

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Some Studies on Partial Isometry in Rings with Involution

Xinyu Yang^a, Zhiyong Fan^b, Wei Junchao^a

^a School of Mathematical Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, P.R. China
^b Jiaozuo normal college, Jiaozuo, Henan Province, 454000, P. R. China

Abstract. This paper mainly gives some sufficient and necessary conditions for an element in a ring with involution to be partial isometry and strongly EP element by using some invertible elements and solutions of certain equations.

1. Introduction

Let *R* be an associative ring with 1. An element $a \in R$ is said to be group invertible if there is $a^{\#} \in R$ satisfying the following conditions:

$$aa^{\#}a = a$$
, $a^{\#}aa^{\#} = a$, $aa^{\#} = a^{\#}a$.

If $a^{\#}$ exists, it is unique. Denote by $R^{\#}$ the set of group invertible elements of R [1]. An involution $*: a \longmapsto a^*$ in R is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a$$
, $(a+b)^* = a^* + b^*$, $(ab)^* = b^*a^*$.

An element $a^+ \in R$ is called the Moore-Penrose inverse (or MP-inverse) of a [5], if

$$aa^{+}a = a$$
, $a^{+}aa^{+} = a^{+}$, $(aa^{+})^{*} = aa^{+}$, $(a^{+}a)^{*} = a^{+}a$.

Also, if a^+ exists, it is unique. Denote by R^+ the set of all MP-invertible elements of R [5].

If $a \in R^{\#} \cap R^{+}$ and $a^{\#} = a^{+}$, then a is called an EP element [2]. Denote by R^{EP} the set of all EP elements of R.

If $a = aa^*a$, then a is called a partial isometry element of R [4]. Denote by R^{PI} the set of all partial isometry elements of R.

If $a \in R^{EP} \cap R^{PI}$, then a is called a strongly partial isometry element. Denote by R^{SEP} the set of all strongly partial isometry elements of R.

In [9], by discussing the solutions of some equations in a fixed set, we give some new characterizations of *EP* element. In [8], *EP* elements are studies by using principally one-sided ideals and annihilators; More results on *EP* elements can be founded in [3, 4].

In [4, 6, 7], many characterizations of partial isometry elements are given. Motivated by the above results, this paper is aimed to provide some equivalent conditions for an element *a* to be *PI* by using some invertible elements and the solutions of certain equations.

2020 Mathematics Subject Classification. 16B99; 16W10;15A09;46L05

Keywords. group inverse, MP-invertible element, partial isometry element, EP element, strongly EP element

Received: 18 February 2021; Revised: 13 September 2021; Accepted: 20 September 2021

Communicated by Dijana Mosić

Email addresses: 2279368979@qq.com (Xinyu Yang), 19411267712@qq.com (Zhiyong Fan), jcweiyz@126.com (Wei Junchao)

2. Partial isometry and construction of EP elements

Lemma 2.1. *Let* $a \in R^{\#} \cap R^{+}$. *Then*

- (1) $a^*a^+a \in R^{EP}$ and $(a^*a^+a)^+ = (a^\#)^*a^+a$.
- (2) $a^+a^+a \in R^{EP}$ and $(a^+a^+a)^+ = (a^\#)^* a^*a$.

Proof. (1) Noting that $a^*(a^\#)^*a^+ = a^+ = a^+a^*(a^\#)^*$ and $a^+a(a^\#)^* = (a^\#)^* = (a^\#)^*aa^+$. Then

$$(a^*a^+a)\left(\left(a^{\#}\right)^*a^+a\right)(a^*a^+a) = a^*\left(a^{\#}\right)^*a^+aa^*a^+a = a^*a^+a;$$

$$\left(\left(a^{\#}\right)^*a^+a\right)(a^*a^+a)\left(\left(a^{\#}\right)^*a^+a\right) = \left(a^{\#}\right)^*a^*a^+a\left(a^{\#}\right)^*a^+a = \left(a^{\#}\right)^*a^+a;$$

$$\left[\left(a^*a^+a\right)\left(\left(a^{\#}\right)^*a^+a\right)\right]^* = \left[a^*\left(a^{\#}\right)^*a^+a\right]^* = (a^+a)^* = a^+a = (a^*a^+a)\left(\left(a^{\#}\right)^*a^+a\right);$$

$$\left[\left(\left(a^{\#}\right)^*a^+a\right)(a^*a^+a)\right]^* = \left[\left(a^{\#}\right)^*a^*a^+a\right]^* = (a^+a)^* = a^+a = \left(\left(a^{\#}\right)^*a^+a\right)(a^*a^+a);$$

$$(a^*a^+a)((a^\#)^*a^+a) = a^+a = ((a^\#)^*a^+a)(a^*a^+a).$$

Hence $a^*a^+a \in R^{EP}$ and $(a^*a^+a)^+ = (a^\#)^*a^+a$.

Similarly, we can show (2). \Box

Lemma 2.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if $a^*a^+a = a^+a^+a$.

Proof. \Longrightarrow It is evident because $a^* = a^+$.

 \leftarrow Assume that $a^*a^+a = a^+a^+a$. Post-multiplying the equality by $(aa^\#)^*$, one gets $a^* = a^+$. Thus $a \in R^{PI}$. \square

Lemma 2.1 and Lemma 2.2 imply the following theorem.

Theorem 2.3. Let $a \in R^{\#} \cap R^{+}$, then the following conclusions are equivalent.

- 2) $(a^{\#})^* a^+ a = (a^{\#})^* a^* a;$
- 3) $(a^*a^+a)^+ = (a^\#)^* a^*a;$
- 4) $(a^+a^+a)^+ = (a^\#)^* a^+a$.

It is well known that $a \in R^+$ is partial isometry if and only if $a = (a^+)^*$. Hence Lemma 2.2 also implies the following corollary.

Corollary 2.4. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{PI}$ if and only if $a^*a^+(a^+)^* = a^+a^+(a^+)^*$.

The following lemma can be obtained by routine verification.

Lemma 2.5. Let $a \in R^{\#} \cap R^{+}$. Then

- (1) $a^*a^+(a^+)^* \in R^{EP}$ and $(a^*a^+(a^+)^*)^+ = a^*a(a^\#)^*a^+a$. (2) $a^+a^+(a^+)^* \in R^{EP}$ and $(a^+a^+(a^+)^*)^+ = a^*a(a^\#)^*a^*a$.

Hence Corollary 2.4 and Lemma 2.5 leads to the following theorem.

Theorem 2.6. Let $a \in R^{\#} \cap R^{+}$. Then the following conclusions are equivalent.

- 1) $a \in R^{PI}$;
- 2) $a^*a(a^\#)^*a^+a = a^*a(a^\#)^*a^*a$;
- 3) $(a^*a^+(a^+)^*)^+ = a^*a(a^\#)^*a^*a;$
- 4) $(a^+a^+(a^+)^*)^+ = a^*a(a^\#)^*a^+a$.

It is evident that for $a \in R^{\#} \cap R^+$, $a \in R^{PI}$ if and only if $a^*a(a^{\#})^* = (a^{\#})^*$. Hence Lemma 2.5 and Theorem 2.6 imply the following corollary.

Corollary 2.7. Let $a \in \mathbb{R}^{\#} \cap \mathbb{R}^{+}$. Then the following conclusions are equivalent.

- 1) $a \in R^{PI}$;
- 2) $(a^{\#})^*a^+a = (a^{\#})^*a^*a$;
- 3) $(a^*a^+(a^+)^*)^+ = (a^\#)^*a^+a;$
- 4) $(a^+a^+(a^+)^*)^+ = (a^\#)^*a^*a$.

It is easy to see that for $a \in R^+$, $a \in R^{PI}$ if and only if $a^+a = a^+(a^+)^*$. Hence we have the following corollary by Corollary 2.7.

Corollary 2.8. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if $(a^*a^+a)^+ = (a^{\#})^*a^+(a^+)^*$.

Lemma 2.9. Let $a \in R^{\#} \cap R^{+}$. Then $(a^{\#})^{*}a^{+}(a^{+})^{*} \in R^{EP}$ and $((a^{\#})^{*}a^{+}(a^{+})^{*})^{+} = a^{*}aa^{*}a^{+}a$.

Proof. Routine verification is enough. \Box

Corollary 2.8 and Lemma 2.9 give the following corollary.

Corollary 2.10. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if $a^*a^+a = a^*aa^*a^+a$.

3. Partial isometry and construction of invertible elements

The following two lemmas are well known.

Lemma 3.1. Let R be a ring and $a, b \in R$. If 1 - ab is invertible, then 1 - ba is also invertible, and $(1 - ba)^{-1} =$ $1 + b(1 - ab)^{-1}a$.

Lemma 3.2. Let $a \in R^{\#}$. Then $a + 1 - aa^{\#} \in R^{-1}$ and $(a + 1 - aa^{\#})^{-1} = a^{\#} + 1 - aa^{\#}$.

Theorem 3.3. Let $a \in R^{\#} \cap R^{+}$. Then $a^*a^+a + 1 - a^+a \in R^{-1}$ and $(a^*a^+a + 1 - a^+a)^{-1} = (a^{\#})^*a^+a + 1 - a^+a$.

Proof. By Lemma 2.1, we have $a^*a^+a \in R^{EP}$ with $(a^*a^+a)^\# = (a^\#)^*a^+a$. Noting that $(a^*a^+a)((a^\#)^*a^+a) = a^+a$. Then by Lemma 3.2, we have $a^*a^+a + 1 - a^+a \in R^{-1}$ and $(a^*a^+a + 1 - a^+a)^{-1} = (a^\#)^*a^+a + 1 - a^+a$.

Corollary 3.4. *Let* $a \in R^{\#} \cap R^{+}$. *Then*

- 1) $a \in R^{PI}$ if and only if $(a^*a^+a + 1 a^+a)^{-1} = (a^\#)^*a^+(a^+)^* + 1 a^+a$.
- 2) $a \in R^{SEP}$ if and only if $(a^*a^+a + 1 a^+a)^{-1} = a + 1 a^+a$. 3) $a \in R^{SEP}$ if and only if $(a^*a^+a)^+ = a$.

Proof. 1) It follows from Lemma 2.1, Corollary 2.8 and Theorem 3.3.

- 2) Noting that $a \in R^{SEP}$ if and only if $a \in R^{\#} \cap R^+$ and $a = (a^{\#})^*a^+a$. Then the result follows from Theorem 3.3.
 - 3) It is evident. \Box

Theorem 3.5. Let $a \in R^{\#} \cap R^+$. Then $a \in R^{PI}$ if and only if $(a^*a^+a + 1 - a^+a)^{-1} = (a^{\#})^*a^*a + 1 - a^+a$.

Proof. " \Longrightarrow " Assume that $a \in R^{PI}$. First, we have $a^* = a^+$ and $(a^+)^* = a$. Next, by Corollary 3.4, we have $(a^*a^+a + 1 - a^+a)^{-1} = (a^\#)^*a^+(a^+)^* + 1 - a^+a$. Hence $(a^*a^+a + 1 - a^+a)^{-1} = (a^\#)^*a^*a + 1 - a^+a$.

" \Leftarrow " Assume that $(a^*a^+a + 1 - a^+a)^{-1} = (a^\#)^*a^*a + 1 - a^+a$. Then $(a^\#)^*a^+a + 1 - a^+a = (a^\#)^*a^*a + 1 - a^+a$ by Theorem 3.3, this gives $(a^{\#})^*a^+a = (a^{\#})^*a^*a$. Hence $a \in R^{PI}$ by Theorem 2.3. \square

Theorem 3.6. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if $(1 - a^{+}a + a^{*})^{-1} = 1 + (a^{\#})^{*} a^{*}a - (a^{\#})^{*} a^{*}$.

Proof. " \Longrightarrow " Suppose that $a \in R^{PI}$, then $(a^*a^+a + 1 - a^+a)^{-1} = (a^\#)^*a^*a + 1 - a^+a$ by Theorem 3.5. Noting that $a^*a^+a + 1 - a^+a = 1 - (1 - a^*)a^+a$. Then $(1 - a^+a(1 - a^*))^{-1} = 1 + a^+a(a^*a^+a + 1 - a^+a)^{-1}(1 - a^*)$ by Lemma 3.1, e.g. $(1-a^+a+a^*)^{-1}=1+a^+a((a^\#)^*a^*a+1-a^+a)(1-a^*)=1+\left(a^\#\right)^*a^*a-\left(a^\#\right)^*a^*aa^*$. Since $a\in R^{PI}$, $a^*=a^*aa^*$. Hence $(1 - a^{+}a + a^{*})^{-1} = 1 + (a^{\#})^{*} a^{*}a - (a^{\#})^{*} a^{*}.$

" \Leftarrow " If $(1 - a^+a + a^*)^{-1} = 1 + (a^\#)^* a^*a - (a^\#)^* a^*$, then $(1 - a^+a + a^*)(1 + (a^\#)^* a^*a - (a^\#)^* a^* = 1$. Noting that $(1-a^+a)\left(a^{\#}\right)^*a^*a=0=(1-a^+a)\left(a^{\#}\right)^*a^*$. Then by simple calculation, we obtain $-a^+a+a^*a=0$. Hence $a \in R^{PI}$ by [4, Theorem 2.2].

Corollary 3.7. *Let* $a \in R^{\#} \cap R^{+}$. *Then*

- 1) $a \in R^{PI}$ if and only if $(1 aa^+ + a^*)^{-1} = 1 + (a^+)^* (aa^\#)^* aa^* (aa^\#)^*$.
- 2) $a \in R^{SEP}$ if and only if $(1 aa^+ + a^*)^{-1} = 1 + a (aa^\#)^*$.

Proof. 1)" \Longrightarrow " Assume that $a \in R^{PI}$, then $(1 - a^+a + a^*)^{-1} = 1 + (a^\#)^* a^*a - (a^\#)^* a^*$ by Theorem 3.6. Noting that $1 - a^+a + a^* = 1 - a^* ((a^+)^* - 1)$. Then

$$(1 - aa^{+} + a^{*})^{-1} = [1 - ((a^{+})^{*} - 1) a^{*}]^{-1} = 1 + ((a^{+})^{*} - 1) (1 - a^{+}a + a^{*})^{-1} a^{*}$$

$$= 1 + ((a^{+})^{*} - 1) [1 + (a^{\#})^{*} a^{*}a - (a^{\#})^{*} a^{*}] a^{*}$$

$$= 1 + ((a^{+})^{*} - 1) (aa^{\#})^{*} aa^{*} = 1 + (a^{+})^{*} (aa^{\#})^{*} aa^{*} - (aa^{\#})^{*} aa^{*}.$$

Since $a \in R^{PI}$, $aa^* = aa^+$, it follows that $(aa^\#)^*aa^* = aa^\#$. Hence $(1 - aa^+ + a^*)^{-1} = 1 + (a^+)^* (aa^\#)^* aa^* - (aa^\#)^*$. " \Leftarrow " If $(1 - aa^+ + a^*)^{-1} = 1 + (a^+)^* (aa^\#)^* aa^* - (aa^\#)^*$, then

$$(1 - aa^{+} + a^{*}) (1 + (a^{+})^{*} (aa^{\#})^{*} aa^{*} - (aa^{\#})^{*}) = 1.$$

Nothing that $(1 - aa^+)(a^+)^*(a a^\#)^*a a^* = 0$. Then again by a simple calculation, we obtain $(aa^\#)^* = (aa^\#)^*aa^*$. Pre-multiplying the equality by a^+ , we have $a^+ = a^*$. Therefore $a \in R^{PI}$. 2) It is easy to show that $a \in R^{SEP}$ if and only $a = (a^+)^*(aa^\#)^*aa^+$.

"
$$\Longrightarrow$$
 " Since $a \in R^{SEP}$, $a^* = a^+$. Hence $(1 - aa^+ + a^*)^{-1} = 1 + a - (aa^\#)^*$ by 1).

" \Leftarrow " If $(1 - aa^+ + a^*)^{-1} = 1 + a - (aa^\#)^*$, then $(1 - aa^+ + a^*)(1 + a - (aa^\#)^*) = 1$, this gives $a^*a = (aa^\#)^*$. Hence $a^*a = aa^\#$, by [4, Theorem 2.3], we have $a \in R^{SEP}$. \square

4. Partial isometry and the solution of equations

Observing Lemma 2.2, we can construct the following equation

$$a^*xa = xa^+a. (1)$$

The following theorem follows from [7, Theorem 2.9].

Theorem 4.1. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (1) has at least one solution in χ_a , where $\chi_a = \{a, a^{\#}, a^{+}, a^{*}, (a^{\#})^{*}, (a^{+})^{*}\}.$

Variable a in Equation (1), we can obtain the following equation.

$$a^*xy = xa^+y. (2)$$

Lemma 4.2. Let $a \in R^{\#} \cap R^{+}$. Then the following conditions are equivalent:

- (1) $a \in R^{PI}$;
- (2) $a^*a^* = a^*a^+$;
- (3) $a^*a^* = a^+a^*$;
- (4) $a^*a^+ = a^+a^+$;
- (5) $a^+a^* = a^+a^+$.

Proof. (1) \Longrightarrow (2) It is trivial.

- (2) \Longrightarrow (5) Assume that $a^*a^* = a^*a^+$. Pre-multiplying the equality by $a^+(a^+)^*$, one yields $a^+a^* = a^+a^+$.
- (5) \Longrightarrow (1) If $a^+a^*=a^+a^+$. Pre-multiplying the equality by $(aa^\#)^*a$, one has $a^*=a^+$. Hence $a\in R^{PI}$. Similarly, we can show (1) \Longrightarrow (3) \Longrightarrow (4) \Longrightarrow (1). \square

Theorem 4.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (2) has at least one solution in $\chi_a^2 =: \{(x,y)|x,y \in \chi_a\}$.

Proof. " \Longrightarrow " Assume that $a \in R^{PI}$, then $(x, y) = (a^+, a)$ is a solution by Lemma 2.2 and Theorem 4.1.

" \Leftarrow " (1) If y = a, then we have the equation (1). Hence $a \in R^{PI}$ by Theorem 4.1;

(2) If $y = a^{\#}$, then we have the following equation

$$a^*xa^\# = xa^+a^\#.$$
 (3)

Post-multiplying the equation (3) by a^2 , we have the equation (1). Thus $a \in R^{PI}$ by Theorem 4.1;

(3) If $y = a^+$, then we obtain the following equation

$$a^*xa^+ = xa^+a^+.$$
 (4)

- (a) If x = a, then $a^* = a^*aa^+ = aa^+a^+$. Pre-multiplying the equality by $(aa^\#)^*$, one yields $a^* = a^+$. Hence $a \in \mathbb{R}^{PI}$:
- (c) If $x = a^+$, then $a^*a^+a^+ = a^+a^+a^+$. Post-multiplying the equality by $aa^*(a^\#)^*a$, one has $a^*a^+a = a^+a^+a$. Hence $a \in R^{PI}$ by Lemma 2.2;
- (*d*) If $x = a^*$, then $a^*a^*a^+ = a^*a^+a^+$. Pre-multiplying the equality by $(a^\#)^*$, one has $a^*a^+ = a^+a^+$. Hence $a \in R^{PI}$ by Lemma 4.2;
 - (e) If $x = (a^{\#})^*$, then $a^+ = a^*(a^{\#})^*a^+ = (a^{\#})^*a^+a^+$, this gives $a^*a^+ = a^+a^+$. Hence $a \in \mathbb{R}^{PI}$ by Lemma 4.2;
 - (f) If $x = (a^+)^*$, then $a^+ = a^*(a^+)^*a^+ = (a^+)^*a^+a^+$, so $a^*a^+ = a^+a^+$. Thus $a \in \mathbb{R}^{PI}$ by Lemma 4.2;
 - (4) If $y = a^*$, we get the following equation

$$a^*xa^* = xa^+a^*. ag{5}$$

Post-multiplying the equation (5) by $(a^+)^*a^+$, one obtains the equation (4). Hence $a \in R^{Pl}$ by (4).

(5) If $y = (a^{\#})^{*}$, then we have the following equation

$$a^*x(a^\#)^* = xa^+(a^\#)^*.$$
 (6)

Post-multiplying the equation (6) by $(a^*)^2$, we obtain the equation (5). Thus $a \in R^{PI}$ by (4); (6) If $y = (a^+)^*$, then we have the following equation

$$a^*x(a^+)^* = xa^+(a^+)^* \tag{7}$$

Post-multiplying the equation (7) by a^*a , one yields the equation (1). Thus $a \in R^{PI}$ by Theorem 4.1. \square

It is well known that $a \in R^{PI}$ if and only if $a^* \in R^{PI}$. Hence substitute a^* for a in the equation (1), we obtain the following equation.

$$axa^* = xaa^+. (8)$$

Post-multiplying the equation (8) by $(a^+)^*$, we have the following equation.

$$axa^+a = x(a^+)^*. (9)$$

Noting that the equation (8) and (9) have the same solution. Hence we have the following corollary which follows from [7, Theorem 2.9].

Corollary 4.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the equation (4.9) has at least one solution in χ_a .

5. Partial isometry and generalized equations

We can change the equation (1) as follows

$$a^*xa = ya^+a. ag{10}$$

Proposition 5.1. The general solution of equation (10) is given by

$$\begin{cases} x = pa^{+} + u - aa^{+}uaa^{+} \\ y = a^{*}p + z - za^{+}a \end{cases} \quad \text{where } p, u, z \in R.$$
 (11)

Proof. First, by a simple calculation, we obtain that the formula (11) is the solution of equation (10). Next, if $\begin{cases} x = x_0 \\ y = y_0 \end{cases}$ is a solution, then $a^*x_0a = y_0a^+a$. Then

$$((a^+)^* y_0 a^+ a) a^+ + x_0 - a a^+ x_0 a a^+$$

$$= ((a^+)^* a^* x_0 a) a^+ + x_0 - a a^+ x_0 a a^+$$

$$= a a^+ x_0 a a^+ + x_0 - a a^+ x_0 a a^+ = x_0.$$

Similarly, we have

$$a^* ((a^+)^* y_0 a^+ a) + y_0 - y_0 a^+ a$$

= $a^+ a a^* x_0 a + y_0 - y_0 a^+ a$
= $a^* x_0 a + y_0 - y_0 a^+ a = y_0$.

Hence the general solution of the equation (10) is given by the formula (11). \Box

Theorem 5.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{PI}$ if and only if the general solution of the equation (10) is given by

$$\begin{cases} x = pa^{+} + u - aa^{+}uaa^{+} \\ y = a^{+}p + z - za^{+}a \end{cases} \quad \text{where } p, u, z \in R.$$
 (12)

Proof. " \Longrightarrow " Assume that $a \in R^{PI}$. Then $a^+ = a^*$, it follows from Proposition 5.1 that the general solution of the equation (10) is given by the formula (12).

" \Leftarrow " Suppose the formula (12) is the general solution of the equation (10), then we have

$$a^*(pa^+ + u - aa^+uaa^+)a = (a^+p + z - za^+a)a^+a$$

this gives $a^*pa^+a = a^+pa^+a$ for each $p \in R$. Especially, we choose p = a, one yields $a^*a = a^+a$. Hence $a \in R^{PI}$. \square

Now we give the following equations.

$$a^*xa = yaa^+. (13)$$

$$a^+xa = ya^+a. (14)$$

$$a^{\dagger}xa = ya^{+}a. \tag{15}$$

Theorem 5.3. *Let* $a \in R^{\#} \cap R^{+}$. *Then*

- (1) $a \in R^{EP}$ if and only if the general solution of the equation (13) is given by the formula (11).
- 2) $a \in \mathbb{R}^{PI}$ if and only if the general solution of the equation (14) is given by the formula (11).
- 3) $a \in R^{SEP}$ if and only if the general solutions of the equation (15) is given by the formula (11).
- *Proof.* (1) " \Longrightarrow " Assume that $a \in R^{EP}$, then $aa^+ = a^+a$, this infers that the equation (13) is same as the equation (10). Hence the general solution of the equation (13) is given by the formula (11) by Proposition 5.1.
- \Leftarrow "Suppose that the general solution of the equation (13) is given by the formula (11), then $a^*(pa^+ + u aa^+uaa^+)a = (a^*p + z za^+a)aa^+$. Choosing z = 0 and $p = (a^\#)^*$, one obtains $a^+a = aa^\#$. Hence $a \in R^{EP}$.
- (2) " \Longrightarrow " Assume that $a \in R^{PI}$, then $a^+ = a^*$, this infers the equation (14) is same as the equation (10) and the formula (12) is same as the formula (11). Hence we are done by Theorem 5.2.
- " \Leftarrow " If the general solution of the equation (14) is given by the formula (11), then $a^+(pa^+ + u aa^+uaa^+)a = (a^*p + z za^+a)a^+a$. Choosing p = a, one yields $a^+a = a^*a$. Hence $a \in R^{PI}$.
 - (3) It is an immediate result of (1) and (2). \Box

References

- [1] A. Ben-Israel, T. N. E Greville, Generalized Inverses: Theory and Applications, 2nd. ed., Springer (New York, 2003).
- [2] R. E. Hartwig, Block generalized inverses, Arch. Rational Mech. Anal., 61(1976): 197-251.
- [3] D. Mosić, D. S. Djordjević, J. J. Koliha, EP elements in rings. Linear Algebra Appl., 431(2009): 527-535.
- [4] D. Mosić, D. S. Djordjević, Further results on partial isometries and EP elements in rings with involution, Math. Comput. Modelling, 54(1)(2011): 460-465.
- [5] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51(1955): 406-413.
- [6] Y. C. Qu, J. C. Wei, H. Yao, Characterizations of normal elements in ring with involution, Acta. Math. Hungar., 156(2)(2018): 459-464.
- [7] Y. C. Qu, H. Yao, J. C. Wei, Some characterizations of partial isometry elements in rings with involution, Filomat, 33(19)(2019): 6395-6399.
- [8] S. Z. Xu, J. L. Chen, J. L. Bentez, EP elements in rings with involution, Bull. Malays. Math. Sci. Soc. 42(2019): 3409-3426.
- [9] R. J. Zhao, H. Yao, J. C. Wei, Characterizations of partial isometries and two special kinds of *EP* elements, Czechoslovak Math. J., 70(145)(2020): 539-551.