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Abstract. In the present paper, we study the quasi-Yamabe solitons and almost quasi-Yamabe solitons on
the lightlike hypersurfaces of the semi-Riemannian manifolds endowed with a torse-forming vector field.
We show some conditions for the lightlike hypersurfaces to be quasi-Yamabe solitons and almost quasi-
Yamabe solitons with the tangential component of the torse-forming vector field on the semi-Riemannian
manifolds as the soliton field. In particular, we also specify the conditions for lightlike hypersurfaces
of (n + 2)-dimension semi-Riemannian manifolds of constant curvature to be quasi-Yamabe solitons and
almost quasi-Yamabe solitons. Besides, we provide some geometric properties of the lightlike hypersurfaces
satisfying quasi-Yamabe solitons, quasi-Yamabe gradient solitons, almost quasi-Yamabe solitons and almost
quasi-Yamabe gradient solitons. Furthermore, we investigate properties of screen homothetic lightlike
hypersurfaces admitting quasi-Yamabe solitons and almost quasi-Yamabe solitons.

1. Introduction

The notion of Yamabe flow was first introduced by Hamilton [10] in 1988 where the metrics on a manifold
evolve according to

∂
∂t
1(t) = −S(t)1(t) (1)

where S is the scalar curvature of metric 1. In dimension n = 2, the Yamabe flow is equivalent to the Ricci
flow.

Yamabe soliton is a self-similar solution of the Yamabe flow. A semi-Riemannian manifold (M̄, 1̄) is a
Yamabe soliton if there exists a vector field V on M̄ such that

1
2
LV1 = (S − λ)1 + γπ ⊗ π (2)

where S is the scalar curvature of M, LV is the Lie derivative in the direction of V and λ is constant. The
Yamabe soliton (M̄, 1̄,V, λ) is called shrinking, steady or expanding according to λ > 0, λ = 0, or λ < 0,
respectively. If V is a Killing vector field on M̄, then the Yamabe soliton (M̄, 1̄,V, λ) is trivial.
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A Yamabe soliton is said to be a gradient Yamabe soliton if the vector field V is the gradient of some
smooth function f on M̄. In this case, the equation (2) becomes

Hess f = (S − λ)1 (3)

where Hess f denotes the Hessian of f .
In 2013, Barbosa and Ribeiro [11] defined almost Yamabe solitons. If λ in equations (2) and (3) is a

smooth function on M, then M is called almost Yamabe solitons and gradient almost Yamabe solitons,
repectively.

Notion of torse-forming vector field was firstly introduced by Yano[13]. A nowhere vanishing vector
field V is said to be torse-forming on M̄ if

∇̄XV = µX + π(X)V (4)

where µ ∈ C∞(M) and π is an 1-form.
If the 1-form π in (4) vanishes identically, then V is concircular. Concircular vector fields also known as

geodesic vector fields since integral curves of such vector field as geodesic. If µ = 1 and π = 0 then V is said
to be concurrent. The vector field V is recurrent if it satisfies (4) with µ = 0. Also if µ = π = 0, the vector
field V in (4) is parallel vector field. As a consequence, if the vector field V satisfies (4) with π(V) = 0, then
V is called torqued vector field where µ and π are known as the torqued function and the torqued form of
V, respectively [14].

Yamabe solitons and gradient Yamabe solitons have been investigated under some conditions by some
mathematicians which can bee seen in [15, 17? ? –20]. In particular, almost Yamabe soliton and gradient
almost Yamabe solitons and gradient almost Yamabe soliton have been studied by Seko and Maeta [12].

In the present paper, we study the Yamabe solitons and almost Yamabe solitons on lightlike hypersur-
faces of semi-Riemannian manifolds endowed with a torse-forming vector field. In this work, we assume
that the lightlike hypersurface (M, 1,S(TM)) of the semi-Riemannian manifold (M̄n+2

1 , 1̄) equipped with the
canonical screen distribution S(TM) such that the local second fundamental h∗ on the lightlike hypersurface
is symmetric [16], and we take the 1-form π in equation (4) associated with the torse-forming vector field V
onMn+2

1 .
We organize our present work as follow: In section 2, we provide the geometric properties of the

lightlike hypersurface of the semi-Riemannian manifold. We give the Gauss-Weingarten formulas, and the
Ricci tensor of the lightlike hypersurface. In section 3, we show some conditions of lightlike hypersurfaces
of semi-Riemannian manifolds endowed with a torse-forming vector field to be Yamabe solitons and
almost Yamabe solitons. We also show some properties of the lightlike hypersurfaces satisfying gradient
Yamabe solitons and gradient almost Yamabe solitons. In section 4, we particularly specify the conditions
of lightlike hypersurfaces of (n + 2)-dimensional semi-Riemannian manifold of constant curvature to be
Yamabe solitons and almost Yamabe solitons and show their properties. In the last section, we focus on
the geometric properties of the screen homothetic lightlike hypersurfaces admitting Yamabe solitons and
almost Yamabe solitons.

2. Preliminaries

Let (Mn, 1,S(TM)) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, 1̄) and ∇̄ be the metric
(Levi-Civita) connection on M̄ with respect to 1̄. The tangent bundle TM̄ splits into three bundle spaces on
M as follow

TM̄ = RadTM ⊕ S(TM) ⊕ ltr(TM) = TM ⊕ ltr(TM). (5)

where RadTM,S(TM), ltr(TM) are called radiant, screen distribution and lightlike transversal vector bundle
spaces of M, respectively.

The Gauss-Weingarten formula are given by

∇̄XY = ∇XY + h(X,Y) (6)
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∇̄XV = −AVX + DXV (7)

for any X,Y ∈ Γ(TM) and V ∈ ltr(TM).
Locally, suppose {ξ,N} is a pair of section onU ⊂M. Define a symmetric bilinear form B and a 1-form τ on
M by

B(X,Y) = 1̄(h(X,Y), ξ), τ(X) = 1̄(DxN, ξ) (8)

such that h(X,Y) = B(X,Y)N and DXN = τ(X)N for any X,Y ∈ Γ(TM) on U. Hence, the equations (6) and
(7) become

∇̄XY = ∇XY + B(X,Y)N (9)

∇̄XN = −ANX + τ(X)N. (10)

Here, B is the second local fundamental form of M since it is the only component of h onU with respect to
N.
Let P denote the projection of TM on S(TM). Then we have the following decompositions

∇XPY = ∇∗XPY + C(X,PY)ξ
∇ξX = −A∗ξX − τ(X)ξ,

(11)

where ∇∗XPY and A∗ξX belong to S(TM), C is a 1-form onU. In general, the induced metric connection of M
is not compatible with the induced metric 1. So that we have

(∇Z1)(X,Y) = B(Z,Y)η(X) + B(X,Z)η(Y), (12)

where

η(X) = 1̄(X,N). (13)

We also have the equations

1(ANX,PY) = C(X,PY), 1̄(ANX,N) = 0 (14)

1(A∗ξX,PY) = B(X,PY), 1̄(A∗ξX,N) = 0. (15)

The mean curvature of lightlike hypersurface (M, 1) is given by [9]

α =

n∑
a=1

C(ei, e j), (16)

where {e1, ..., en} is an orthonormal basis of S(TM).
Let R and R̄ be the curvature tensor of the lightlike hypersurface (M, 1,S(TM)) and the ambient semi-

Riemannian manifold (M̄, 1̄), respectively. Then, we have

R̄(X,Y)Z =R(X,Y)Z + Ah(X,Z)Y − Ah(Y,Z)X + (∇Xh)(Y,Z) − (∇Yh)(X,Z). (17)

Suppose {e1, ..., en, ξ,N} is a quasi orthonormal basis on TM̄, where {e1, ..., en} is an orthonormal basis of
Γ(S(TM)). The induced Ricci tensor of M is given by

Ric(X,Y) =

n∑
j=1

1(R(e j,X)Y, e j) + 1̄(R(ξ,X)Y,N) (18)

for any X,Y ∈ TM.
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Let R̄ic and Ric denote the Ricci tensor of M̄ and induced Ricci type tensor of M. Then we have

Ric(0,2)(X,Y) =R̄ic(X,Y) + B(X,Y)trAN − 1(ANX,A∗ξY) − 1̄(R̄(ξ,Y)X,N) (19)

for all X,Y ∈ Γ(TM). It is clear that the induced Ricci type tensor Ric(0,2)(X,Y) given in equation (19) is
not symmetric so that it has no geometric or physical meaning. The induced Ricci type tensor Ric(X,Y) is
called induced Ricci tensor if it is symmetric. Atindogbe [8] has formulate the induced Ricci tensor of the
lightlight hypersurface of (m + 2)-dimensional semi-Riemanian manifold by

Ric(X,Y) =R̄ic(X,Y) + B(X,Y)trAN −
1
2
{η(R̄(ξ,Y)X) + η(R̄(ξ,X)Y) + 1(ANX,A∗ξY) + 1(ANY,A∗ξX)} (20)

Let M be a lightlike hypersurface of (n + 2)-dimensional semi-Riemannian manifold M̄ of constant
curvature c. Then, we have R̄ic(X,Y) = (n + 1)c1̄(X,Y) and η(R̄(ξ,Y)X) = c1(X,Y). As a consequence, from
equation (20), we find

Ric(X,Y) = nc1(X,Y) + B(X,Y)α −
1
2
{1(ANX,A∗ξY) + 1(ANY,A∗ξX)} (21)

where α = Σi=1εi1(ANwi,wi), for {wi}, i ∈ {1, 2, ...,m − 1} and X,Y ∈ Γ(TM).

Furthermore, M is called totally umbilical if there exists a smooth function F such that

B(X,Y) = F1(X,Y), X,Y ∈ Γ(TM). (22)

for all vector field X,Y ∈ Γ(TM) [9, 16].

3. Lightlike hypersurfaces as Yamabe solitons and almost Yamabe solitons

In this section, we show some conditions for a lightlike hypersurfaces of semi-Riemannian manifolds
endowed with a torse-forming vector field to be a quasi-Yamabe soliton and an almost quasi-Yamabe
soliton. We also show some geometric properties of the lightlike hypersurface satisfying quasi-Yamabe
solitons, quasi-Yamabe gradient solitons, almost quasi-Yamabe solitons and almost quasi-Yamabe gradient
solitons.

Theorem 3.1. Let (M, 1,S(TM)) be a lightlike hypersurface of semi-Riemannian manifold (M̄, 1̄). (M, 1,VT, γ, λ) is
a quasi-Yamabe soliton or almost quasi-Yamabe soitons if and only if the scalar curvature of M satisfies

(S − λ − µ)1(X,Y) =
1
2

(B(X,VT)η(Y) + B(VT,Y)η(X)) + (1 − γ)π(X)π(Y) − ρ1(ANX,Y) (23)

for X,Y ∈ TM.

Proof. Let ϕ : M → M̄ denotes the isometric immersion. Then, for vector field V ∈ Γ(TM) by equation (5),
we have

V = VT + ρN (24)

where VT
∈ Γ(TM), N ∈ ltr(TM) and ρ = 1̄(V, ξ).

Since V is a torse-forming vector field on Γ(TM̄), then by Gauss-Weingarten formulas, we have

µX + π(X)V =∇̄XVT + ∇̄X(ρN)

=∇XVT + B(X,VT)N + X(ρ)N − ρANX + ρτ(X)N.
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Comparing the tangential and the transfersal components of the equation above yields

∇XVT = µX + π(X)VT
− ρANX (25)

ρπ(X) = ρτ(X) + B(X,VT) − X(ρ). (26)

Note that π(X) = 1̄(X,V) = 1(X,VT). Therefore, from equations (12) and (25) we obtain

(LVT1)(X,Y) =(∇VT1)(X,Y) + 1(∇XVT,Y) + 1(X,∇YVT)

=B(X,VT)η(Y) + B(VT,Y)η(X) + 2µ1(X,Y) + 2π(X)π(Y) − 2ρ1(ANX,Y).
(27)

The lightlike hypersurface (M, 1,VT, γ, λ) is quasi-Yamabe solitons or almost quasi-Yamabe solitons if and
only if it satisfies equation (2). Therefore, by using equation (27), we can easily show that (M, 1,VT, γ, λ) is
Yamabe solitons or almost Yamabe solitons if and only if equation (23) holds.

If a lightlike hypersurface is totally geodesic, then the second fundamental h vanishes which implies
A∗ξ = 0 [16]. Therefore, we have have the following corollary:

Corollary 3.2. Let (M, 1,S(TM)) be a totally geodesic lightlike hypersurface of semi-Riemannian manifold (M̄, 1̄).
(M, 1,VT, γ, λ) is a quasi-Yamabe soliton or almost quasi-Yamabe soitons if and only if the scalar curvature of (M, 1)
satisfies

(S − λ − µ)1(X,Y) = (1 − γ)π(X)π(Y) − ρ1(ANX,Y) (28)

for X,Y ∈ TM.

Theorem 3.3. Every totally geodesic lightlike hypersurface of a semi-Riemannian manifold (M̄, 1̄) is trivial quasi-
Yamabe soliton and trivial almost quasi-Yamabe soliton.

Proof. Let (M, 1,S(TM)) be a totally geodesic lightlike hypersurface of a semi-Riemannian manifold (M̄, 1̄).
Then, by equation (8), the symmetric bilinear form B vanishes everywhere. As a consequence, by equation
(12) the induced connection ∇ is a metric connection. Therefore, we have

0 = (∇X1)(ξ,Z) = X(1(ξ, 1)) − 1(∇Xξ,Z) − 1(ξ,∇XZ) = −1(∇Xξ,Z).

Therefore, we find

(Lξ1)(X,Y) = (∇ξ1)(X,Y) + 1(∇Xξ,Y) + 1(X,∇Yξ) = 0

which implies ξ to be Killing vector field and (M, 1, ξ, λ) to be trivial Yamabe solitons and almost Yamabe
solitons.

Theorem 3.4. Let a lightlike hypersurface (M, 1,VT, γ, λ) admit quasi-Yamabe solitons or almost quasi-Yamabe
solitons. Then, the mean curvature of M is given by

α =
1
ρ

((1 − γ)||VT
||

2
− n(S − λ − µ)). (29)

Proof. Let {e1, . . . en} be the orthonormal basis of S(TM). Taking the trace of equation (23) and using equation
(16), we have

(S − λ − µ)
n∑

i=1

1(ei, ei) =

n∑
i=1

{
1
2

(B(ei,VT)η(ei) + B(VT, ei)η(ei)) + (1 − γ)π(ei)π(ei) − ρ1(ANei, ei)}

n(S − λ − µ) =(1 − γ)||VT
||

2
− ρα

which is nothing but equation (29).
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Theorem 3.5. Let a lightlike hypersurface (M, 1,VT, λ) be quasi-Yamabe solitons or almost quasi-Yamabe solitons.
Then,

(i) M is shrinking if α > 1
ρ (n(µ − S) + (1 − γ)||VT

||
2),

(ii) M is steady if α = 1
ρ (n(µ − S) + (1 − γ)||VT

||
2),

(iii) M is expanding if α > 1
ρ (n(µ − S) + (1 − γ)||VT

||
2)

Proof. From equation (29), we have

λ = S − µ −
1
n

((1 − γ)||VT
||

2
− ρα). (30)

Since (M, 1,VT, γ, λ) is shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively, the by equation
(30), the proof is completed.

Theorem 3.6. Let a lightlike hypersurface (M, 1,VT, λ) be quasi-Yamabe solitons or almost quasi-Yamabe solitons.
(M, 1,VT, λ) is trivial if and only if the mean curvature of M is given by

α =
1
ρ

(nµ + ||VT
||

2). (31)

Proof. (M, 1,VT, λ) is trivial Yamabe solitons or almost Yamabe solitons if and only if VT is a Killing vector
field. Therefore, from equation (27), we have

2ρ1(ANX,Y) = B(X,VT)η(Y) + B(VT,Y)η(X) + 2µ1(X,Y) + 2π(X)π(Y)

Taking the trace of this equation corresponding to the orthonormal basis of S(TM) and using equation (19),
we obtain

2ρα = 2nµ + 2||VT
||

2

which implies equation (31).

Theorem 3.7. Let a lightlike hypersurface (M, 1,VT, λ) be a quasi-Yamabe solitons or almost quasi-Yamabe solitons.
If M is a quasi-Yamabe gradient solitons or almost quasi-Yamabe gradient soliton, then the mean curvature of M is
given by

α =
1
ρ

((1 − γ)||∇ f ||2 − n(S − λ − µ)) (32)

where VT = ∇ f .

Proof. Since the quasi-Yamabe soliton (M, 1,VT, λ) is a quasi-Yamabe gradient soliton or gradient almost
Yamabe soliton, then there exist a smooth function f on M such that VT is the gradient of f that is, VT = ∇ f .
Let {e1, . . . , en, ξ} be an quasi-orthonormal basis of TM, then

∇i∇ j f =1(∇i∇ f , e j)
=1(µei + ∇i f∇ f − ρAnei, e j)
=µδi j + ∇i f∇ j f − ρ1(ANei, e j)

where δi j is a cronecker delta. Contracting this equation, we have

∇i∇i f = µ + ||∇i f ||2 − ρ1(ANei, ei) (33)
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and

∇ξ∇ξ f = ||∇ξ f ||2. (34)

As a consequence,

∆ f = nµ + ||∇ f ||2 − ρα (35)

where α is the mean curvature of M. On the other hand, taking the trace of equation (4) with respect to the
quasi orthonormal basis of S(TM), we have

∆ f = n(S − λ) + γ||∇ f ||2. (36)

From equations (35) and (36), we find

(1 − γ)||∇ f ||2 − n(S − λ − µ) = ρα (37)

which implies equation (32).

4. Lightlike hypersurface of semi-Riemannian manifolds of constant curvature as quasi-Yamabe solitons
and almost quasi-Yamabe solitons

In this section, we spesify some conditions for lightlike hypersurfaces of the (n + 2)-dimensional semi-
Riemannian manifolds of constant curvature endowed with a torse-forming vector field and particluarly
lightlike hypersurfaces of semi-Euclidean space endowed with a torse-forming vector field to be quasi-
Yamabe solitons and almost quasi-Yamabe solitons. We also some properties of these lightlike hypersurfaces
satisfying quasi-Yamabe solitons and almost quasi-Yamabe solitons.

Theorem 4.1. Let (M, 1,S(TM)) be a lightlike hypersurface of (n + 2)-dimensional semi-Riemannian manifolds of
constant curvature c endowed with a torse-forming vector field. (M, 1,VT, λ) is quasi-Yamabe solitons or almost
quasi-Yamabe solitons if and only if it satisfies

(n2c − tr(A∗ξ)α − tr(A∗ξAN) − λ − µ)X =
1
2

(B(X,VT)VT + η(X)A∗ξV
T) + (1 − γ)π(X)VT

− ρANX (38)

for all X ∈ Γ(TM).

Proof. Let {e1, . . . , en, ξ} be the quasi-orthonormal basis of TM and {e1, . . . , en} be the orthonormal basis of
screen distribution S(TM). Taking the trace of equation (21), we have

S = n2c − tr(A∗ξ)α − trace(A∗ξAN). (39)

(M, 1,VT, λ) is Yamabe solitons or almost Yamabe solitons if and only if it satisfies equation (2). Therefore,
frome equations (23) and (39), we find

(n2c − tr(A∗ξ)α − tr(A∗ξAN) − λ)1(X,Y) =
1
2

(B(X,VT)η(Y) + B(VT,Y)η(X)) + (1 − γ)π(X)π(Y)

+ µ1(X,Y) − ρ1(ANX,Y)
(40)

which implies equation (38)

In case (M̄, 1̄) is an (n + 2)-dimensional semi-Euclidean space, then c = 0. Hence, we have the following
corollary:
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Corollary 4.2. Let (M, 1,S(TM)) be a lightlike hypersurface of (n + 2)-dimensional semi-Euclidean space endowed
with a torse-forming vector field. (M, 1,VT, λ) is quasi-Yamabe solitons or almost quasi-Yamabe solitons if and only
if it satisfies

(tr(A∗ξ)α − tr(A∗ξAN) − λ − µ)X =
1
2

(B(X,VT)VT + η(X)A∗ξV
T) + (1 − γ)π(X)VT

− ρANX

for all X ∈ Γ(TM).

Theorem 4.3. Let (M, 1,S(TM)) be a lightlike hypersurface of (n + 2)-dimensional semi-Riemannian manifolds of
constant curvature c endowed with a torse-forming vector field. If (M, 1,VT, λ) is quasi-Yamabe solitons or almost
quasi-Yamabe solitons, then the mean curvature of M is given by

α =
n(n2c − tr(A∗ξAN) − λ − µ) + (γ − 1)||VT

||
2

n · tr(A∗ξ) − ρ
(41)

Proof. Let {e1, . . . en} be the orthonormal basis of S(TM). Taking the trace of equation (40) and using equation
(16), we have

n(n2c − α · tr(A∗ξ) − tr(A∗ξAN) − λ − µ) =(1 − γ)||VT
||

2
− ρα

n(n2c − tr(A∗ξAN) − λ − µ) + (γ − 1)||VT
||

2 =(n · tr(A∗ξ) − ρ)α

which is nothing but equation (41).

Corollary 4.4. Let the lightlike hypersurface (M, 1,VT, λ) of (n + 2)-dimensional semi-Riemannian manifolds of
constant curvature c endowed with a torse-forming vector field be quasi-Yamabe solitons or almost quasi-Yamabe
solitons. Then,

(i) M is shrinking if α <
n(n2c−tr(A∗ξAN)−µ)+(γ−1)||VT

||
2

n·tr(A∗ξ)−ρ ,

(ii) M is steady if α =
n(n2c−tr(A∗ξAN)−µ)+(γ−1)||VT

||
2

n·tr(A∗ξ)−ρ ,

(iii) M is expanding if α >
n(n2c−tr(A∗ξAN)−µ)+(γ−1)||VT

||
2

n·tr(A∗ξ)−ρ .

Proof. Since the lightlike hypersurface (M, 1,VT, λ) of (n + 2)-dimensional semi-Riemannian manifolds of
constant curvature c endowed with a torse-forming vector field is quasi-Yamabe solitons or almost quasi-
Yamabe solitons, then from equation (41), by direct calculation we have

λ = n2c − tr(A∗ξAN) − µ −
(n · tr(A∗ξ) − ρ)α + (γ − 1)||VT

||
2

n
.

As (M, 1,VT, λ) is shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively, then our assertions
holds.

Theorem 4.5. Let (M, 1,S(TM)) be a totally geodesic lightlike hypersurface of (n + 2)-dimensional semi-Riemannian
manifolds of constant curvature c endowed with a torse-forming vector field. (M, 1,VT, λ) is quasi-Yamabe solitons
or almost quasi-Yamabe solitons if and only if it satisfies

(n2c − λ − µ)X = (1 − γ)π(X)VT
− ρANX (42)

for all X ∈ Γ(TM).
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Proof. If (M, 1,S(TM)) is a totally geodesic lightlike hypersurface, then the second fundamental h vanishes.
As a result, the symmetric bilinear form and the shape opeator A∗ξ also vanish. Therefore, from equation
(21), we have

Ric(X,Y) = nc1(X,Y)

which implies

S = n2c. (43)

In addition, from equation (27), we have

(LVT1)(X,Y) = 2µ1(X,Y) + 2π(X)π(Y) − 2ρ1(ANX,Y) (44)

Applying equations (43) and (44) to (2), we find

(n2c − λ − µ)1(X,Y) + γπ(X)π(Y) = π(X)π(Y) − ρ1(ANX,Y) (45)

which implies equation (42).

Corollary 4.6. Let (M, 1) be a totally geodesic lightlike hypersurface of (n + 2)-dimensional semi-Riemannian man-
ifolds of constant curvature c endowed with a torse-forming vector field. If (M, 1,VT, λ) is quasi-Yamabe solitons or
almost quasi-Yamabe solitons, then the mean curvature of M is given by

α =
(1 − γ)||VT

||
2
− n(n2c − λ − µ)
ρ

Corollary 4.7. Let a totally geodesic lightlike hypersurface (M, 1,VT, λ) of (n + 2)-dimensional semi-Riemannian
manifold of constant curvature c endowed with a torse-forming vector field be quasi-Yamabe solitons or almost
quasi-Yamabe solitons. Then,

(i) M is shrinking if α > (1−γ)||VT
||

2
−n(n2c−µ)
ρ ,

(ii) M is steady if α =
(1−γ)||VT

||
2
−n(n2c−µ)
ρ ,

(iii) M is expanding if α < (1−γ)||VT
||

2
−n(n2c−µ)
ρ .

Theorem 4.8. Let (M, 1,S(TM)) be a lightlike hypersurface of (n + 2)-dimensional semi-Riemannian manifolds of
constant curvature c endowed with a torse-forming vector field. If (M, 1, f , λ) is quasi-Yamabe gradient solitons or
almost quasi-Yamabe gradient solitons with VT = ∇ f , then it satisfies

α =
n(n2c − tr(A∗ξAN) − λ − µ) + (γ − 1)||VT

||
2

n · tr(A∗ξ) − ρ
(46)

where α is the mean curvature of M.

Proof. Suppose that the lightlike hypersurface (M, 1, f , λ) is quasi-Yamabe gradient solitons or almost quasi-
Yamabe gradient solitons with VT = ∇ f . Applying equation (39) to equation (36), we have

−n(n2c − tr(A∗ξ)α − tr(A∗ξAN) − λ − µ) + (1 − γ)||∇ f ||2 = ρα (47)

which is equivalent to

n(n2c − tr(A∗ξAN) − λ − µ) + (γ − 1)||VT
||

2 = (n · tr(A∗ξ) − ρ)α. (48)

Hence, the equation (46) holds.



A. Arfah / Filomat 36:4 (2022), 1203–1214 1212

Corollary 4.9. Let (M, 1,S(TM)) be a lightlike hypersurface of (n + 2)-dimensional semi-Euclidean space endowed
with a torse-forming vector field. If (M, 1, f , λ) is quasi-Yamabe gradientsolitons or almost quasi-Yamabe gradient
solitons with VT = ∇ f , then the man curvature of M is given by

α =
n(tr(A∗ξAN) + λ + µ) + (1 − γ)||VT

||
2

ρ − n · tr(A∗ξ)
(49)

for all X ∈ Γ(TM).

5. Yamabe solitons and almost Yamabe solitons on screen homomthetic lightlike hypersurfaces

In this section, we show some geometric properties of the screen homothetic lightlike hypersurface
(M, 1,S(TM)) satisfying quasi-Yamabe solitons and almost quasi-Yamabe solitons of semi-Riemannian man-
ifolds endowed with a torse-forming vector field.

Definition 5.1. A lightlike hypersurface (M, 1,S(TM)) of a semi-Riemannian manifold (M̄, 1̄) is said to be screen
conformal if

AN = ϕA∗ξ, (50)

where AN and A∗ξ are the shape operators of M and S(TM), respectively and ϕ is a non-vanishing smooth function on
M.

It is easy to see that (50) is equivalent to

C(X,PY) = ϕB(X,Y), (51)

for all X,Y ∈ Γ(TM). In case ϕ is a non-constant on M, the lightlike hypersurface M is called screen
homothetic. Furthermore, if ϕ = 0, i.e., C = AN = 0, then M is called totally geodesic.

Theorem 5.2. Let a screen homothetic lightlike hypersurface (M, 1,VT, λ) of an (n+2)-dimensional semi-Riemannian
manifolds (M̄, 1̄) endowed with a torse-forming vector field be quasi-Yamabe solitons or almost quasi-Yamabe solitons.
Then the principal curvature of M is given by

κi =
1
ρϕ

((1 − γ)π(ei)2 + λ + µ − S) (52)

for i = 1, . . . ,n.

Proof. Since the screen homothetic lightlike hypersurface (M, 1,VT, λ) of an (n + 2)-dimensional semi-
Riemannian manifoldd (M̄, 1̄) endowed with a torse-forming vector field admit quasi-Yamabe solitons
or almost quasi-Yamabe solitons, then, by using equation (50) and (23), we have

(S − λ − µ)1(X,Y) =
1
2

(B(X,VT)η(Y) + B(VT,Y)η(X)) + (1 − γ)π(X)π(Y) − ρϕ1(AξX,Y) (53)

for all X,Y ∈ Γ(TM).
Let {ξ,N} be the canonical null pair on M such that 1-form τ vanishes. Since ξ is the eigenvector field of
A∗ξ corresponding to the eigenvalue 0 and A∗ξ is Γ(S(TM))-valued real symmetric, A∗ξ has n orthonormal
eigenvector field in S(TM) and is diagonalizable. Suppose {e1, ..., en, ξ} is a frame field of eigen vectors of A∗ξ
and {e1, ..., en} is the orthonormal frame field of S(TM). Then we have,

A∗ξei = kiei, 1 ≤ i ≤ n, (54)

where ki is the screen principal curvature.
Therefore, applying equation (54) to equation (53), we have

(S − λ − µ)δi j = (1 − γ)π(ei)π(e j) − ρϕκiδi j

which implies equation (52).
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Theorem 5.2 shows that the screen homothetic lightlike hypersurface M admitting quasi-Yamabe solitons
or almost quasi-Yamabe solitons has only one principal curvature. As a result, we have the following
corollary:

Corollary 5.3. Every conformal homothetic lightlike hypersurface (M, 1,VT, λ) admitting Yamabe solitons or almost
quasi-Yamabe solitons is totally umbilical.

Theorem 5.4. Let a screen homothetic lightlike hypersurface (M, 1,S(TM)) of semi-Riemannian manifold (M̄, 1̄)
endowed with a torse-forming vector field be totally umbilical. The lightlike hypersurface (M, 1,VT, λ) is a quasi-
Yamabe soliton or almost quasi-Yamabe soliton if and only if

(S − ρϕF − λ − µ)X =
F
2

(π(X)N + η(X)VT) + (1 − γ)π(X)VT (55)

for all X ∈ Γ(TM).

Proof. Since the lightlike hypersurface (M, 1) is screen conformal and totally umbilical, then by applying
equations (15), (22) and (50) to (23), we have

(S − λ − µ)1(X,Y) =
1
2

(Fπ(X)η(Y) + Fπ(Y)η(X)) + (1 − γ)π(X)π(Y) − ρϕF1(X,Y).

This equation is equivalent to

(S + ρϕF − λ − µ)1(X,Y) =
1
2

(Fπ(X)η(Y) + Fπ(Y)η(X)) + (1 − γ)π(X)π(Y)

which implies equation (55)

By the same way as proof of Theorem 5.2, we have the following theorem:

Theorem 5.5. Let a conformal homothetic lightlike hypersurface (M, 1, f , λ) with VT = ∇ f of an (n+2)-dimensional
semi-Riemannian manifolds (M̄, 1̄) endowed with a torse-forming vector field be quasi-Yamabe gradient solitons or
almost quasi-Yamabe gradient solitons. Then the principal curvature of M is given by

κi =
1
ρϕ

(π(ei)2 + λ + µ − S) (56)

for i = 1, . . . ,n.

Corollary 5.6. A conformal homothetic lightlike hypersurface (M, 1,VT, λ) admitting quasi-Yamabe gradient solitons
or almost quasi-Yamabe gradient solitons is totally umbilical.

Theorem 5.7. Let the screen conformal lightlike hypersurface (M, 1,VT, λ) be quasi-Yamabe solitons or almost
Yamabe solitons. If (M, 1, f , λ) admits trivial quasi-Yamabe solitons or trivial almost quasi-Yamabe gradient solitons,
then M is totally umbilical hypersurface.

Proof. Since (M, 1, f , λ) is quasi-Yamabe gradient solitons or trivial almost quasi-Yamabe gradient solitons,
then we have ∇ f = VT, where ∇ denotes the gradient. If (M, 1, f , λ) is trivial, then f = constant which
implies VT = 0. Therefore, from equation (25), we get

ANX =
µ

ρ
X.

As M is screen conformal, then by equations (50) and (51), we find

A∗ξX =
µ

ρϕ
X

which leads us to equation (20).
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