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Abstract.
In this paper, we investigate the spectrum of the self adjoint operator L defined by

L := (−1)r d2r

dx2r + A + Q(x),

where A is a self adjoint operator, Q(x) is a nuclear operator in a separable Hilbert space, and we derive
asymptotic formulas for the sum of eigenvalues of the operator L.

1. Introduction

The theory of regularized traces of differential operators began with the study of Gelfand and Levitan [12].
They calculated the trace formula for the sum of substraction of eigenvalues of two self adjoint operators.
After this primary work, many mathematicians concentrated on this theory in a large scale.
Dikiy [13], Halberg and Kramer [4], Levitan [2] and some others studied the regularized traces of scalar
differential operators. The list of works on the subject was given in the works Levitan and Sargsyan [3] and
Fulton and Pruess [16], but a few of these works were about the regularized trace of differential operators
with operator coefficient. Chalilova [15] calculated regularized trace of Sturm Lioville operator with
bounded operator coefficient. Adıgüzelov [5] computed regularized trace of the difference of two Sturm-
Liouville operators with bounded operator coefficient given in the semi-axis. Maksudov, Bayramoglu and
Adıgüzelov [10] found a formula for the regularized trace of Sturm-Liouville operators with unbounded
operator coefficient under the Dirichlet boundary conditions. Bayramoglu and Adıgüzelov [14] obtained
the regularized trace of second order singular differential operator with bounded operator coefficient.
Furthermore Adıgüzelov and Baks.i [6], Adıgüzelov and Sezer [7], [8] and Sen, Bayramov and Orucoglu [9]
investigated the regularized trace formulas of differential operator with operator coefficient.
Although most of the previous researches on the subject dealt with regularized trace of second order
differential operators, we focused on higher order differential operators. It is clear that our study advances
the formulation of regularized trace that the prior manuscripts has proved. This paper aims to explore the
second regularized trace of higher order differential operators with operator coefficient.
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Let us begin by recalling some definitions and properties:
Let H be an infinite dimensional separable Hilbert space. We denote the inner products in H by (., .) and
the norm in H by ‖.‖. Let H1 = L2(0, π; H) denote the set of all functions f from [0, π] into H which are

strongly measurable and satisfy the condition
∫ π

0

∥∥∥ f (x)
∥∥∥2

dx < ∞.The space H1 is a linear space. If the inner

product of arbitrary two elements f and 1 of the space H1 is defined as ( f , 1)H1 =
∫ π

0

(
f (x), 1(x)

)
dx, then H1

becomes an infinite dimensional separable Hilbert space [1]. The norm in the space H1 is denoted by ‖.‖1.
σ∞(H) denotes the set of all compact operators from H to H. If T ∈ σ∞(H), then T∗T is a nonnegative self
adjoint operator and (T∗T)

1
2 ∈ σ∞(H) [11]. Let the nonzero eigenvalues of the operator (T∗T)

1
2 be {s j}

k
j=1

(0 ≤ k ≤ ∞) such that s1 ≥ s2 ≥ ... ≥ sk according to its multiplicity number. Since (T∗T)
1
2 is non negative,

sk’s are positive numbers. The numbers sk are called s-numbers of the operator T. If k < ∞, then s j = 0
( j = k + 1, k + 2, ...) will be accepted. s-numbers of the operator T are also denoted by s j(T) ( j = 1, 2, ...). Here
s1(T) = ‖T‖.
If T is a normal operator, then s j(T) = |λ j(T)| ( j = 1, 2, ..., k) [11]. Here, {λ1(T), λ2(T), ..., λk(T)} is an ordering
of all nonzero eigenvalues of the operator T according to |λ1(T)| ≥ |λ2(T)| ≥ ... ≥ |λk(T)|. σp or σp(H) denotes

the set of all compact operators, the s-numbers of which satisfy the condition
∞∑
j=1

sp
j (T) < ∞ (p ≥ 1). The set

σp (p ≥ 1) is a separable Banach space with respect to the norm ‖T‖σp(H) =

[
∞∑
j=1

sp
j (T)

] 1
p

, for T ∈ σp(H) [11].

σ1(H) is the set of all operators T ∈ σ∞(H), the s-numbers of which satisfy the condition
∞∑
j=1

s j(T) < ∞ . If an

operator belongs to σ1(H), then it is called a nuclear operator. If the operators T ∈ σp(H) and B ∈ B(H), then
TB,BT ∈ σp(H) and ‖TB‖σp(H) ≤ ‖B‖‖T‖σp(H), ‖BT‖σp(H) ≤ ‖B‖‖T‖σp(H).

If T is a nuclear operator and {e j}
∞

j=1 ⊂ H is any orthonormal basis, then the series
∞∑
j=1

(
Te j, e j

)
is convergent

and the sum of the series does not depend on the choice of the basis {e j}
∞

j=1. The sum of this series is said to
be matrix trace of the operator T denoted by trT. Moreover

trT =

ν(T)∑
j=1

λ j(T)

[11]. Here, each eigenvalue counted according to its algebraic multiplicity number. ν(T) denotes the sum

of algebraic multiplicity of non-zero eigenvalues of the operator T [11]. The sum of the series
ν(T)∑
j=1
λ j(T) is

called spectral trace of the operator T.
Now, let us return to our problem. Consider the differential expression

`0(y) = (−1)ry(2r)(x) + Ay(x)

in the space H1 = L2(0, π; H). Here, the densely defined operator A : D(A) → H satisfies the conditions
A = A∗ ≥ I (I is unit operator in H) and A−1

∈ σ∞(H). Let {γn}
∞

1 be an ordering of all eigenvalues of A
according to γ1 ≤ γ2 ≤ · · · ≤ γn ≤ · · · and ϕn the corresponding orthonormal eigenfunctions. Here, each
eigenvalue counted according to its multiplicity number.
Let D0 be a subset of the space H1 . A function y(x) ∈ D0 , if y(x) satisfies the following conditions:
(y1) y(x) has continuous derivative of the (2r)th-order with respect to the norm in the space H for every
x ∈ [0, π] ,
(y2) Ay(x) is continuous with respect to the norm of the space H on [0, π] ,
(y3) y′ (0) = y′′′ (0) = · · · = y(2r−1)(0) = y(π) = y′′ (π) = · · · = y(2r−2)(π) = 0 (r = 1, 2, . . . ,m).
Here, D0 = H1 . Define the linear operator L′0 : D0 → H1 as L′0y := `0(y).
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The construction above gives that L′0 is symmetric. The eigenvalues of L′0 are
(
k + 1

2

)2r
+γ j (k = 0, 1, 2, . . . ; j =

1, 2, . . .) and
√

2
πϕ j cos

(
k + 1

2

)
x the corresponding orthonormal eigenvectors.

We can see that the orthonormal eigenvector system of the symmetric operator L′0 is an orthonormal basis
in the space H1. We denote the closure of L′0 by L0 : D(L0)→ H1 . Since the orthonormal eigenvector system
of the operator L′0 is an orthonormal basis in the space H1, L0 is a self adjoint operator.
Let Q(x) defined on [0, π] be an operator function satisfying the following conditions:
(Q1) Q(x) has weak derivative of (2r + 2)th order and
Q(2i+1)(0) = Q(2i+1)(π) = 0 (i = 0, 1, 2, . . . , r)
(Q2) Q(i)(x) : H→ H (i = 0, 1, 2, . . . , 2r+2) are self-adjoint operators for every x ∈ [0, π], AQ′′(x),Q(2r+2)(x) ∈
σ1(H) and the functions ‖AQ′′(x)‖σ1(H), ‖Q(2r+2)(x)‖σ1(H) are bounded and measurable in the interval [0, π] .
Define the operator L : D(L0)→ H1 as follows

L = L0 + Q.

The operators L0 and L are self adjoint operators and have purely discrete spectrum [6]. We denote the
resolvent sets of L0, L by ρ(L0), ρ(L) and the resolvent operators of L0, L by R0

λ = (L0 −λI)−1 , Rλ = (L−λI)−1,
respectively. Also, we denote the eigenvalues of the operators L0 and L by {µn}

∞

1 and {λn}
∞

1 satisfying the
inequalities µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · and λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .
If γ j ∼ ajα (a > 0, 0 < α < ∞) as j→∞, then

µn, λn ∼ d1n
2rα

2r+α , (1.1)

as n → ∞ [7]. Here, d1 is a positive constant. By using the asymptotic formula (1.1), there exists a
subsequence np of positive integers such that

µq − µnp ≥ d2

(
q

2rα
2r+α − n

2rα
2r+α
p

)
, (q = np + 1,np + 2, . . .)

where d2 is a positive constant.
In the work [8], the formula in the form

lim
p→∞

np∑
q=1

[
λq − µq −

1
π

π∫
0

(
Q(x)ϕ jq , ϕ jq

)
dx

]
=

1
4

(
trQ(0) + trQ(π)

)
−

1
2π

π∫
0

trQ(x)dx

is obtained for the first regularized trace of the operator L. In this present work, we find a formula in the
form

lim
p→∞

np∑
q=1

(
λ2

q − µ
2
q − 2

m∑
s=2

(−1)ss−1Resλ=µq tr
[
λ(QR0

λ)s
]
−

2µq

π

π∫
0

(
Q(x)ϕ jq , ϕ jq

)
dx

)

= (−1)r2−1−2r
[
trQ(2r)(0) − trQ(2r)(π)

]
+

1
2

[
trAQ(0) − trAQ(π)

]
. (1.2)

The left hand side of equality (1.2) is called the second regularized trace of the differential operator L.

2. Main Results

The main purpose of this section is to obtain the second trace formula for the operator L. Now, we find the
relations between resolvents and eigenvalues of the operators L0 and L.
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If α > 2r
2r−1 and λ , λq, µq (q = 1, 2, ...), then by (1.1), R0

λ and Rλ are trace class operators. Hence

tr(Rλ − R0
λ) = trRλ − trR0

λ =

∞∑
q=1

( 1
λq − λ

−
1

µq − λ

)
.

If this equality is multiply with λ2

2πi and integrated on the circle |λ| = bp = 1
2 (µnp + µnp+1) , then we have

following equality

1
2πi

∫
|λ|=bp

λ2tr
(
Rλ − R0

λ

)
dλ =

1
2πi

∫
|λ|=bp

∞∑
q=1

(
λ2

λq − λ
)dλ −

1
2πi

∫
|λ|=bp

∞∑
q=1

(
λ2

µq − λ
)dλ. (2.1)

We can see that for the large values of p,

{λq, µq}
np

1 ⊂ B(0, bp) = {λ : |λ| < bp}

λq, µq < B[0, bp] = {λ : |λ| ≤ bp} (q ≥ np + 1).

Therefore by (2.1), we have

np∑
q=1

(
λ2

q − µ
2
q

)
= −

1
2πi

∫
|λ|=bp

λ2tr
(
Rλ − R0

λ

)
dλ. (2.2)

This is well known formula for the resolvents of the operators L0 and L:

Rλ = R0
λ − RλQR0

λ (λ ∈ ρ(L) ∩ ρ(L0)).

By using the last formula, we obtain

Rλ − R0
λ =

m∑
s=1

(−1)sR0
λ(QR0

λ)s + (−1)m+1Rλ(QR0
λ)m+1,

for every positive integer m. By (2.2) and the last equality, we have

np∑
q=1

(
λ2

q − µ
2
q

)
=

1
2πi

∫
|λ|=bp

λ2tr
( m∑

s=1

(−1)s+1R0
λ(QR0

λ)s + (−1)mRλ(QR0
λ)m+1

)
dλ

or
np∑

q=1

(
λ2

q − µ
2
q

)
=

m∑
s=1

Dps + D(m)
p . (2.3)

Here,

Dps =
(−1)s+1

2πi

∫
|λ|=bp

λ2tr
(
R0
λ(QR0

λ)s
)
dλ, (s = 1, 2, ...) (2.4)

D(m)
p =

(−1)m

2πi

∫
|λ|=bp

λ2tr
(
Rλ(QR0

λ)m+1
)
dλ. (2.5)
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Theorem 2.1. If γ j ∼ ajα (0 < a, α > 2r
2r−1 ) as j→∞ , then

Dps =
(−1)s

πis

∫
|λ|=bp

λtr
(
(QR0

λ)s
)
dλ (s = 1, 2, ...).

Theorem 2.2. If the operator function Q(x) satisfies the conditions (Q1) and (Q2), then the series

∞∑
k=0

∞∑
j=1

(
(k +

1
2

)2r + γ j

) π∫
0

(Q(x)ϕ j,ϕ j) cos((2k + 1)x)dx

is absolutely convergent.

We are at the position to give the main result:

Theorem 2.3. If the operator function Q(x) satisfies the conditions (Q1) , (Q2) , and γ j ∼ ajα as j → ∞ (a >
0, 2r

2r−1 < α) , then we have

lim
p→∞

np∑
q=1

(
λ2

q − µ
2
q − 2

m∑
s=2

(−1)ss−1Resλ=µq tr
(
λ(QR0

λ)s
)
−

2µq

π

π∫
0

(Q(x)ϕ jq , ϕ jq )dx
)

= (−1)r2−1−2r
(
trQ(2r)(0) − trQ(2r)(π)

)
+

1
2

(
trAQ(0) − trAQ(π)

)
,

where m =
⌊

2rα+6r+3α
2rα−2r−α

⌋
. Here, b.c shows the greatest integer function whose value at any number x is the greatest

integer less than or equal to x.

3. Proofs

Proof of Theorem 1. We can show that the operator function (QR0
λ)s is analytic with respect to the norm in

the space σ1(H1) in the region ρ(L0) and

tr
(
[(QR0

λ)s]′
)

= str
(
(QR0

λ)′(QR0
λ)s−1

)
, (QR0

λ)′ = Q(R0
λ)2.

Therefore, we have

tr
(
[(QR0

λ)s]′
)

= str
(
R0
λ(QR0

λ)s
)
.

From (2.4) and the last equality we obtain

Dps =
(−1)s+1

2πis

∫
|λ|=bp

λ2tr
([

(QR0
λ)s

]′)
dλ.

We can also write the last formula in the following form:

Dps =
(−1)s+1

2πis

∫
|λ|=bp

tr
([
λ2(QR0

λ)s
]′
− 2λ(QR0

λ)s
)
dλ

=
(−1)s

πis

∫
|λ|=bp

λtr
(
(QR0

λ)s
)
dλ +

(−1)s+1

2πis

∫
|λ|=bp

tr
(
[λ2(QR0

λ)s]′
)
dλ. (3.1)
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We can see

∫
|λ|=bp

tr
([
λ2(QR0

λ)s
]′)

dλ =

∫
|λ|=bp

[
tr
(
λ2(QR0

λ)s
)]′

dλ. (3.2)

We write the right hand side of above equality in the following way:

∫
|λ|=bp

[
tr
(
λ2(QR0

λ)s
)]′

dλ =

∫
|λ|=bp
Imλ≥0

[
tr
(
λ2(QR0

λ)s
)]′

dλ +

∫
|λ|=bp
Imλ≤0

[
tr
(
λ2(QR0

λ)s
)]′

dλ. (3.3)

Let ε0 be a positive number satisfying the inequality bp + ε0 < µnp+1.

We consider that the function tr
(
λ2(QR0

λ)s
)

is analytic in the simply connected regions:

G1 = {λ : bp − ε0 < |λ| < bp + ε0, Imλ > −ε0},

G2 = {λ : bp − ε0 < |λ| < bp + ε0, Imλ < ε0}

and

{λ : |λ| = bp, Imλ ≥ 0} ⊂ G1,

{λ : |λ| = bp, Imλ ≤ 0} ⊂ G2.

By using the Leibnitz Formula and (3.3), we get

∫
|λ|=bp

{
tr
(
λ2(QR0

λ)s
)}′

dλ

= tr
(
b2

p(QR0
−bp

)s
)
− tr

(
b2

p(QR0
bp

)s
)

+ tr
(
b2

p(QR0
bp

)s
)
− tr

(
b2

p(QR0
−bp

)s
)

= 0. (3.4)

From (3.1), (3.2) and (3.4), we have

Dps =
(−1)s

πis

∫
|λ|=bp

λtr
(
(QR0

λ)s
)
dλ.�

Proof of Theorem 2. Let h j(x) = (Q(x)ϕ j,ϕ j). Using the integration by parts formula and the condition (Q1),
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we get
π∫

0

h j(x) cos((2k + 1)x)dx =

π∫
0

h j(x)
( 1
2k + 1

sin(2k + 1)x
)′

dx

=
1

2k + 1

[
h j(x) sin((2k + 1)x)

∣∣∣∣π
0
−

π∫
0

h′j(x) sin((2k + 1)x)dx
]

=
1

(2k + 1)2

π∫
0

h′j(x)
(
cos(2k + 1)x

)′
dx

=
1

(2k + 1)2

[
h′j(x) cos((2k + 1)x)

∣∣∣∣π
0
−

π∫
0

h′′j (x) cos((2k + 1)x)dx
]

= −
1

(2k + 1)3

π∫
0

h′′j (x)
(
sin(2k + 1)x

)′
dx

= .... =
(−1)r+1

(2k + 1)2r+2

π∫
0

h(2r+2)
j (x) cos((2k + 1)x)dx. (3.5)

By (3.5), we find

∞∑
k=0

∞∑
j=1

∣∣∣∣((k +
1
2

)2r + γ j

) π∫
0

h j(x) cos((2k + 1)x)dx
∣∣∣∣

≤

∞∑
k=0

∞∑
j=1

(2k + 1)−2

π∫
0

(∣∣∣∣h(2r+2)
j (x)

∣∣∣∣ + γ j|h′′j (x)|
)
dx

=

∞∑
j=1

π∫
0

(∣∣∣∣(Q(2r+2)(x)ϕ j,ϕ j)
∣∣∣∣ + |(AQ′′(x)ϕ j,ϕ j)|

)
dx

∞∑
k=0

(2k + 1)−2

≤ Const.

π∫
0

( ∞∑
j=1

∣∣∣∣(Q(2r+2)(x)ϕ j,ϕ j)
∣∣∣∣ +

∞∑
j=1

|(AQ′′(x)ϕ j,ϕ j)|
)
dx

≤ Const.

π∫
0

(∥∥∥∥Q(2r+2)(x)
∥∥∥∥
σ1(H)

+ ‖AQ′′(x)‖σ1(H)

)
dx. (3.6)

Since the functions ‖Q(2r+2)(x)‖σ1(H) and ‖AQ′′(x)‖σ1(H) in (3.6) are measurable and bounded in the interval
[0, π], we get

∞∑
k=0

∞∑
j=1

∣∣∣∣∣∣[(k +
1
2

)2r + γ j]

π∫
0

(Q(x)ϕ j,ϕ j) cos((2k + 1)x)dx

∣∣∣∣∣∣ < ∞.�
Let {ψq}

∞

1 be the orthornormal eigenvectors system corresponding to eigenvalues {µq}
∞

1 of the operator
L0, respectively. Since the orthornormal eigenvectors corresponding to eigenvalues (k + 1

2 )2r + γ j (k =
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0, 1, 2, · · · ; j = 1, 2, · · · ) of the operator L0 are
√

2
π cos((k + 1

2 )x)ϕ j, respectively,

µq = (kq +
1
2

)2r + γ jq (q = 1, 2, · · · )

and

ψq(x) =

√
2
π

cos((kq +
1
2

)x)ϕ jq . (3.7)

We prove the main theorem of the paper.
Proof of Theorem 3.
By using the Theorem 1, one can write Dps as follows:

Dps = 2(−1)ss−1 1
2πi

∫
|λ|=bp

tr
(
λ(QR0

λ)s
)
dλ

= 2(−1)ss−1
np∑

q=1

Resλ=µq tr
(
λ(QR0

λ)s
)
.

By using last formula, we can rewrite (2.3) as follows:
np∑

q=1

(
λ2

q − µ
2
q − 2

m∑
s=2

(−1)ss−1Resλ=µq tr
(
λ(QR0

λ)s
))

= Dp1 + D(m)
p , (3.8)

Dp1 =
−1
πi

∫
|λ|=bp

λtr(QR0
λ)dλ. (3.9)

Since (QR0
λ) is a nuclear operator for every λ ∈ ρ(L0) and {ψq}

∞

1 is an orthonormal basis in the space H1, we
have

tr(QR0
λ) =

∞∑
q=1

(QR0
λψq, ψq)H1 .

Here, R0
λψq = (µq − λI)−1ψq.

If we substitute the last two equalities into (3.9), then we get

Dp1 =
−1
πi

∫
|λ|=bp

λ
∞∑

q=1

(QR0
λψq, ψq)H1 dλ

=
−1
πi

∫
|λ|=bp

λ
∞∑

q=1

1
µq − λ

(Qψq, ψq)H1 dλ

=
1
πi

∞∑
q=1

(Qψq, ψq)H1

∫
|λ|=bp

λ
λ − µq

dλ

By using the Cauchy Integral Formula

1
2πi

∫
|λ|=bp

λ
λ − µq

dλ =

{
µq , i f q ≤ np
0 , i f q > np
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and by (3.7), we obtain

Dp1 = 2
np∑

q=1

µq(Qψq, ψq)H1

= 2
np∑

q=1

µq

π∫
0

(Q(x)ψq(x), ψq(x))dx

= 2
np∑

q=1

µq

π∫
0

(
Q(x)

√
2
π

cos(kq +
1
2

)xϕ jq ,

√
2
π

cos(kq +
1
2

)xϕ jq

)
dx

= 2
np∑

q=1

µq
2
π

π∫
0

cos2(kq +
1
2

)x(Q(x)ϕ jq , ϕ jq )dx

=

np∑
q=1

µq
2
π

π∫
0

(1 + cos(2kq + 1)x)(Q(x)ϕ jq , ϕ jq )dx

=
2
π

np∑
q=1

µq

π∫
0

cos(2kq + 1)x(Q(x)ϕ jq , ϕ jq )dx +
2
π

np∑
q=1

µq

π∫
0

(Q(x)ϕ jq , ϕ jq )dx. (3.10)

We substitude (3.10) in (3.8):

np∑
q=1

(
λ2

q − µ
2
q − 2

m∑
s=2

(−1)ss−1Resλ=µq tr
[
λ(QR0

λ)s
]
−

2µq

π

π∫
0

h jq (x)dx
)

=
2
π

np∑
q=1

µq

π∫
0

h jq (x) cos(2kq + 1)xdx + D(m)
p . (3.11)

If we use Theorem 2, then we know that

2
π

lim
p→∞

np∑
q=1

µq

π∫
0

h jq (x) cos(2kq + 1)xdx

=
2
π

∞∑
k=0

∞∑
j=1

(
(k +

1
2

)2r + γ j

) π∫
0

h j(x) cos(2k + 1)xdx. (3.12)

If we substitude (3.5) in the right hand side of (3.12), then we get
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2
π

∞∑
k=0

∞∑
j=1

[
(k +

1
2

)2r + γ j

] π∫
0

h j(x) cos(2k + 1)xdx

=

∞∑
k=0

∞∑
j=1

2
π

π∫
0

[
(−

1
4

)rh(2r)
j (x) + γ j(x)h j(x)

]
cos(2k + 1)xdx

=
1
π

∞∑
j=1

∞∑
k=0

( π∫
0

[
(−

1
4

)rh(2r)
j (x) + γ j(x)h j(x)

]
cos(kx)dx

− (−1)k

π∫
0

[
(−

1
4

)rh(2r)
j (x) + γ j(x)h j(x)

]
cos(kx)dx

)
,

The sums according to the k on the right hand side of the last relation are the values at 0 and π of the Fourier
Series of the function (− 1

4 )rh(2r)
j (x) + γ jh j(x) according to the functions {cos kx}∞k=0 on the interval [0, π].

Therefore,

2
π

∞∑
k=0

∞∑
j=1

[
(k +

1
2

)2r + γ j

] π∫
0

h j(x) cos(2k + 1)xdx

=
1
2

∞∑
j=1

[
(−

1
4

)r(h(2r)
j (0) − h(2r)

j (π)) + γ j(h j(0) − h j(π))
]

= (−1)r2−1−2r
[
trQ(2r)(0) − trQ(2r)(π)

]
+

1
2

[
trAQ(0) − trAQ(π)

]
(3.13)

From (3.12) and (3.13), we obtain

2
π

lim
p→∞

np∑
q=1

µq

π∫
0

h jq (x) cos(2kq + 1)xdx

= (−1)r2−1−2r
[
trQ(2r)(0) − trQ(2r)(π)

]
+

1
2

[
trAQ(0) − trAQ(π)

]
(3.14)

Let us estimate of D(m)
p for the large value of p. By using (2.5) we get

∣∣∣∣D(m)
p

∣∣∣∣ ≤ ∫
|λ|=bp

|λ|2
∣∣∣∣tr(Rλ(QR0

λ)m+1
)∣∣∣∣|dλ|

≤ b2
p

∫
|λ|=bp

∥∥∥∥Rλ(QR0
λ)m+1

∥∥∥∥
σ1(H1)

|dλ|
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≤ b2
p

∫
|λ|=bp

∥∥∥∥Rλ
∥∥∥∥

1

∥∥∥∥(QR0
λ)m+1

∥∥∥∥
σ1(H1)

|dλ|

≤ b2
p

∫
|λ|=bp

∥∥∥∥Rλ
∥∥∥∥

1

∥∥∥∥(QR0
λ)m

∥∥∥∥
1

∥∥∥∥QR0
λ

∥∥∥∥
σ1(H1)

|dλ|

≤ b2
p

∫
|λ|=bp

∥∥∥∥Rλ
∥∥∥∥

1

∥∥∥∥Q
∥∥∥∥m

1

∥∥∥∥R0
λ

∥∥∥∥m

1

∥∥∥∥Q
∥∥∥∥

1

∥∥∥∥R0
λ

∥∥∥∥
σ1(H1)

|dλ|. (3.15)

One can prove the following inequalities similarly in work [7]:

∥∥∥∥R0
λ

∥∥∥∥
σ1(H1)

≤ const.np
1−δ,

∥∥∥∥Rλ
∥∥∥∥

1
≤ const.np

−δ (δ =
2rα

2r + α
− 1).

From last two inequalities and (3.15), we obtain∣∣∣∣D(m)
p

∣∣∣∣ ≤ const.b3
pnp
−δm−2δ+1. (3.16)

For large values of p

bp = 2−1
(
µnp + µnp+1

)
≤ const.n1+δ

p . (3.17)

From (3.16) and (3.17), we obtain∣∣∣∣D(m)
p

∣∣∣∣ ≤ const.µ4−(m−1)δ
p .

Therefore, for m =
⌊

2rα+6r+3α
2rα−2r−α

⌋
+ 1, we find

lim
p→∞

D(m)
p = 0. (3.18)

From (3.11), (3.14) and (3.18), we find the following formula for second regularized trace formula of the operator
L

lim
p→∞

np∑
q=1

(
λ2

q − µ
2
q − 2

m∑
s=2

(−1)ss−1Resλ=µq tr
(
λ(QR0

λ)s
)
−

2µq

π

π∫
0

(Q(x)ϕ jq , ϕ jq )dx
)

= (−1)r2−1−2r
[
trQ(2r)(0) − trQ(2r)(π)

]
+

1
2

[
trAQ(0) − trAQ(π)

]
.�
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[10] F.G. Maksudov, M. Bayramoglu, and E.E. Adıgüzelov, On a Regularized Trace of Sturm-Liouville Operator on a Finite Interval

with the Unbounded Operator Coefficient, Dokl. Akad, Nauk SSSR, English Translation: Soviet Math. Dokl. 30, No1, (1984),
169–173.

[11] I.C. Cohberg, M.G. Krein, Introduction to the Theory of Linear Non-Self Adjoint Operators, Translation of Mathematical Mono-
graph, Volume 18, Amer. Math. Soc., Providence, R.I, (1969).

[12] I.M. Gelfand, B.M. Levitan, On a Formula for Eigenvalues of a Differential Operator of Second Order, Dokl. Akad. Nauk SSSR,
T.88, No:4, (1953), 593–596.

[13] L.A. Dikiy, About a Formula of Gelfand-Levitan, Upseki Mat. Nauk, T.8, No:2,(1953), 119–123.
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