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Integral Operators on Local Orlicz-Morrey Spaces
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Abstract. We establish a general principle on the boundedness of operators on local Orlicz-Morrey spaces.
As applications of this principle, we obtain the boundedness of the Calderón-Zygmund operators, the
nonlinear commutators of the Calderón-Zygmund operators, the oscillatory singular integral operators,
the singular integral operators with rough kernels and the Marcinkiewicz integrals on the local Orlicz-
Morrey spaces.

1. Introduction

This paper aims to study the boundedness of operators on local Orlicz-Morrey spaces.
The Morrey spaces were introduced in [35] for the studies of quasi-linear elliptic partial differential

equations. Since then, it had been developed to be one of the major topics in the theory of function spaces
and extensions of Morrey spaces had been introduced by a number of researchers in harmonic analysis
and theory of functions spaces. One of the extensions is the local Morrey spaces. The boundedness of the
singular integral operator, the Hardy-Littlewood maximal function and the fractional integral operator had
been extended to local Morrey spaces in [2–8, 43, 44].

Another important generalizations of Morrey spaces is the Orlicz-Morrey spaces [39]. The boundedness
of the singular integral operator, the Hardy-Littlewood maximal function and the fractional integral operator
had been extended to the Orlicz-Morrey spaces in [10–13, 17, 19, 20, 22, 23, 29, 37–40, 50].

As motivated by the preceding mentioned results on local Morrey spaces and Orlicz-Morrey spaces, we
study the boundedness of operators on the local Orlicz-Morrey spaces. Our main result gives a principle
for the boundedness of operators on the local Orlicz-Morrey spaces. This principle is obtained by refining
the extrapolation theory introduced by Rubio de Francia in [47–49] by using the ideas from [27]. Our main
result does not only apply to linear operators, it can also be used to obtain boundedness for nonlinear
operators. As applications of our main result, we establish the boundedness of the Calderón-Zygmund
operators, the nonlinear commutators of the Calderón-Zygmund operators, the oscillatory singular integral
operators, the singular integral operators with rough kernels and the Marcinkiewicz integrals on the local
Orlicz-Morrey spaces.
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This paper is organized as follows. The definition of the local Orlicz-Morrey space is given in Section
2. We study a pre-dual of the local Orlicz-Morrey space, namely, the local Orlicz-block spaces in Section
3. The main result of this paper and the boundedness of the Calderón-Zygmund operators, the nonlinear
commutators of the Calderón-Zygmund operators, the oscillatory singular integral operators, the singular
integral operators with rough kernels and the Marcinkiewicz integral on the local Orlicz-Morrey spaces are
presented in Section 4.

2. Local Orlicz-Morrey spaces

This section gives the definition of the Young’s function, the Orlicz spaces and the local Orlicz-Morrey
spaces.

Let B(z, r) = {x ∈ Rn : |x − z| < r} denote the open ball with center z ∈ Rn and radius r > 0. Let
B = {B(z, r) : z ∈ Rn, r > 0}.

A function Φ : [0,+∞]→ [0,+∞] is a Young’s function if there exists an increasing and left-continuous
function ϕ satisfying ϕ(0) = 0 and that ϕ is neither identically zero nor identically infinite such that

Φ(s) =
∫ s

0
ϕ(u)du, s ≥ 0.

A Young’s function Φ is said to satisfy the △2-condition if there exists a constant K > 1 such that

Φ(2t) ≤ KΦ(t), t > 0.

We write Φ ∈ △2 if it satisfies the △2-condition.
Let Φ be a Young’s function associated with ϕ. Let

ψ(v) = inf{u ≥ 0 : ϕ(u) ≥ v}, 0 ≤ v ≤ ∞.

The functionΨ defined by

Ψ(t) =
∫ t

0
ψ(v)dv, 0 ≤ t ≤ ∞

is called the conjugate (complementary) function of Φ [1, Chapter 4, Definition 8.11].
We write Φ ∈ ▽2 if there exists a constant K > 1 such that

2KΦ(t) ≤ Φ(Kt).

The Orlicz space LΦ consists of all Lebesgue measurable functions f satisfying

∥ f ∥LΦ = inf
{
λ > 0 :

∫
Rn
Φ(| f |/λ)dx ≤ 1

}
< ∞.

For any Lebesgue measurable set E with |E| < ∞, we have ∥χE∥LΦ =
1

Φ−1(|E|−1) where Φ−1 denotes the
right-continuous inverse of Φ given by

Φ−1(t) = sup
s≥0
Φ(s) ≤ t, 0 ≤ t < ∞.

We have the Hölder inequality for Orlicz spaces,∫
Rn
| f (x)1(x)|dx ≤ C∥ f ∥LΦ∥1∥LΨ

for some C > 0 where LΨ denotes the Orlicz space generated byΨ, see [42, Section 6.7.14.8].
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For any r > 0 and Lebesgue measurable function Φ : (0,∞) → (0,∞), define Φr(t) = Φ(tr). Whenever Φ
and Φr are Young’s functions, we find that

∥| f |r∥LΦ = inf
{
λ > 0 :

∫
Rn
Φ(| f |r/λ)dx ≤ 1

}
= inf

{
λr > 0 :

∫
Rn
Φ((| f |/λ)r)dx ≤ 1

}
= ∥ f ∥rLΦr

. (1)

Definition 2.1. Let Φ be a Young’s function and v : (0,∞) → (0,∞) be a Lebesgue measurable function. The local
Orlicz-Morrey space LMΦ,v consists of all Lebesgue measurable functions f satisfying

∥ f ∥LMΦ,v = sup
r>0

1
v(r)
∥χB(0,r) f ∥LΦ < ∞.

In particular, when v ≡ 1, the local Orlicz-Morrey space LMΦ,v becomes the Orlicz space LΦ. When
Φ(t) = tp, p ∈ [1,∞), the local Orlicz-Morrey space reduces to the local Morrey space.

A similar function space, called as the central Morrey-Orlicz spaces, are introduced and studied in
[33, 34].

Let q > 0. We find that

∥| f |q∥LMΦ,v = sup
r>0

1
v(r)
∥χB(0,r)| f |q∥LΦ = sup

r>0

1
v(r)
∥ f ∥qLΦq

=

(
sup
r>0

1
v(r)1/q ∥ f ∥LΦq

)q

= ∥ f ∥qLM
Φq ,v1/q

. (2)

The following results give conditions that guarantee χB ∈ LMΦ,v, B ∈ B. Consequently, it also guarantees
that χE ∈ LMΦ,v whenever E is a Lebesgue measurable set with |E| < ∞.

Proposition 2.2. Let Φ be a Young’s function and v : (0,∞)→ (0,∞) be a Lebesgue measurable function. If Φ ∈ ▽2
and there is a constant C > 0 such that v satisfies

C ≤ v(r), ∀r ≥ 1, (3)
1

Φ−1(|B(0, r)|−1)
≤ Cv(r), ∀r ≤ 1, (4)

then for any B ∈ B, χB ∈ LMΦ,v.

Proof: Let s > 0. When r ≥ 1, according to (3), we have

1
v(r)
∥χB(0,s)χB(0,r)∥LΦ ≤ C∥χB(0,s)∥LΦ (5)

for some C > 0. When r < 1, (4) yields

1
v(r)
∥χB(0,s)χB(0,r)∥LΦ ≤

1
v(r)
∥χB(0,r)∥LΦ (6)

=
1

v(r)
1

Φ−1(|B(0, r)|−1)
≤ C.

Consequently, (5) and (6) assure that

∥χB(0,s)∥LMΦ,v = sup
r>0

1
v(r)
∥χB(0,s)χB(0,r)∥LΦ < C + C∥χB(0,s)∥LΦ .

Thus, χB(0,s) ∈ LMΦ,v. For any B(x, r) ∈ B, we have a s > 0 such that B(x, r) ⊆ B(0, s). Therefore, we have
χB(x,r) ∈ LMΦ,v.
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3. Local Orlicz-block spaces

This section studies the local Orlicz-block space, that is a pre-dual of the local Orlicz-Morrey space. The
local Orlicz-block space is used to obtain the main result of this paper in the next section.

The results presented in this section are the analogues of the results for the block type spaces obtained
in [25]. For completeness, we also give the details for the result presented in this section.

We begin with the definition of the local Orlicz-block spaces.

Definition 3.1. Let Φ be a Young’s function and v : (0,∞) → (0,∞) be a Lebesgue measurable function. For any
Lebesgue measurable function b , we write b ∈ bΦ,v if supp b ⊆ B(0, r) for some r > 0 and

∥b∥LΦ ≤
1

v(r)
. (7)

The local Orlicz-block space LBΦ,v is defined as

LBΦ,v =
{ ∞∑

k=1

λkbk :
∞∑

k=1

|λk| < ∞ and bk ∈ bΦ,v

}
. (8)

The local Orlicz-block space LBΦ,v is endowed with the norm

∥ f ∥LBΦ,v = inf
{ ∞∑

k=1

|λk| such that f =
∞∑

k=1

λkbk a.e.
}
. (9)

For any B(x, r) ∈ B, we have χB(x,r) ∈ LBΦ,v with ∥χB(x,r)∥LBΦ,v ≤ ∥χB∥LΦv(|x| + r).
We now show that the dual space of the local Orlicz-block space is the local Orlicz-Morrey space.

Theorem 3.2. Let Φ be a Young’s function and v : (0,∞)→ (0,∞) be Lebesgue measurable function. We have

(LBΨ,v)∗ = LMΦ,v

whereΨ is the conjugate function of Φ and (LBΨ,v)∗ denotes the dual space of LBΨ,v.

Proof: Let f ∈ LMΦ,v and b ∈ bΨ,v with supp b ∈ B = B(0, r), r > 0. The Hölder inequality yields∫
Rn
| f (x)b(x)|dx =

∫
B(0,r)
| f (x)b(x)|dx

≤ C∥χB(0,r) f ∥LΦ∥χB(0,r)b∥LΨ

≤ C
1

v(r)
∥χB(0,r) f ∥LΦ

for some C > 0. Thus,∫
Rn
| f (x)b(x)|dx ≤ C

1
v(r)
∥χB(0,r) f ∥LΦ ≤ C∥ f ∥LMΦ,v .

For any 1 =
∑

k∈N λkbk ∈ LBΨ,v, we have∫
Rn
| f (x)1(x)|dx ≤

∞∑
k=1

|λk|

∫
Rn
| f (x)bk(x)|dx ≤ C∥1∥LBΨ,v∥ f ∥LMΦ,v (10)

for some C > 0. Thus, LMΦ,v ↪→ (LBΨ,v)∗.
We prove the reverse embedding. For any r > 0 and L ∈ (LBΨ,v)∗, define X = {1χB(0,r) : 1 ∈ LΦ}. It is

easy to see that X is a subspace of LΦ. Define the linear functional l : X → C by l(h) = L(χB(0,r)1) where
h = χB(0,r)1 ∈ X and 1 ∈ LΦ.
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For any r > 0,

G =
1

∥1χB(0,r)∥LΨv(r)
1χB(0,r)

belongs to bΨ,v. According to (9), we get ∥G∥LBΨ,v ≤ 1. That is,

∥1χB(0,r)∥LBΨ,v ≤ ∥1χB(0,r)∥LΨv(r). (11)

Since L ∈ (LBΨ,v)∗, (11) guarantees that

|l(h)| = |L(1χB(0,r))| ≤ C∥1χB(0,r)∥LBΨ,v ≤ K∥1χB(0,r)∥LΨ = K∥h∥LΨ

for some K > 0 independent of h. Therefore, l is a bounded functional on X. The Hahn-Banach theorem
assures that l can be extended to be a member of (LΨ)∗. As (LΨ)∗ = LΦ, there exists a fr ∈ LΦ such that

l(1) =
∫
Rn

fr(x)1(x)dx, ∀1 ∈ LΨ

and without loss of generality, we can assume that supp fr ⊆ B(0, r).
Let r > s > 0. For any Lebesgue measurable set E with E ⊂ B(0, s), we find that

∫
E fr(x)dx = l(χE) =∫

E fs(x)dx. That is, fr = fs almost everywhere on B(0, r) ∩ B(0, s). It guarantees that there exists an unique
Lebesgue measurable function f such that f (x) = fr(x) on B(0, r) for all r.

Next, we show that f ∈ LMΦ,v. For any B(0, r) ∈ B and Lebesgue measurable function h with ∥h∥LΨ = 1,

H =
χB(0,r)h

v(r)
belongs to bΨ,v. In addition, we have ∥H∥LBΨ,v ≤ 1. That is, ∥χB(x,r)h∥LBΨ,v ≤ v(r).

As H ∈ bΨ,v, we get

1
v(r)
∥χB(0,r) f ∥LΦ =

1
v(r)

sup
∥h∥LΨ=1

∣∣∣∣∣∣
∫

B(0,r)
f (y)h(y)dy

∣∣∣∣∣∣
≤ sup
∥h∥LΨ=1

∣∣∣∣∣∣
∫

B(0,r)
fr(x)

χB(0,r)(x)h(x)
v(r)

dx

∣∣∣∣∣∣
≤ ∥L∥(LBΨ,v)∗ sup

∥h∥LΨ=1

∥∥∥∥∥hχB(0,r)

v(r)

∥∥∥∥∥
LBΨ,v

≤ ∥L∥(LBΨ,v)∗ .

By taking supremum over B(0, r) ∈ B on both sides of the above inequalities, we find that f ∈ LMΦ,v and
∥ f ∥LMΦ,v ≤ ∥L∥(LBΨ,v)∗ . Moreover, the functional L f (1) =

∫
Rn f (x)1(x)dx and L are identical on the set bΨ,v. In

view of Definition 3.1, the set of finite linear combinations of functions in bΨ,v is dense in LBΨ,v, therefore
L f = L and (LBΨ,v)∗ ↪→ LMΦ,v.

For any locally integrable function f , the Hardy-Littlewood maximal operator M f is defined as

M f (x) = sup
B∋x

1
|B|

∫
B
| f (y)|dy

where the supremum is taken over all B ∈ B containing x.
We obtain some preliminary results for the boundedness of the Hardy-Littlewood maximal function on

LBΦ,v.

Proposition 3.3. Let Φ be a Young’s function, v : (0,∞)→ (0,∞) be Lebesgue measurable function and f ∈ LBΦ,v.
If 1 ∈ M satisfies |1| ≤ | f |, then 1 ∈ LBΦ,v.
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Proof: As f ∈ LBΦ,v, (8) and (9) assure that for any ϵ > 0, there exists a family of {bi}
∞

i=1 ⊂ bΦ,v and a family
of scalars {λi}

∞

i=1 such that f =
∑
∞

i=1 λibi and
∑
∞

i=1 |λi| ≤ (1 + ϵ)∥ f ∥LBΨ,v . We find that 1 =
∑
∞

i=1 λici where

ci(x) =


1(x)
f (x)

bi(x), f (x) , 0,

0, f (x) = 0.

As |1| ≤ | f |, {ci}
∞

i=1 ⊂ bΦ,v and 1 ∈ LBΦ,v. Moreover, since ϵ is arbitrary, we have ∥1∥LBΦ,v ≤ ∥ f ∥LBΦ,v .

Theorem 3.4. Let Φ be a Young’s function and v : (0,∞)→ (0,∞) be Lebesgue measurable function. If v fulfills (3)
and

1
Ψ−1(|B(0, r)|−1)

≤ Cv(r), ∀r ≤ 1, (12)

whereΨ is the conjugate function of Φ, then LBΦ,v ⊂ L1
loc and LBΦ,v is a Banach space.

Proof: Proposition 2.2 asserts that χB ∈ LMΨ,v, ∀B ∈ B. According to Theorem 3.2, we have χB ∈ (LBΦ,v)∗.
For any f ∈ LBΦ,v, (10) gives∫

B
| f (x)|dx ≤ C∥χB∥LMΨ,v∥ f ∥LBΦ,v . (13)

As a result of this inequality, we find that LBΦ,v ↪→ L1
loc.

We are going to show that LBΦ,v is a Banach space. Let { fi}∞i=1 ⊂ LBΦ,v satisfy
∑
∞

i=1 ∥ fi∥LBΦ,v < ∞.
For any B ∈ B, (13) yields

∫
B

∑
∞

i=1 | fi(x)|dx ≤ C∥χB∥LMΨ,v (
∑
∞

i=1 ∥ fi∥LBΦ,v ). Consequently, f =
∑
∞

i=1 fi is a well
defined Lebesgue measurable function and f ∈ L1

loc.
For any ϵ > 0, there exists a N ∈N such that,

∞∑
i=N+1

∥ fi∥LBΦ,v < ϵ. (14)

The definition of LBΦ,v asserts that for any ϵ > 0, fi =
∑
∞

k=1 λk,ibk,i where {bk,i}i,k∈N ⊂ bΦ,v and
∑
∞

k=1 |λk,i| ≤

(1 + ϵ)∥ fi∥LBΦ,v .
For any 1 ≤ i ≤ n, there exists a Ni ∈N such that∥∥∥∥∥∥∥ fi −

Ni∑
k=1

λk,ibk,i

∥∥∥∥∥∥∥
LBΦ,v

≤

∞∑
k=Ni+1

|λk,i| < 2−iϵ. (15)

For any B ∈ B,

∫
B

∣∣∣∣∣∣∣ f (x) −
N∑

i=1

Ni∑
k=1

λk,ibk,i(x)

∣∣∣∣∣∣∣ dx

≤

∫
B

∣∣∣∣∣∣∣ f (x) −
N∑

i=1

fi(x)

∣∣∣∣∣∣∣ dx +
∫

B

∣∣∣∣∣∣∣
N∑

i=1

fi(x) −
N∑

i=1

Ni∑
k=1

λk,ibk,i(x)

∣∣∣∣∣∣∣ dx

≤

∫
B

∞∑
i=N+1

| fi(x)|dx +
N∑

i=1

∫
B

∣∣∣∣∣∣∣ fi(x) −
Ni∑

k=1

λk,ibk,i(x)

∣∣∣∣∣∣∣ dx.
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According to (13), (14) and (15), we get∫
B

∣∣∣∣∣∣∣ f (x) −
N∑

i=1

Ni∑
k=1

λk,ibk,i(x)

∣∣∣∣∣∣∣ dx

≤ C∥χB∥LMΨ,v

 ∞∑
i=N+1

∥ fi∥LBΦ,v +
N∑

i=1

∥∥∥∥∥∥∥ fi −
Ni∑

k=1

λk,ibk,i

∥∥∥∥∥∥∥
LBΦ,v


≤ C∥χB∥LMΨ,v

ϵ + N∑
i=1

2−iϵ

 < 2C∥χB∥LMΨ,vϵ.

Consequently, we find that
∑
∞

i=1
∑
∞

k=1 λk,ibk,i converges to f in L1
loc and

∑
∞

i=1
∑
∞

k=1 λk,ibk,i converges to f
locally in measure. A subsequence of {

∑N
i=1

∑M
k=1 λk,ibk,i}N,M converges to f a.e. We find that {λk,i}i,k∈N, satisfies∑

∞

i=1
∑
∞

k=1 |λk,i| ≤ (1 + ϵ)
∑
∞

i=1 ∥ fi∥LBΦ,v < ∞. That is,
∑
∞

i=1 fi converges to f in LBΦ,v. Since ϵ > 0 is arbitrary,

we have
∥∥∥∥∑

∞

i=1 fi
∥∥∥∥
LBΦ,v

≤
∑
∞

i=1 ∥ fi∥LBΦ,v . Therefore, LBΦ,v is a Banach space.

We now establish the boundedness of the Hardy-Littlewood maximal operator on LBΦ,v.

Theorem 3.5. Let Φ be a Young’s function and v : Rn
× (0,∞) → (0,∞) be a Lebesgue measurable function. If

Φ ∈ △2 ∩ ▽2, v satisfies (3), (12) and for any r > 0

v(2r) ≤ Cv(r), (16)
∞∑
j=0

Ψ−1(|B(0, 2 j+1r)|−1)
Ψ−1(|B(0, r)|−1)

v(2 j+1r) ≤ Cv(r) (17)

for some C > 0 where Ψ is the conjugate function of Φ, then the Hardy-Littlewood maximal operator M is bounded
on LBΦ,v.

Proof: Since v satisfies (3) and (12), Theorem 3.4 ensures that LBΦ,v ⊂ L1
loc, therefore the Hardy-Littlewood

maximal operator is well defined on LBΦ,v.
Let b ∈ bΦ,v with support B(0, r), r > 0. For any k ∈ N, write Bk = B(0, 2kr). Define mk = χBk+1\Bk M(b),

k ∈N\{0} and m0 = χB(0,2r) M(b). We have supp m0 ⊆ B(0, 2r), supp mk ⊆ Bk+1\Bk and M(b) =
∑
∞

k=0 mk.
Since Φ ∈ △2 ∩ ▽2, the Hardy-Littlewood maximal operator M is bounded on the Orlicz space LΦ.

Consequently, ∥m0∥LΦ ≤ ∥M b∥LΦ ≤ C∥b∥LΦ for some C > 0. According to (7) and (16), we find that
∥m0∥LΦ ≤ C∥b∥LΦ ≤ C 1

v(r) ≤ C 1
v(2r) for some C > 0 independent of r > 0 and b. Consequently, m0/C ∈ bΦ,v.

The Hölder inequality yields

mk = χBk+1\Bk |M(b)| ≤
χBk+1\Bk

2knrn

∫
B(0,r)
|b(y)|dy

≤ CχBk+1\Bk

1
2knrn

∥b∥LΦ∥χB(0,r)∥LΨ

for some C > 0 independent of k.
Consequently, in view of [23, (2.1)], we obtain

∥mk∥LΦ ≤ C
∥χBk+1\Bk∥LΦ

2knrn
∥b∥LΦ∥χB(0,r)∥LΨ

≤ C
∥χB(0,r)∥LΨ

∥χBk+1∥LΨ

v(2k+1r)
v(r)

1
v(2k+1r)

.

Define mk = σkbk where

σk =
∥χB(0,r)∥LΨ

∥χBk+1∥LΨ

v(2k+1r)
v(r)

.
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We find that bk/C ∈ bΦ,v for some C > 0 independent of k. Since v satisfies (17), we find that
∞∑
j=0

∥χB(0,r)∥LΨ

∥χB(0,2 j+1r)∥LΨ
v(2 j+1r) ≤ Cv(r).

That is,
∑
∞

k=0 σk < C for some C > 0. In view of Definition 3.1, M(b) ∈ LBΨ,v. In addition, there exists a
constant C0 > 0 so that for any b ∈ bΦ,v, ∥M(b)∥LBΦ,v < C0.

Finally, let f ∈ LBΦ,v. There is a {ck}
∞

k=1 ⊂ b
u
Φ,v and a sequence Λ = {λk}

∞

k=1 ∈ l1 such that f =
∑
∞

k=1 λkck
with ∥Λ∥l1 ≤ 2∥ f ∥LBΦ,v . As LBΦ,v is a Banach space, we have∥∥∥∥∥ ∞∑

k=1

λk M(ck)
∥∥∥∥∥
LBΦ,v

≤

∞∑
k=1

|λk|∥M(ck)∥LBΦ,v

≤ C0

∞∑
k=1

|λk| ≤ 2C0∥ f ∥LBΦ,v .

As M f ≤
∑
∞

k=1 |λk|M(ck), Proposition 3.3 asserts that M f ∈ LBΦ,v and ∥M f ∥LBΦ,v ≤ C∥ f ∥LBΦ,v for some
C > 0.

4. Main results

The main result is obtained in this section. It relies on the refined extrapolation theory for the local
Orlicz-Morrey space. It is obtained by refining the extrapolation theory from Rubio de Francia [47–49]
by using the ideas given in [26, 27] for studying the extrapolation theory of the Orlicz-slice spaces and
Morrey-Banach spaces.

We begin with the definition of the well-known Muckenhoupt weight functions.

Definition 4.1. For 1 < p < ∞, a locally integrable function ω : Rn
→ [0,∞) is said to be an Ap weight if

sup
B∈B

(
1
|B|

∫
B
ω(x)dx

) (
1
|B|

∫
B
ω(x)−

p′

p dx
) p

p′

< ∞

where p′ = p
p−1 . A locally integrable function ω : Rn

→ [0,∞) is said to be an A1 weight if

1
|B|

∫
B
ω(y)dy ≤ Cω(x), a.e. x ∈ B (18)

for some constant C > 0 independent of the balls B. Define A∞ = ∪p≥1Ap.

It is a well known fact that for any p ∈ (1,∞), the Hardy-Littlewood maximal operator is bounded on
the weighted Lebesgue space Lp(ω) if and only if ω ∈ Ap.

For any locally integrable function h, define

Rh(x) =
∞∑

k=0

Mk h(x)

2k∥Mk
∥LBΨ,v

.

If M : LBΨ,v → LBΨ,v is bounded, then R is well defined. Consequently, R satisfies

h(x) ≤ Rh(x), (19)
∥Rh∥LBΨ,v ≤ 2∥h∥LBΨ,v , (20)
[Rh]A1 ≤ 2∥M ∥LBΨ,v . (21)

We see that (19) follows from the definition ofR, (20) follows from the boundedness of the Hardy-Littlewood
maximal function on LBΨ,v and (21) is a consequence of the boundedness of Hardy-Littlewood maximal
function on LBΨ,v and (18).

The following theorem is the main result of this paper.
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Theorem 4.2. Let q > 1, Φ be a Young’s function and v : (0,∞) → (0,∞) be a Lebesgue measurable function. If
Φ1/q is a Young’s function, Φ1/q ∈ △2 ∩ ▽2, v satisfies (3), (4), (16) and

∞∑
j=0

(Φ1/q)−1(|B(0, 2 j+1r)|−1)

(Φ1/q)−1(|B(0, r)|−1)
vq(2 j+1r) ≤ Cvq(r) (22)

for some C > 0. Suppose that for every

ω ∈
{
Rh : h ∈ LBΨq,vq , ∥h∥LBΨq ,vq ≤ 1

}
(23)

whereΨq is the conjugate function of Φ1/q, the mapping T : Lq(ω)→ Lq(ω) satisfies∫
Rn
|T( f )(x)|qω(x)dx ≤ C

∫
Rn
| f (x)|qω(x)dx (24)

for some C > 0 independent of f . Then, we have

∥T f ∥LMΦ,v ≤ C∥ f ∥LMΦ,v , ∀ f ∈ LMΦ,v. (25)

Proof: The conjugate function ofΨq is Φ1/q. In addition, we have Φ1/q ∈ △2 ∩ ▽2 if and only ifΨq
∈ △2 ∩ ▽2.

Therefore, Theorem 3.5 guarantees that the Hardy-Littlewood maximal operator M is bounded on LBΨq,vq

and Theorem 3.4 assures that LBΨq,vq ⊂ L1
loc. Consequently, R is well defined on LBΨq,vq and satisfies

(19)–(21).
Let f ∈ LMΦ,v. For any h ∈ LBΨq,vq with ∥h∥LBΨq ,vq ≤ 1, (2) and (20) give∫

Rn
| f (x)|qRh(x)dx ≤ ∥| f |q∥LMΦ1/q ,v

q ∥Rh∥LBΨq ,vq

≤ C∥ f ∥qLMΦ,v
∥h∥LBΨq ,vq < ∞.

The above inequality shows that

LMΦ,v ↪→
⋂

h∈LBΨq ,vq ,∥h∥LB
Ψq ,vq ≤1

Lq(Rh). (26)

For any

ω ∈
{
Rh : h ∈ LBΨq,vq , ∥h∥LBΨq ,vq ≤ 1

}
,

(26) guarantees that LMΦ,v ↪→ Lq(ω). Therefore, (24) is valid for f ∈ LMΦ,v

Let f ∈ LMΦ,v. For any h ∈ LBΨq,vq , (19) and the boundedness of T on Lq(Rh) yield∫
Rn
|T f (x)|q|h(x)|dx ≤

∫
Rn
|T f (x)|qRh(x)dx ≤

∫
Rn
| f (x)|qRh(x)dx.

Consequently, Theorem 3.2 and (21) give∫
Rn
|T f (x)|q|h(x)|dx ≤ C∥| f |q∥LMΦ1/q ,v

q ∥Rh∥LBΨq ,vq

≤ C∥| f |q∥LMΦ1/q ,v
q ∥h∥LBΨq ,vq .
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By taking supremum over h ∈ LBΨq,vq with ∥h∥LBΨq ,vq ≤ 1 on both sides of the above inequality, (2) and
Theorem 3.2 guarantee that

∥T f ∥LMΦ,v = ∥|T f |q∥1/qLMΦ1/q ,v
q

=

(
sup

{∫
Rn
|T f (x)|q|h(x)|dx : ∥h∥LBΨq ,vq ≤ 1

})1/q

≤ C∥| f |q∥1/qLMΦ1/q ,v
q
= C∥ f ∥LMΦ,v

which is (25).
Notice that the classical extrapolation theory only yields the result for some subset of LMΦ,v only, such

as the class of bounded functions with compact support of the class of Schwartz functions. The preceding
theorem gives result on the entire local Orlicz-Morrey space. Thanks to the embedding (26), we can obtain
the result for the entire local Orlicz-Morrey space.

We first apply Theorem 4.2 to the Calderón-Zygmund operators. Let D′ be the space of distributions
on Rn. A linear operator T : C∞0 → D

′ is a Calderón-Zygmund operator, if T is bounded on L2 and there
exists a kernel C, δ > 0 and K(x, y) : Rn

×Rn
\{(x, x) : x ∈ Rn

} → R such that for any f ∈ C∞0 and x < supp f ,

T f (x) =
∫
Rn

K(x, y) f (y)dy,

where K satisfies

|K(x, y)| ≤ C|x − y|−n, x , y,

|K(x, y) − K(z, y)| ≤ C|x − z|δ|x − y|−n−δ, |x − z| ≤ |x − y|/2,

|K(x, y) − K(x, z)| ≤ C|y − z|δ|x − y|−n−δ, |y − z| ≤ |x − y|/2.

One of the celebrated result for the Calderón-Zygmund operators is the following weighted norm
inequality.

Theorem 4.3. Let p ∈ (1,∞) and ω ∈ Ap. If T is a Calderón-Zygmund operator, then T is bounded on Lp(ω).

As (21) asserts that {Rh : h ∈ LBΨq,vq , ∥h∥LBΨq ,vq ≤ 1} ⊆ A1, Theorems 4.2 and 4.3 yield the boundedness
of Calderón-Zygmund operators on LMΦ,v.

Theorem 4.4. Let q > 1, T be a Calderón-Zygmund operator, Φ be a Young’s function and v : (0,∞)→ (0,∞) be a
Lebesgue measurable function. If Φ1/q is a Young’s function, Φ1/q ∈ △2 ∩ ▽2, v satisfies (3), (4), (16) and (22), then
T is bounded on LMΦ,v.

The boundedness of the Calderón-Zygmund operators on the central Morrey-Orlicz spaces and the
Orlicz-Morrey spaces were given in [34] and [39, 40], respectively.

We consider a number of important operators related with the Calderón-Zygmund operators. We begin
with the nonlinear commutators generated by the Calderón-Zygmund operators. Let T be a Calderón-
Zygmund operator. We define

N f = T( f log | f |) − T f log |T f |. (27)

The operator N is introduced by Rochberg and Weiss in [46]. The nonlinear commutators generated by the
Calderón-Zygmund operators have applications on the estimates of the Jacobian [18] and the weak minima
of variational integrals [30].

The main result in [46] is the boundedness of N on Lp, p ∈ (1,∞). The weighted norm inequalities for N
is obtained in [41, Theorem 1.3].
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Theorem 4.5. Let p ∈ (1,∞) and ω ∈ Ap. There is a constant C > 0 such that∫
Rn
|N f (x)|pω(x)dx ≤ C

∫
Rn
| f (x)|pω(x)dx.

The reader is referred to [41, Theorem 1.3] for the proof of the preceding theorem. The reader is referred to
[28] for the boundedness of N on Morrey type spaces.

Theorem 4.6. Let q > 1, Φ be a Young’s function and v : (0,∞) → (0,∞) be a Lebesgue measurable function. If
Φ1/q is a Young’s function, Φ1/q ∈ △2 ∩ ▽2, v satisfies (3), (4), (16) and (22), then N is bounded on LMΦ,v.

The above result shows that Theorem 4.2 is also applied to nonlinear operators. Next, we study the
oscillatory singular integral operators. Let K(x, y) satisfy

|K(x, y)| ≤ C|x − y|−n, x , y, (28)

| ▽x K(x, y)| + | ▽y K(x, y)| ≤ C|x − y|−n−1, x , y. (29)

Let P(x, y) be a real-valued polynomial onRn
×Rn. The oscillatory singular integral operator TK,P associated

with K and P is defined as

TK,P f (x) = p.v.
∫
Rn

eiP(x,y)K(x, y) f (y)dy.

The studies of the oscillatory singular integral operators were started from [45]. The weighted norm
inequalities for the oscillatory singular integral operators were obtained in [32].

Theorem 4.7. Let p ∈ (1,∞), P(x, y) be real-valued polynomial on Rn
× Rn and K(x, y) satisfies (28)–(29). If the

Calderón-Zygmund operator

T f (x) =
∫
Rn

K(x, y) f (y)dy

is bounded on L2, then for any ω ∈ Ap, TK,P is bounded on Lp(ω).

In view of the preceding theorem and Theorem 4.2, we obtain the boundedness of the oscillatory singular
integral operators on LMΦ,v.

Theorem 4.8. Let q > 1, P(x, y) be real-valued polynomial onRn
×Rn and K(x, y) satisfies (28)–(29),Φ be a Young’s

function and v : (0,∞)→ (0,∞) be a Lebesgue measurable function. If T is bounded on L2,Φ1/q is a Young’s function,
Φ1/q ∈ △2 ∩ ▽2, v satisfies (3), (4), (16) and (22), then TK,P is bounded on LMΦ,v.

We now turn to the singular integrals with rough kernels. The studies of the singular integrals with
rough kernels can be chased back to Calderón and Zygmund [9] where they introduced the celebrated
method of rotation to obtain the boundedness of the singular integrals with odd kernels.

Let n ≥ 2 andΩ be a Lebesgue measurable function. We say thatΩ is a homogeneous function of degree
zero if Ω(λx) = Ω(x), for any λ > 0 and x ∈ Rn. We say that Ω satisfies the vanishing moment condition if∫

Sn−1
Ω(z)dz = 0. (30)

Let Ω ∈ L1(Sn−1) be a homogeneous function satisfying the vanishing moment condition. The singular
integral with rough kernel Ω is defined as

TΩ f (x) = p.v.
∫
Ω(x − y)
|x − y|n

f (y)dy.

We have the following weighted norm inequality for the singular integrals with rough kernels, see
[15, 53].
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Theorem 4.9. Let θ ∈ (1,∞) andΩ ∈ Lθ(Sn−1) be a homogeneous function of degree zero that satisfies the vanishing
moment condition. If p ∈ (θ′,∞) and ω ∈ Ap/θ′ , then TΩ is bounded on Lp(ω).

The preceding result and Theorem 4.2 yield the boundedness of TΩ on LMΦ,v.

Theorem 4.10. Let θ ∈ (1,∞) and Ω ∈ Lθ(Sn−1) be a homogeneous function of degree zero that satisfies (30). Let
q > θ′, Φ be a Young’s function and v : (0,∞) → (0,∞) be a Lebesgue measurable function. If Φ1/q is a Young’s
function, Φ1/q ∈ △2 ∩ ▽2, v satisfies (3), (4), (16) and (22), then TΩ is bounded on LMΦ,v.

The preceding theorem gives a complementary result for the boundedness of singular integral operators
with rough kernels on Orlicz-Morrey spaces. For the boundedness of the singular integral operators with
rough kernels on Morrey-Banach spaces, in particular, the Orlicz-Morrey spaces, the reader is referred to
[24].

Finally, we study the boundedness of the Marcinkiewicz integral on LMΦ,v. Let Ω ∈ L1(Sn−1). The
Marcinkiewicz integralMΩ is defined as

MΩ f (x) =

∫ ∞

0

∣∣∣∣∣∣
∫
|x−y|≤t

Ω(x − y)
|x − y|n−1 f (y)dy

∣∣∣∣∣∣2 dt
t3


1
2

.

The Marcinkiewicz integral was introduced by Stein in [51] as a generalization of Littlewood-Paley
function. The weighted norm inequalities for the Marcinkiewicz integral are given in the following theorem.

Theorem 4.11. Let θ ∈ (1,∞) and Ω ∈ Lθ(Sn−1) be a homogeneous function of degree zero satisfying (30). If
p ∈ (θ′,∞) and ω ∈ Ap/θ′ , thenMΩ is bounded on Lp(ω).

For the proof of the above theorem, the reader is referred to [14, 16].
By applying Theorem 4.2 to the above weighted norm inequality forMΩ, we obtain the boundedness

ofMΩ on LMΦ,v in the following theorem.

Theorem 4.12. Let θ ∈ (1,∞) and Ω ∈ Lθ(Sn−1) be a homogeneous function of degree zero satisfying (30). Let
q > θ′, Φ be a Young’s function and v : (0,∞) → (0,∞) be a Lebesgue measurable function. If Φ1/q is a Young’s
function, Φ1/q ∈ △2 ∩ ▽2, v satisfies (3), (4), (16) and (22), thenMΩ is bounded on LMΦ,v.
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