (a#)* a*a*a( #) ata = ( ) ata;
[@ara) (o) ava)] = [« (o) a%a] = @0y =a%a = @aa) (o") a"a);
[((a ) a a) (a'a* ] [( ) a‘a a] (ata) =a*a= ((a#)* u+a) (@*a*a);

(a*a*a) ((a#)* a+a) =a*a= ((a#)* a+a) (a*a*a).

.
Hence a*a*a € REP and (a*a*a)* = a#) at

Similarly, we can show (2). [

a.

Lemma 2.2. Leta € R*NR*. Thena € R™ ifand only ifa*a*a = a*a*a.

Proof. = Itis evident because a* = a*.
& Assume thata*a*a = a*a*a. Post-multiplying the equality by (aa")*, one getsa* = a*. Thusa € R”.. O

Lemma 2.1 and Lemma 2.2 imply the following theorem.

Theorem 2.3. Let a € R* N\ RY, then the following conclusions are equivalent.
1)a € RPL;

2) (a#)* ata = (a#)* a‘a;
3)(aata)" = (a#)* a‘a;
4)(atata)" = (a#>* a‘ta.

It is well known that a € R* is partial isometry if and only if a = (a*)*. Hence Lemma 2.2 also implies
the following corollary.

Corollary 2.4. Leta € R* N\ R*. Then a € R™ if and only if a*a*(a™)* = a*a*(a®)".
The following lemma can be obtained by routine verification.

Lemma 2.5. Let a € R* N R*. Then
(1) a*a*(a*)* € REP and (a*a*(a*)")* = a*a(a*)a*a.
(2) ata®(a*) € RFP and (a*a* (a*)")* = a*a(a®)'a'a

Hence Corollary 2.4 and Lemma 2.5 leads to the following theorem.

Theorem 2.6. Let a € R* (\R*. Then the following conclusions are equivalent.
1)a € RPL;
2) a*a(a*)a*a = a*a(a®)a’a
3) (ﬂ*a+(ﬂ+)*)+ — a*a(a#)*a*a
4) (atat (@)t = a*a(a®)ata.
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It is evident that for a € R* R*, a € R’ if and only if a*a(a*)* = (a*)". Hence Lemma 2.5 and Theorem
2.6 imply the following corollary.

Corollary 2.7. Let a € R* \R*. Then the following conclusions are equivalent.
1)a € RP%;
2) (@*)ata = (@a*)a'a;
3) (@a*(a*)y)* = (@")a*a;
4) (ata* (@)t = (@*yaa.

It is easy to see that fora € R*,a € R ifand only if a*a = a*(a")*. Hence we have the following corollary
by Corollary 2.7.

Corollary 2.8. Leta € R* N\ R*. Then a € R™ if and only if (a*a*a)™ = (a*)a*(a*)".
Lemma 2.9. Let a € R* N R*. Then (a*)*a*(a*)* € RE” and ((a*)*a*(a*)")* = a*aa’a*a.
Proof. Routine verification is enough. O

Corollary 2.8 and Lemma 2.9 give the following corollary.

Corollary 2.10. Leta € R* N\ R*. Then a € R if and only if a*a*a = a*aa*a*a.

3. Partial isometry and construction of invertible elements
The following two lemmas are well known.

Lemma 3.1. Let R be a ring and a,b € R. If 1 — ab is invertible, then 1 — ba is also invertible, and (1 —ba) ™" =
1+b(1—-ab)ta

Lemma 3.2. Leta € R*. Thena+1—aa® e RV and (a + 1 — aa®) ™' = a* + 1 — aa®.
Theorem 3.3. Leta € R* \R*. Thena*ata+1—ata € R and (@'a*a+1-a*a)" = (a#)* ata+1-ata

Proof. By Lemma 2.1, we have a*a*a € REP with (a*a*a)* = (a*)*a*a. Noting that (a*a*a)((a*)*a*a) = a*ta. Then
by Lemma 3.2, we have a’a*a + 1 —a*ta € R™" and (a'a*a + 1 —a*a) ™" = (u#) atfa+1-ata. O

Corollary 3.4. Let a € R* \R*. Then
1)a € R ifand only if (@*a*a + 1 —a*a)™ = (a#) at @) +1-a*a.
2)a € R if and only if (@*a*a+1—a*a) ' =a+1-a*a.
3)a € RE if and only if (a*a*a)" = a.

Proof. 1) It follows from Lemma 2.1, Corollary 2.8 and Theorem 3.3.

2) Noting thata € R°E? if and only ifa € R* (| R* and a = (a*)*a*a. Then the result follows from Theorem
3.3.

3) Itis evident. O

Theorem 3.5. Leta € R* \R*Y. Thena € R™ ifand only if (aata+1—a*a)™! = (@a*)ya'a+1—-a"a.
Proof. " = ” Assume that a € R"!. First, we have a* = a* and (a*)" = a. Next, by Corollary 3.4, we have
(@ata+1—-ata)™! = (@*ya*t (@) +1-a*a. Hence (@ata +1-a*ta)™! = (@*)a'a+1-a*a.

” =" Assume that (@*a*a+1—a*a)™ = (a*)'a'a+ 1 —a*a. Then (a*)'a*a+1-a*a = (@*ya'a+1-a*aby
Theorem 3.3, this gives (a*)*‘a*a = (a*)*a*a. Hence a € R” by Theorem 2.3. [

Theorem 3.6. Let a € R* \R*. Thena € R ifand only if 1 —a*a+a*)" =1+ (a#)* aa— (a#)* ar.
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Proof. ” => " Suppose thata € R, then (a*a*a + 1 —a*a)™ = (a*)*a*a + 1 — a*a by Theorem 3.5. Noting that
a‘ata+1—ata=1-(1—-a")a*a. Then (1-a*a(1-a*))"! =1+a*a(@a*a+1-a*a)"'(1-a") by Lemma 3.1, e.g.
1-ata+a)' =1+ata(@yaa+1-ata)l-a)=1+ (a#)* a‘a— (a#)* a‘aa*. Since a € R”, a* = a*aa*. Hence
(1-ata+a) =1+ (a#)* a‘a— (a#)* ar.

Te="Y1-ata+a) Tt =1+ (a#)* ata — (a#)* a, then (1 -ata+a)(1 + (a#)* ata — (a#)* a* = 1. Noting
that (1 —a*a) (11#)* aa=0=(1-a'*a) (a ) a*. Then by simple calculation, we obtain —a*a + a*a = 0. Hence
a € R by [4, Theorem 2.2]. O
Corollary 3.7. Let a € R* \R*. Then

1)a € R ifand only if 1 — aa* +a*)™ =1+ (a*)’ (aa#))e aa* — (aa#)*.

2)a € R if and only if 1 —aa* +a’)" =1+a~— (aa#)*.

Proof. 1)” = ” Assume thata € R”, then (1 —a*a+a)"' =1+ (a#)* aa — (a#)* a* by Theorem 3.6. Noting
thatl1—ata+a* =1-a*((a*)" = 1). Then

(1-aat+a) =1 - ((a*)* - 1) T =1+ ((a+)* - 1) (1-a*ta+a) a
=1+ ((a*)* - 1) [1 + (a#)* a‘a— (a#)* a*] a
=1+ (@) = 1)(aa*yaa" =1+ (@) (aa") aa" — (aa") aa".
Since a € R™!, aa* = aa*, it follows that (aa*)*aa* = aa®. Hence (1 —aa* +a*)™ =1 + (a*)’ (aa#)* aa* — (aa#)*.
Te="1f(1-aa" +a) " =1+ (a") (aa#)* aa* — (aa#)* , then
1-aat+a)(1 + @) (aa#y aa* — (aa#)*) =1

Nothing that (1 — aa™) ((a*)* (a a#>* a a*) = 0. Then again by a simple calculation, we obtain (aa*)* = (aa*)*aa".
Pre-multiplying the equality by a*, we have a* = a*. Therefore a € R,
2) It is easy to show that a € RF? if and only a = (a*)*(aa*)*aa*.

” = ” Sincea € RSP, g* =q* . Hence 1 —aa* +a") ' =1+a - (aa#)* by 1).
Te="Tf(1-aa*+a) " =1+a- (aa#)*, then (1 —aa* +a’)(1 +a— (aa#)*) = 1, this gives a'a = (aa#)*.
Hence a*a = aa*, by [4, Theorem 2.3], we have a € R5F. [

4. Partial isometry and the solution of equations

Observing Lemma 2.2, we can construct the following equation

a‘xa = xa*a. 1)
The following theorem follows from [7, Theorem 2.9].

Theorem 4.1. Let a € R* N R*. Then a € RP! if and only if the equation (1) has at least one solution in x,, where
Xa = la,a*,a*,a", (a*), (@*)").

Variable a in Equation (1), we can obtain the following equation.

a'xy = xaty. (2)
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Lemma 4.2. Let a € R* N R*. Then the following conditions are equivalent:
(1)a € R™L;
2)a*a* =a'a*;
QB)ata =a*a’;
@) a‘at =atat;
(B)a*ta* =a*a*.
Proof. (1) = (2) It is trivial.
(2) = (5) Assume that a*a* = a*a*. Pre-multiplying the equality by a*(a*)*, one yields a*a* = a*a*.
(5) = (1) If a*a® = a*a™. Pre-multiplying the equality by (aa*)*a, one has a* = a*. Hence a € R
Similarly, we can show (1) = 3) = (4) = (1). O
Theorem 4.3. Let a € R* N R*. Then a € R if and only if the equation (2) has at least one solution in x> =:
(¢ Ylx, v € Xal.
Proof. ” => " Assume that a € R, then (x, y) = (a*,4) is a solution by Lemma 2.2 and Theorem 4.1.

” =" (1) If y = a, then we have the equation (1). Hence a € R by Theorem 4.1;
(2) If y = a*, then we have the following equation

a‘xa® = xa*a*. 3)

Post-multiplying the equation (3) by 4?, we have the equation (1). Thus a € R by Theorem 4.1;
(3) If y = a*, then we obtain the following equation

a'xat = xa*a®. 4)
(@) If x = a, then a* = a*aa* = aa*a*. Pre-multiplying the equality by (aa*)*, one yields a* = a*. Hence

a e RL
(b) If x = a*, then a*a*a* = a*a*a®. Pre-multiplying the equality by aa*, one yields a*a*a* = aa*a*a*a* =
aata‘a*a*, it follows that a*a*a®™ = aa*a*a’a*. Post-multiplying the last equality by a*(a*)*, one has a*a =

aa*a*a. Hence a € REP, this gives a*a*a* = a*a*a*. Post-multiplying the equality by a*, one gets a*a* = a.
Hence a € R"! by [4, Theorem 2.3];

(c) If x = a*¥, then a*a*a* = a*a*a*. Post-multiplying the equality by aa*(a*)*a, one has a*a*a = a*a*a.
Hence a € R”' by Lemma 2.2;

(d) If x = a*, then a*a*a* = a*a*a*. Pre-multiplying the equality by (a*)*, one has a*a* = a*a®. Hence
ae R by Lemma 4.2;

(e) If x = (a*)", then a* = a*(a")'a*™ = (a*)'a*a®, this gives a'a* = a*a*. Hence a € R by Lemma 4.2;

(f) If x = (a*)*, thena* = a*(a*)*a® = (a*)'a*a®, soa*a*™ = a*a*. Thusa € R by Lemma 4.2;

(4) If y = a*, we get the following equation

a‘xa* = xata®. (5)
Post-multiplying the equation (5) by (a*)*a*, one obtains the equation (4). Hence a € R” by (4).
G lfy= (11#)*, then we have the following equation

*

a‘x (a#)* =xa* (a#) . (6)
Post-multiplying the equation (6) by (a*)?, we obtain the equation (5). Thus a € R by (4);
(6) If y = (a*)", then we have the following equation

a'x @) =xa*t (@) (7)

Post-multiplying the equation (7) by aa, one yields the equation (1). Thus a € R” by Theorem 4.1. [
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It is well known that 2 € R™ if and only if a* € RP.. Hence substitute a* for a in the equation (1), we
obtain the following equation.

axa* = xaa®. 8)

Post-multiplying the equation (8) by (a*)*, we have the following equation.

axa*a = x(a*)". )

Noting that the equation (8) and (9) have the same solution. Hence we have the following corollary which
follows from [7, Theorem 2.9].

Corollary 4.4. Leta € R* N\ R*. Then a € R™ if and only if the equation (4.9) has at least one solution in x,.

5. Partial isometry and generalized equations

We can change the equation (1) as follows

a‘xa = ya*a. (10)

Proposition 5.1. The general solution of equation (10) is given by

x =pat +u—aatuaa*
y=a'p+z—zata where p,u,z € R. (11)

Proof. First, by a simple calculation, we obtain that the formula (11) is the solution of equation (10). Next,
. X =X
if

Y= is a solution, then a*xpa = yoa*a. Then
=Yo

((a*)* yoa+a) at + xo —aatxpaa’

= ((a*)* a*xoa) at + xg — aatxgaat
= aa*xgaa® + xo — aa* xgaa® = x.
Similarly, we have
a ((a+)* yoa+a) + Yo —Yyoata
=ataa"xoa + Yo — Yyoa'a
_ T
=a Xoa + Yo — Yoad a = Yop.

Hence the general solution of the equation (10) is given by the formula (11). O

Theorem 5.2. Let a € R* N R*. Then a € R if and only if the general solution of the equation (10) is given by

x =pa* +u—aatuaa*
y=a'p+z—zata where p,u,z € R. (12)
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Proof. 7 = ” Assume that a € R, Then a* = a*, it follows from Proposition 5.1 that the general solution
of the equation (10) is given by the formula (12).

” <= " Suppose the formula (12) is the general solution of the equation (10), then we have

a(pa” +u—aa*uaa)a = (a*p+z—zata)ata,

this givesa*pata = a*pa*afor eachp € R. Especially, we choosep = 4, oneyieldsa‘a = a*a. Hencea € R”.. [

Now we give the following equations.

a'xa = yaa*. (13)
atxa = ya*a. (14)
a*xa = ya*a. (15)

Theorem 5.3. Let a € R* N R*. Then

(1) a € RE? if and only if the general solution of the equation (13) is given by the formula (11).
2) a € RP!if and only if the general solution of the equation (14) is given by the formula (11).
3) a € R°EP if and only if the general solutions of the equation (15) is given by the formula (11).

Proof. (1) 7 = ” Assume that a € RE?, then aa* = a*a, this infers that the equation (13) is same as the
equation (10). Hence the general solution of the equation (13) is given by the formula (11) by Proposition

5.1

&= " Suppose that the general solution of the equation (13) is given by the formula (11), then a*(pa* +

u—aa*uaat)a = (@'p + z — za*a)aa*. Choosing z = 0 and p = (a*)*, one obtains a*a = aa*. Hence a € RE’.

(2) 7 = ” Assume that a € R, then a* = a*, this infers the equation (14) is same as the equation (10)

and the formula (12) is same as the formula (11). Hence we are done by Theorem 5.2.

” &= " If the general solution of the equation (14) is given by the formula (11), thena™ (pa* +u—aa*uaa*)a =

(a'p + z — za*a)a*a. Choosing p = a, one yields a*a = a*a. Hence a € R™.

(3) It is an immediate result of (1) and (2). O
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