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Abstract. This paper mainly is a natural continuation of “On Lupas-Jain Operators” constructed by
Bascanbaz-Tunca et al. (Stud. Univ. Babes-Bolyai Math. 63(4) (2018), 525-537) to approximate integrable
functions on [0, 00). We first present the weighted uniform approximation and provide a quantitative
estimate for integral generalization of Lupas-Jain operators. We also scrutinize the order of approximation
inregards to local approximation results in sense of a classical approach, Peetre’s K-functional and Lipschitz

class. Then, we prove that given operators can be approximated in terms of the Steklov means (Steklov
averages). Lastly, a Voronovskaya-type asymptotic theorem is given.

1. Introduction

In 1972, Jain [11] generalized the well-known Szdsz-Mirakyan operators by constructing the positive
linear operators given by

8 IR (nx + kB _ - k
Sh(H) () = kZ; —— "ﬁ)f(;), M

where f : [0,00) > R, n € N, x > 0and 0 < g < 1, with f may depend only on n. For some interesting
works related to Jain’s operators, we refer to [1], [2], [4], [8], [13], [15], [19] and references cited therein.
Moreover, numerous works meticulously collected by Agratini [3] which give a historical background on
Jain’s operators.

In 2015, Patel and Mishra [18] generalized Jain operators as a variant of the Lupas operators [12] defined
by

= (nx + kB) s k
=Y, e e ()

(2)

for real valued functions f on [0, o), where they assumed that

(nx +kB), =1, (nx +kp), = nx
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and (nx + kB), = nx (nx +kp) (nx + kp +1)...(nx + kf + k—1), k > 2. Another variant of operators (2) was
discussed by Patel in [17].

In 2018, Bagcanbaz-Tunca et al. [5] introduced the slightly different generalization of the Jain operators
just as

00

(=Y, ey g (), xe o) ®
k=0 :

and L} (f) (0) = £ (0) for real valued functions f on [0, c0), where 0 < < 1, f depending only on n. From 2015,
some paper’s related to Lupas-Jain operators [6], [16], [20] are contributed to literature of approximation
theory.

Motivated by these works, for the purpose of approximating integrable functions on [0, o0), we introduce
a new sequence of summation-integral type operators as

Difin) =D (N =1 Y1) [ st @
k=0
where L
li,k(x) _m (nx -; klk|+ Bi-1 (k)
sualt) =

and f : [0,00) — R is an integrable function such that Dﬁ( f;x) exists. Here, x € (0,0), 0 < f < 1 and

Dﬁ (f) (0) = f(0) for real valued functions.

The paper is organized as follows: The next section is devoted to preliminary results which are necessary
to prove main results. Then, our aim is to discuss the weighted and local approximation results, respectively.
The last section, we shall provide a Voronovskaya-type theorem, as well.

2. Preliminary Results

This section provides a quick overview on basic lemmas that will be necessary to prove the main results
presented in the paper.

Lemma 2.1. [6] For the Lupas-Jain operators L%, we have

LF (e; %) =1,

Levn =1,

thien) = * s

1 o) = s+ e+ S D)

o i D e

Depending on the above lemma, we can write the following lemmas for integral generalization of Lupas-Jain
operators.
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Lemma 2.2. Lete, (t) := t', r = 0,4. Then, integral generalization of Lupas-Jain operators D’ satisfy the followings:

D (eg; x) =1,

DY, (e1;%) =1 iﬁ + %,
g, X x(3p% — 68 +5) 2
D ST T
b X3 6(P-28+2)  x(11p—44F° + 7867 - 626+29) 6
DR St g 1= pF Y
o ox 206 -108+11)  x%(356* — 1406° + 2706 — 2366 + 131)
S ey Ty 21—
2x(25p° — 1508° + 4108* — 6108° + 5688 — 2868 + 103) 24
+ n3(1 — 5)7 + F

Proof. Remembering the definition of Gamma functions, we possess

* (T Ltk T(k+r+1) B
L Sn,k(t)tydt = L e Ttydt = W, r= O, 1,2, (5)
Using Lﬁ (eg;x) =1 and L/:, (e1;x) = 1 :B

sl 0o oo 1
D (eo;x)=n ) I (x) f Sut =n )| Zﬁ,k(x); -1,
k=0 0 k=0

S|

. °° . k+1 1 x
D) =n) 1 () fo et =1 ) 1, ()= 5 = L o) + L i) = 7 +
k=0 k=0

Hence, the 2nd, 3rd and 4th moments can be obtained similarly. [

Lemma 2.3. Given Df((t —x),x),r=1,2,4. Then the following relations are satisfied.

—_

Brr_ voxy— P
Dt — x;x) “1-p +
202 2 3 _ 3 2 3
Dh((t = x)% %) =(1x_ﬁﬁ)2 + el i(l _l;): ) + % = Ah(), (6)
gt 2382(2B% — B2 —4B+9)  x2(12B° —28B° — 5% + 1088% — 11082 + 568 + 27)

a-pf " ad-pp (1 - p)

2x(1287 — 59B° + 102p° — 108* — 1908° + 3162 — 2028 +91) 24
+ n3(1 — ‘8)7 + g

DE((t - x)%x) =
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Remark 2.4. One should note that, for 0 < <1,
2 3> —68+5
2 xCGF-6+5) 2

a—p2 " a(-pr
_x%n® + nx(1 - P)(3F> — 6B +5) +2(1 - B)° + n*(1 - B)°

Di( +1;x) =

n(1-p)?
0+ ) [ «? N 8x . 2 1
TA-BR[1+x2 n(1+x?) n?(1+x?)
(1 +x2) 21 )
_(1 5)3[2+ +ﬁ]_M"(1+x)’
1 8§ 2
where M, = m [2 + E E]

Remark 2.5. We need to make an adjustment to the parameter B by taking it as a sequence such as that p = p,, 0 <
Bn <1, limy_c0 Bn = 0and lim,_,. nf, = 0. Based on the central moments the following limits hold for f = {Bu}ns1.

,}E?o n(Df”(t - X; x)) =1,

lim (D} (¢ = 2% 2) =
and

lim n?(Dly (t - x)%;x)) = 2722,
Lemma 2.6. For f € Cg[0, o) (space of all real valued, bounded and continuous functions on [0, 00) endowed with
the norm || Il = supl| f(x)] : x € [0, 00)}), then IDL(AI < IIfll

Proof. From definition of operators (4) and Lemma 2.2, the proof of this lemma easily follows. [

3. Weighted Approximation

In this section, we deal with the weighted uniform approximation result of integral generalization of

the Lupas-Jain operators Dg by using Gadjiev’s theorem in [9], for which we have the following settings:
We take @ (x) = 1 + x? as the necessary weight function. Related to ¢, we take the space

By(R*) ={ f: R* - R:|f(x)| < My (x), x € R¥),

where R* := [0,00) and My is a constant depending on f. B,(IR*) is a normed space with the norm
“ f || =su p é (x)| Moreover, we denote, as usual, by C,(IR"), Cﬁ,(]R*) , U’;(lR*) the following subspaces of

B (]R*)

Cy(R") = {f € B,(R"): fis continuous} ,

" " ()
Ck(lR :{feC(p(IR) }1_1)1(}0(];(@ kf},
U,(RY) = { feCu(RY): % is uniformly contmuous}
" + f®)
US(RY) = {fe Up(R*) : lim = 0 o0 _kf},

respectively, where k; is a constant depending on f. It is clear that ck »(R7) € Up(RY) € Cyp(IR™) € By(RY).
We have the following two results due to Gadjiev in [9]:
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Lemma 3.1. The positive linear operators T,, n > 1, act from C,(IR") to B,(IR*) if and only if
[T () ()] < Kngp(),
where K,, is a positive constant.

Theorem 3.2. Let (T}, be a sequence of positive linear operators mapping C,(R*) into B, (IR") and satisfying the
conditions

’}1_1;1;10 ”Tn (ei) - ei“(p = 0/ fori = 0/ 1/ 2.
Then for any f € Cl(R*), we have

lim |[T. () - £]],, = 0.

n—oo

Here, we consider weighted approximation for integral generalization of Lupas-Jain operators Dﬁ acting
on C,(R*).
4

Theorem 3.3. Let {8}
have

be a sequence such that 0 < B, < 1 and lim,_,« B, = 0. Then for each f € C’(;)(]R+) we

n>1

lim ’
n—oo

D ()-f =0

Proof. According to Lemma 2.2, Lemma 3.1 and Remark 2.4 the operators Dﬁ" act from C,(IR") to B,(IR*).
Now, it is enough to show the sufficient conditions of the Theorem 3.2 for Dg". We obtain

lim ”Dﬁ" (60) — € =0
n—oo (]
and
5 X 1
. O N = AT T
" — < D ——— + —
[P e =el, = o0 = e <

which gives

D'f," (61) — € =0.

()

lim |
n—oo

Finally,

g DY (e2) - €2|
D ) - e <
n (e2) —e B e

1 [ 22 +x<3ﬁ%—6ﬁn+5>+g_xz]

=su
e | 1+ 22 1-B) n(1-g)*

_ ¥ 2Bu—fi x 3-6p+5 2
<eR* 1+x2(1_,3n)2 1+ x? n(l—ﬁn)3 n2

2B, —p% 3B2—6B,+5
_2Bi-B 3H-6p+5 2

- (1- ﬁn)z n(l- 511)3 n?

which obviously gives us

lim

n—oo ’

Dl (&) - eof| =0.
P
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4. A Quantitative Estimate

Now, we would like to show that the constructed operators are discussed linked with a uniform
convergence and a quantitative estimate.

In 2008, Holhos [10] represented a paper which includes some quantitative estimates in weighted spaces
by proposing a new modulus of continuity. Now, we will give some notifications by his pioneering work.

For each f € Cy,(IR") for every 6 > 0 for all x € [0, o0) defined the weighted modulus of continuity as

F(t) - f)|

su .
Bt ST )
lp(t)-p()|<5

wp(f,0) =

We have to keep in mind that w,(f,0) = 0 for every f € C,(R") and also w,(f,0) is a nonnegative and
increasing function with respect to 6 for f € C,(IR"). The above weighted modulus of continuity is defined
in [10] for the unbounded strictly increasing continuous function p : R* — IR* such there exist M > 0 and
a € (0,1] with the property

Ix — yl < Mlp(x) — p(y)|* for every x,y > 0.

Here we consider the p(x) = x. Using the properties of w,(f, 6) which is showed in [10] elegantly, Holhog
gave the following theorem and remark.

Theorem 4.1. [10] Let {L,},>1 be a sequence of positive linear operators mapping Co,(R*) into B,(R*) with
L (") =], =
”Ln (P) - PH(Pl/z =b,
Lo(¢?) =7, = o

Ly (P3) - P3 =d,,

(P3/2

where ay,, by, ¢, and d,,, tend to zero as n goes to the infinity. Then
[En () = e < 7 + 40 + 2e0)0,(£560) + | £]], 2
forall f € C,(RY), where

Ou = 24/(ay +2b, + c,)(1 + a,) + a, + 3b, + 3¢, + d,..
Remark 4.2. Under the conditions of the Theorem 4.1 and using the fact lims_ow,(f;0) = 0, we have

1}1_%10 ”Ln (f) - f”(pwz =0
forall f € lll;m(lR*),

Theorem 4.3. Let 0 < B, < 1, limye Br = 0, limy—e0 1B, = 0 and {Dﬁ”}neN be a sequence of positive linear
operators. Then for all f € C,(IR"), we have

B v ~267 +4Bn 6 - 12, +10 2 ] _
[ov -1 WS[” A-p | na-py )
where
1/2
5:=5n:2[ 28, +—ﬁ§+2ﬁ;+3ﬁ,%—6ﬁn+35+2(n:1)] L 36 +—3ﬁ§+6§n+ﬁg—3ﬁﬁ+jﬁn
1=pn (1-Bn) n(1-pBu) n 1=pn (1-Bn) (1-Bn)

N 9ﬁ% - 186, + 15 N 6[3% - 126, + 12 N 11ﬁ3 - 44ﬁ§, - 78ﬁ% - 626, +29 N 3(n+ 1)2
n(l- ﬁn)3 n(l- ﬁn)4 n?(1- ﬁn)5 no
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Proof. From Lemma 2.2 and selecting ¢ (x) = 1 + x2, p(x) = x for Theorem 4.1, one can be written

a, = ||DY (PO) -0’ , =0,

(PO

Pn_ 1

+ =
n

<
P2 1- ﬁn

= || (+7) - 7 Bty 3F-6put5 2
P

by = Dgn (p)-p

T A=)t n(-gy):

and
- B3 —3B% + 3B, . 682 — 128, + 12 . 1184 — 4483 — 7862 — 62B,, + 29 L6
P (1= ) n(l-pa) n2 (1= Ba) n

Since limy, e B = 0 and lim,,, 1B, = 0., it is clear that a,, by, ¢, and d,, tend to zero as n goes to the infinity.

Lastly, choosing 6 := 6,
4B, - 282 6B —128,+10
| c[rs o2, 110 2
v (1= Bn) n(1=pn) "

Hence, the proof is completed. O

o = |

pP ( p3) _

D (f) - f

]wp(f/ 61’!)/

Remark 4.4. Let 0 < B, < 1such that lim, ., B = 0. Then depending on the Remark 4.2 for all f € U’; 52 (IRT), we
possess

Dy (f) - f

lim | =0.
n—o0 ({)3/2

5. Local Approximation Results

By C3[0, o), we denote the class of real valued, bpunded and uniformly continuous functions defined on
[0, 00) with the norm ||f]| = SUP,¢[0,00) |f(x)|. For f € Cp[0, 00) and 6 > 0 the m-th order modulus of continuity
is defined as

wn(f,6) = sup sup |Af(x)

0<h<6x€[0,00)

7

where A" is the forward difference given by [7] (Chapter 2, p. 40-44). In case m = 1, we mean the usual
modulus of continuity denoted by w(f;6). The Peetre’s K-functional of the function is defined by

K (f,8):= inf - s’ I,
2(f, 0) geleﬂO,oo){”f gll + ollg”1l}

where
C%[Ol OO) = {!] € CB[O/ OO) : !7,/ !]N € CB[O/ OO)}

The following inequality

Ka(f,6) < M{ws(f, Vo)) )

is valid, for all 6 > 0 [7]. The positive constant M is independent of f and 6 (for detailed reading see [7]).
For f € Cg[0, o0), the Steklov mean is defined as

12 )2
fulx) = % fo fo [2f e+ 1+ 0) = fx +2(u + v))|dudo (8)

and verifies the following inequalities:
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(@) 11 —fII < wa(f, h),
(ii) f;, f; € Cl0,00) and Iffll < Fw(f, ), If;/ll < ewa(f, h).

Theorem 5.1. Let f € Cp[0,00),1n € N,0 < < 1and x € [0, o). Then for the operators DY, we possess

Di(f;x) = f9)] < 20(£,0),

where O := \Mﬁ(x) and /\ﬁ(x) are defined as (6).

Proof. By using Lemma 2.3 and recognizing the following property of modulus of continuity

2
76 - ﬂm<wq®( x)+q,
we obtain

DA - £ < DA - @) < w(f,0) (1 + 55D — 2750,
Lastly, choosing 0 := \Mﬁ (x), so

Hence, the proof is completed. O

(50 - F00| < 207, 0).

Theorem 5.2. Let f € Cp[0, ) and 0 < B < 1. Then for every x > 0, the following inequality holds

50— 0] < 5, YA + S, YA

where /\ﬁ(x) is defined as (6).

Proof. Applying the Steklov mean f;, that is given by (8), we obtain

() - f00| < DA - fi A = 0|+ 1) = f@L. ©)

;X) +

Also

CATER) WA NEROTIOI ] (10)

k=0

Using property (i) of Steklov mean and (10)
Di(f = fili2) < IIf = fill < wa(f, h).

By Taylor’s expansion and Cauchy-Schwarz inequality, we possess

A = 09| < WA DIE = 0750 + SIFIDACE = x50,

By Lemma 2.3 and property (ii) of Steklov mean, we obtain

w2 (f, AL ().

i = i 0] < Swlf AN + 5o

Lastly, choosing h = \/)\ﬁ(x) and substituting the values of the above estimates in (9), then the proof is
ended. O
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Theorem 5.3. Let f € Cp[0, ) and n > 1

DA (f30) = FI < Can(f, Noh() + (£, —)

By 22282 xn(4p® - 7% + 28 + 3) 3
where 6,,(x) = [(1 5 + 20—y + n2]'

Proof. We introduce an auxiliary operators Dﬁ : Cp[0, 00) — Cg[0, o) as follows

X
5"

These operators are linear and preserve linear functions in view of Lemma 2.3. Let g € C3[0,0) and x,
t € [0, 00). By Taylor’s expansion

D) = Dlfin) - A5+ 5) + F @)

t
90 = g() + (- 1) () + f (t - wyg" ()

)

we have

IDfg5) - g <D

¢
f (t—u)g” (u)du, x

B 7" ﬁ+% X 1 7"
SDn( —u)g” (u)du, x ) + (1 5 + - - u)g (u)du
B 2, 1x ’
<DL =Pl 1+ (5 + 3 =)
Next, using central moments of operators, we have
B X 1 ’7
D420~ g1 <[l =20+ (72 + 1Y i
22 x(2%-3p*+3) 2 X 1\
o 2P X +—2+(—ﬁ =) g
L(1-p) n(l-p) 2 \1=p n
r2x2B2 xn(4B® — 7B + 2B+ 3)
o 2P G I 2T —2]||g"||. (12)
L(1-P) n*(1-p) n
On the other hand, relying on the Lemma 2.6 for f € C3[0, ) and x € [0, ),
DA < NIl
Now, for the operators Dﬁ, we possess,
ID5(f3: 91 < ID(f3 11+ 21£11 < 3l (13)

Combining (12) and (13), we can write

IDI(f:2) - £ <IDIF = 9520 = (f = 91 + D)~ g+ |f{ 5 + 1) - £

2x2p? 4% — 782 + 28 +3
il =i+ [ s + P S - A+ )
2x23? 48% - 782 + 28 +3
SC{“f—g” + (191‘2)2 + XT’Z( ﬂ (1ﬁ ;_)Bﬁ + ) ]”g//”} (f/ﬂ + 1)

Taking infimum over all g € C3[0, 0), and using the inequality (7), we get the desired assertion. [J
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A necessary definition for the following theorem belongs to Lipschitz type space. A Lipschitz type space
with two parameters 1; > 0 and 1, > 0 is defined as [14]

— x|t
LipM™) (u) = { f e Cal0,00) : 1f(H) - f(x)] < M— =2 T e, oo)}
t+ mxz + 7]29(7)

where M is any positive constantand 0 < p < 1.

Theorem 5.4. Let f € Lip;?’m)(y). Then, we have

Apx) |2
mxz + T]zX) ’

D) - f < M
Proof. Let us first consider the case y = 1. We can write

DR (Fix) — Fol < DA  Faopis) <MD=
IDu(f;%) = fOl < Du(If(1) = f(x)];x) < (mx)

, the Cauchy-Schwarz inequality and applying Lemma

1 1
<

Using the fact that <
\/t + 7‘[13(2 + 1px \/mxz + 1px

23
1

\VMmx? + nox

M (Dﬁ((t—x)z;x))l/ZSM(n M) )“2

<— —_—nv7
VM2 + mx 1% + 12X

Thus, the assertion holds for the case y = 1.

IDA(f; %) = f() < M D1t - x; x)

Let us now take 0 < p < 1. Then, using the Holder inequality for p = % and g = and considering

Lemma 2.3 we obtain

i) - fl <0 Y 6,0 [ s,at010 - o
k=0 0

0 00 /2 R 00 2-p)/2
(Y00 f sux (170 ~ ™) (n Y 1 f sut)
k=0 0 k=0 0
i © (t - x)? w2
SM(nkZ:(;ln,k(x) fo k) G 2+n2x)dt)
M

B 2. ak
SW(DH((t - x) ,x))

i ﬁﬁ(x) )*‘/2'
mxs + 1n2x

This concludes the proof. [

Remark 5.5. One of the crucial remark is that we have investigated the local approximation results between Theorem

5.1 to Theorem 5.4. Therefore, we indicate that )\ﬁ and 65 tend to zero when taking f = f,0 < B, <1, lim, 00 B, =0
and lim,,_,., B, = 0. Otherwise, these theorems just stand an inequality or an estimate.
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6. A Voronovskaya type theorem
Now, we will analyze the asymptotic behavior of given operators D with Voronovskaya type theorem.

Theorem 6.1. Let 0 < f, < 1, such that lim,_,. f, = 0 and lim,,_,., 1B, = 0. Also let f be a bounded integrable
function on [0, 00) and f', f"" exists at a point x € [0, co) then

lim n(DyY (f5) = f) = f(3) + 3xf" (x).

Proof. By the Taylor’s expansion, we have

£ = F6)+ F 0 =) + 370 - 07 + 016, 1)t~ 27

where o(t, x) belongs to Cg[0, o0). Taking into account the linearity of the operators, we apply the operators
Dﬁ” to both sides of the above Taylor’s expansions to get

n(DYy (fi) = f) = Dy (£ = 520 () + SDY (£ = 0%)f () + nD} (ot x)(¢ = x)% ) (14)

After applying the Cauchy-Schwarz inequality to the third term of the right hand side of (14), we find

n|DE ot 2)(¢ — 2P| < (2B (¢~ 0% ) (DF (02t x;)

which yields,
lim (DY (f;%) - f(x)) < lim nDE(t— x; ) f(x) + lim gDﬁ"((t - 0% 0" (x)
+ lim (2Df (¢ - ) )" lim (D} (6%t ) )",
Hence, from Lemma 2.3,

Tim (D (f5) = () < f(0)+ 3f7(3) + 2722 lim (D (021, 03 )

Let us take &(t,x) := 0%(t,x). Then, we observe that &(x,x) = 0 and &(t,x) € Cg[0,00). Thus, we get
1/2 1/2
im0 (Dﬁ” (&(t, x); x)) / = 0. Here, as lim,,_, (Dﬁ" (&(t, x); x)) / = 0, we have to notice that:
"Let f € Cg[0,00) and f = {Buln>1 be a sequence such that 0 < B, < 1 and lim,»pfy = 0, then

limy, e Dﬁ( f;x) = f(x) uniformly compact subset on [0, o) where Cg[0, 00) be the space of all real valued
continuous bounded functions f defined on [0, c0).”
Finally,

lim n(D}! (£;2) = f) = £/(x) +3xf" (),

we get the assertion of theorem. [J
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