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Abstract. In this article, we study non-homeomorphic mappings of Riemannian surfaces of the Sobolev
class. We have established estimates for the distortion of the modulus of families of paths, and as a conse-
quence, we obtained results on the boundary behavior of such mappings between domains of Riemannian
surfaces.

1. Introduction

One of the main problems of modern analysis is the extension of mappings to the boundary of a domain.
There are a number of results on this topic related, in particular, to the theory of quasiconformal mappings
and their generalizations, see [1]–[12]. Among the listed papers, we note the fundamental assertion of
Näkki, see [1, Theorem 2.4] (see also [2, Theorem 17.15])

Theorem (on the extension of quasiconformal mappings to the boundary). Let D,D ′ be domains in
Rn, n > 2, and let f be a quasiconformal mapping of D onto D ′. Suppose that D is locally connected on its
boundary, and ∂D ′ is quasiconformally accessible. Then f has a continuous extension f : D→ Rn.

This result was developed in a number of papers by other authors. First of all, Srebro and Vuorinen
extended Näkki’s theorem to quasiregular mappings, see [3, Theorem 4.2] and [4, Theorem 4.10.II]. More
recently, Martio, Ryazanov, Srebro and Yakubov, as well as Ignat’ev and Ryazanov obtained results on
the boundary extension of homeomorphisms with unbounded characteristic, see [5, Lemma 5.16] and [6,
Lemma 2.1, Corollary 2.1]. Later they were carried over to Riemannian manifolds and metric measure
spaces (see, e.g. [7], [9], [10] and [11]).

Let us now dwell on the recent results of Ryazanov and Volkov [12]. Here the authors proposed an
approach that allows one to study the boundary behavior of Sobolev classes acting between two Riemannian
surfaces. It should be noted that the paper [12] contains important results in this direction, however, they all
concern only homeomorphisms. In our opinion, it would be important to describe the boundary behavior
of similar mappings with branching, and this problem is largely solved in this article. As in [12], the main
research tool is the modulus method. To a large extent, our publication is devoted to the development of
the modulus method and the identification of fundamental opportunities of this method in this context.
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Conventionally, the paper may be divided into three parts: establishing an estimate for the distortion
of the modulus of families of curves, §§ 2 and 3; boundary behavior of mappings, § 4; local the behavior
of the mappings (at the inner points of the domain) and the global behavior of the mappings (at the
inner and boundary points of the domain), §§ 5–6. In the last sections, homeomorphisms and mappings
with branching are studied separately, since the corresponding results have been proved under various
conditions and are new in both cases.

Here are some definitions. A Riemannian surface is a two-dimensional manifold with a countable base in
which transition maps between corresponding maps are conformal, see, e.g., [12]. The Riemannian surface
S considered below will be assumed to be a of hyperbolic type, that is, a surface conformally equivalent to
the unit disk D = {z ∈ C : |z| < 1} with ”glued” points (see [13, item 6, Section 1]). In other words, we
consider those and only those Riemannian surfaces that are conformally equivalent to the factor spaceD/G,
where G is some group of linear fractional automorphisms of the unit disk that has no fixed points and acts
discontinuously in D. Recall that each element p0 of the factor space D/G is an orbit of the point z0 ∈ D,
that is, p0 = {z ∈ D : z = 1(z0), 1 ∈ G}. In what follows we identify the Riemannian surface S with its factor
representationD/G in terms of some group G of linear fractional mappings 1 : D→ D.

In what follows, we use the hyperbolic metric on the unit diskD defined by the equalities

h(z1, z2) = log
1 + t
1 − t

, t =
|z1 − z2|

|1 − z1z2|
, (1)

as well as the hyperbolic area of the set S ⊂ D and the length of the path γ : [a, b] → D, which are given,
respectively, by the relations

h(S) =

∫
S

4 dm(z)
(1 − |z|2)2 , sh(γ) =

∫
γ

2 |dz|
1 − |z|2

, z = x + iy (2)

(see [12, (2.4), (2.5)]). It is easy to verify by direct calculations that the hyperbolic metric, length, and area
are invariant under linear fractional mappings of the unit disk onto itself.

In what follows, for a point y0 ∈ D and a number r > 0, we define the hyperbolic disk Bh(y0, r) and the
hyperbolic circle Sh(y0, r) by means of equalities

Bh(y0, r) := {y ∈ D : h(y0, y) < r} ,Sh(y0, r) := {y ∈ D : h(y0, y) = r} . (3)

We perform the metrization of the surfaceD/G as follows. If p1, p2 ∈ D/G, we put

h̃(p1, p2) := inf
11,12∈G

h(11(z1), 12(z2)) , (4)

where pi = Gzi = {ξ ∈ D : ∃ 1 ∈ G : ξ = 1(zi)}, i = 1, 2. In the latter case, the set Gzi will be called the orbit
of the point zi, and p1 and p2 will be called the orbits of the points z1 and z2, respectively. Note that h̃ is a
metric onD/G (see Section 2 in [12]).

Everywhere below, S = D/G and S∗ = D/G∗ are two different Riemannian surfaces of a hyperbolic
type. In what follows, we do not distinguish between the original Riemannian surface S and its factor
representation D/G. A continuous extension of the mapping f : D → D∗ to a point f : D → D∗ p0 ∈ D, as
well as other concepts related to limit, continuity, topology, etc., are understood in the sense of the metric
spaces (D/G, h̃) and (D/G∗, h̃∗), where h̃ and h̃∗ are metrics defined in (4). The elements of length and area
on the surfaces S and S∗ are denoted ds̃h, d̃h and dsh̃∗

, dh̃∗, respectively.

Let D and D ∗ be domains on Riemannian surfaces S and S ∗, respectively. A mapping f : D → D ∗
is called discrete if the preimage f−1(y) of any point y ∈ D ∗ consists of isolated points only. A mapping
f : D → D ∗ is called open if the image of any open set U ⊂ D is an open set in D ∗. The definition of
mappings of the Sobolev class W1,1

loc on a Riemannian surface can be found, for example, in [12]. In further,
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for mappings f : D→ D ∗ of a class W1,1
loc in local coordinates fz =

(
fx + i fy

)
/2 and fz =

(
fx − i fy

)
/2, z = x+ iy.

In addition, the norm and the Jacobian of the mapping of f in local coordinates are expressed, respectively,
by the equalities ‖ f ′(z)‖ = | fz|+ | fz| and J f (z) = | fz|2− | fz|2.A dilatation of the mapping f at a point z is defined
by the relation

K f (z) =
| fz| + | fz|
| fz| − | fz|

(5)

for J f (z) , 0, K f (z) = 1 for ‖ f ′(z)‖ = 0 and K f (z) = ∞ otherwise. It is easy to verify by direct calculations that
K f (z) does not depend on local coordinates. A mapping f : D→ D ∗ is called a mapping with finite distortion, if
f ∈W1,1

loc(D) and, in addition, there is almost everywhere a finite function K(z) such that ‖ f ′(z)‖2 6 K(z) · J f (z)
for almost all z ∈ D.

As usual, a path γ on the Riemannian surface S is defined as a continuous mapping γ : I→ S,where I is
a finite segment, an interval or a half-interval of a real axis. Let Γ be a family of paths in S. A Borel function
ρ : S→ [0,∞] is called admissible for the family Γ of paths γ, if

∫
γ

ρ(p) ds̃h(p) > 1 for any path γ ∈ Γ. The latter

is briefly written in the form: ρ ∈ adm Γ. A modulus of the family Γ is a real-valued function

M(Γ) := inf
ρ∈adm Γ

∫
S

ρ2(p) d̃h(p) .

To avoid confusion, we introduce separately the notation for the modulus of the family Γ in the Euclidean
sense, namely, put

Me(Γ) := inf
ρ∈adme Γ

∫
D

ρ2(z) dm(z) ,

where ρ ∈ adme Γ if and only if
∫
γ

ρ(z) |dz| > 1 for any (locally rectifiable) path γ ∈ Γ.

Let D and D ∗ be given domains lying in the Riemannian surfaces S and S∗, respectively. Given a mapping
f : D → D ∗, a set E ⊂ D and y ∈ D ∗,we define a multiplicity function N(y, f ,E) as the number of preimages
of the point y in E, that is

N(y, f ,E) = card
{
p ∈ E : f (p) = y

}
, N( f ,E) = sup

y∈S∗
N(y, f ,E) . (6)

We say that the function ρ : S → [0,∞] measurable with respect to the area h̃ is extensively admissible for
the family Γ, abbr. ρ ∈ ext adm Γ, if the inequality

∫
γ

ρ ds̃h(p) > 1 is satisfied for all locally rectifiable paths

γ ∈ Γ \ Γ0, where M(Γ0) = 0.

The next class of mappings is related to the Gehring ring definition of quasiconformality (see [14]) and
is necessary from a technical point of view. Its definition includes a distortion of the modulus of families
of paths in such a way as is necessary to solve the corresponding problems of interest to us. Let D and D ∗
be domains lying in the Riemannian surfaces S and S∗, respectively, and Q : D → (0,∞) be a measurable
function with respect to the measure h̃ on S. We say that f : D→ D ∗ is a lower Q-mapping at a point p0 ∈ D,
if for some ε0 = ε0(p0) > 0, ε0 < d0 = sup

p∈D
h̃(p, p0), and any ring Ã(p0, ε, ε0) = {p ∈ S : ε < h̃(p, p0) < ε0} the

inequality

M( f (Σε)) > inf
ρ∈ext adm Σε

∫
D∩Ã(p0,ε,ε0)

ρ2(p)
Q(p)

d̃h(p) (7)
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holds, where Σε denotes the family of all intersections of circles S̃(p0, r) = {p ∈ S : h̃(p, p0) = r} with D,
r ∈ (ε, ε0) (see [8, Chapter 9]).

The next assertion contains a fundamental estimate for the distortion of families of paths in Sobolev
classes (see also [12, Lemma 3.1] and [15, Lemma 3.1] in this regard). Further studies related to the boundary
behavior and equicontinuity of mappings are based on estimates of such a plan (see paragraphs 4–6).

Theorem 1.1. Let D and D ∗ be domains of Riemannian surfaces S and S∗, respectively, D ∗ is compact in
S∗ and p0 ∈ D. Then any open discrete mapping f : D → D ∗ of finite distortion of the class W1,1

loc such that
N( f ,D) < ∞ satisfies (7) at p0 for Q(p) = c · N( f ,D) · K f (p), where K f (p) is defined by the relation (5), the
function N( f ,D) is given in (6), and c > 0 is some constant depending only on the point p0 and the domain
D ∗.

Let us now formulate the main result of the article concerning the continuous boundary extension of
mappings. Let E, F ⊂ S be arbitrary sets. In the future, everywhere by Γ(E,F,D) we denote the family of
all paths γ : [a, b] → D, which join E and F in D, that is, γ(a) ∈ E, γ(b) ∈ F and γ(t) ∈ D for t ∈ (a, b). Let
us agree to say that the boundary ∂G of the domain G is strongly accessible at the point p0 ∈ ∂G if for each
neighborhood U of p0 there is a compactum E ⊂ G, a neighborhood V ⊂ U of the same point and a number
δ > 0 such that M(Γ(E,F,G)) > δ for any continua E and F intersecting both ∂U, and ∂V.We will also say that
a boundary ∂G is strongly accessible if it is strongly accessible at each of its points. Note that, for an open
closed mapping f : D→ D ∗, the following condition holds: N( f ,D) < ∞ (see [16, Theorem 5.5]).

A mapping f : D→ C, D ⊂ C, is called quasiconformal if f is a homeomorphism and, moreover, there is
a constant K > 1 such that Me( f (Γ)) 6 K ·Me(Γ) for any family of paths Γ in D. We say that the boundary
of a domain D in S is locally quasiconformal if each point p0 ∈ ∂D has a neighborhood U in S, which can be
mapped by a quasiconformal mapping ψ onto the unit diskD ⊂ C so that ψ(∂D∩U) is the intersection ofD
with the straight line x = 0,where z = x+ iy ∈ D. The most important result of this article can be formulated
as follows.

Theorem 1.2. Let D and D ∗ be domains on the Riemannian surfaces S and S∗, respectively, let D ∗ be a
compactum in S∗, let p0 ∈ ∂D and let Q : S→ (0,∞) be a measurable function with respect to the measure h̃,
Q(p) ≡ 0 in S \D. Let also f : D→ D ∗ be an open discrete closed W1,1

loc-mapping with a finite distortion of D
onto D∗ such that K f (p) 6 Q(p) for almost all p ∈ D. Suppose that the domain D has a locally quasiconformal
boundary, and the boundary of the domain D ∗ is strongly accessible. If the relations

ε0∫
ε

dt
‖Q‖(t)

< ∞ ,

ε0∫
0

dt
‖Q‖(t)

= ∞ , (8)

hold for some ε0 > 0 and any ε ∈ (0, ε0), then f has a continuous extension to p0. Here

‖Q‖(r) :=
∫

S̃(p0,r)

Q(p) ds̃h(p)

denotes L1-norm of the function Q over the circle S̃(p0, r).

2. Preliminaries

Let us start the section with the next most important Remark.
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Remark 2.1. Following [17, item 7.2], the hyperbolic distance h(z1, z2) in the unit disk [17, item 7.2], D can be
equivalently is defined as inf of hyperbolic lengths of all piecewise smooth paths joining the points z1, z2.Note that the
indicated inf is calculated and is exactly equal to the right-hand side in (1) (see [17, theorem 7.2.1, relation (7.2.5)]).

If we define the length l(γ) of the path γ : [a, b]→ D by the equality

l(γ) := sup
π

n−1∑
k=0

h(γ(tk), γ(tk+1)) , (9)

where h is from (1), and π = {a = t0 6 t1 6 t2 6 . . . 6 tn = b}, then l(γ) = sh(γ) for absolutely continuous paths.
The proof of this fact can be carried out similarly to [2, Theorem 1.3], and therefore goes down. Further, for the

rectifiable path γ : [a, b] → D there is a unique normal representation γ0 : [0, l(γ)] → D such that γ0(s(t)) = γ(t)
for any t ∈ [a, b], where s(t) is the length of the path γ on the segment [a, t] (see, for example, [18, Sec. 7.1] or [2,
Sec. 2]). If the path is only locally rectifiable, then l(γ) = ∞ and, accordingly, γ0 : [0,∞) → D, γ0(s(t)) = γ(t) for
any t ∈ [a, b]. Let ρ : D→ R be a nonnegative Borel function. Then the integral from ρ over the (locally rectifiable)
path γ can be defined by equality

∫
γ

ρ(x) dsh(x) =

l(γ)∫
0

ρ(γ0(s)) ds . (10)

Observe that, the integral in (10) coincides with

∫
γ

ρ(z)
2 |dz|

1 − |z|2
=

b∫
a

2ρ(γ(t)) |γ ′(t)|
1 − |γ(t)|2

dt

for absolutely continuous path γ (see [19, Corollary 2.1]).

It should be noted that the normal representation of γ0(s) by an arbitrary locally rectifiable path γ(t) is trivial locally
absolutely continuous with respect to its natural parameter s ∈ [0, l(γ)] (s ∈ [0, l(γ)), if l(γ) = ∞). In particular,

l(γ)∫
0

ρ(γ0(s)) ds =

l(γ)∫
0

2ρ(γ0(s)) |γ ′0(s)|

1 − |γ0(s)|2
ds .

In view of the above, we will not distinguish between the length of the path (integral over it) in (9)–(10) and in (2),
respectively.

In order to simplify research, we introduce into consideration the so-called fundamental set F. We define
it as a subset of D, containing one and only one point of the orbit z ∈ Gz0 (see [17, item 9.1, Ch. 9]). A
fundamental domain D0 is a domain inDwith the property D0 ⊂ F ⊂ D0 such that h(∂D0) = 0 (see ibid). The
existence of fundamental sets and fundamental domains is justified by the presence of their examples, the
most important of which is Dirichlet polygon,

Dζ =
⋂
1∈G,1,I

H1(ζ) , (11)

where H1(ζ) = {z ∈ D : h(z, ζ) < h(z, 1(ζ))} (see [12, relation (2.6)]). Let π be the natural projection of D
onto D/G, then π is an analytic function conformal on D0 (see also [17, Proposition 9.2.2] and comments
after (2.11) in [12]). Note, in addition, that there is a one-to-one correspondence between the points of F
andD/G. For z1, z2 ∈ F we put

d(z1, z2) := h̃(π(z1), π(z2)) , (12)



E. Sevost’yanov / Filomat 36:4 (2022), 1295–1327 1300

where h̃ is defined in (4). Observe that d(z1, z2) 6 h(z1, z2) and, moreover, for any compactum A ⊂ D there
is δ = δ(A) > 0 such that

d(z1, z2) = h(z1, z2), ∀ z1, z2 ∈ A : h(z1, z2) < δ , (13)

see e.g. [19, Lemma 2.3].

Note that the metric space (F, d) is homeomorphic to (D/G, h̃).Define the elements of length and volume
on (F, d) according to the relations (2), in addition, we also define the elements ds̃h and d̃h of length and area
on the surface S, respectively as the elements dsh and dh in their respective local coordinates. These local
coordinates can be, in particular, fundamental domains D0 in D. Due to d(z1, z2) 6 h(z1, z2) and (13), the
lengths of the paths in the metrics h and d of the domain D0 coincide.

Here and below, B(z0, r) and S(z0, r) denote the Euclidean disk and a circle on a plane centered at the
point z0 ∈ C and of a radius r > 0, respectively. Let p0 ∈ S and z0 ∈ D be such that π(z0) = p0, where π
is the natural projection of D onto D/G. Denote by D0 the Dirichlet polygon centered at the point z0, and
put ϕ := π−1. Note that the mapping ϕ is a homeomorphism of (S, h̃) onto (F, d), where h̃ is a metric on the
surface S, a d is the above-defined metric on the fundamental set F, D0 ⊂ F ⊂ D0. Without loss of generality,
we may also assume that z0 = 0. Indeed, otherwise consider an auxiliary mapping 10(z) = (z − z0)/(1 − zz0),
having no fixed points inside the unit disk. Then, if G is a group of linear fractional maps corresponding
to the surface S, then G ′ = {10 ◦ 1, 1 ∈ G}, obviously also corresponds to S in the sense that the surface S is
again conformally equivalent to the factor spaceD/G ′.Choose a compact neighborhood V ⊂ D of the point
0 ∈ F ⊂ D, such that d(x, z) = h(x, z) for all x, z ∈ V, which is possible due to condition (13). In addition, we
choose V so that V ⊂ B(0, r0) for some 0 < r0 < 1. Put U := π(V). In this case, the neighborhood U is called
a normal neighborhood of the point p0. Note that the ball B̃(p0, r) ⊂ U corresponds to the set Bh(0, r) ⊂ C, more
precisely,

B̃(p0, r) := {p ∈ S : h̃(p, p0) < r} = {p ∈ S : h(ϕ(p), 0) < r} =

=
{
p ∈ S : |ϕ(p)| <

er
− 1

er + 1

}
= π

(
B
(
0,

er
− 1

er + 1

))
, (14)

where h is a hyperbolic metric, see (1). Similarly,

S̃(p0, r) := {p ∈ S : h̃(p, p0) = r} =

=
{
p ∈ S : |ϕ(p)| =

er
− 1

er + 1

}
= π

(
S
(
0,

er
− 1

er + 1

))
. (15)

Throughout what follows, the normal neighborhood U of the point p0, as well as the mapping ϕ and the
fundamental set F, we will considered selected and fixed. The following analogue of Fubini’s theorem for
Riemannian surfaces holds.

Lemma 2.2. Let U be some normal neighborhood of the point p0 ∈ S, and let Q : U → [0,∞] be a function
measurable with respect to the measure h̃, and d0 := dist (p0, ∂U) := inf

p∈∂U
h̃(p0, p). Then, for any 0 < r0 6 d0

∫
B̃(p0,r0)

Q(p) d̃h(p) =

r0∫
0

∫
S̃(p0,r)

Q(p) ds̃h(p) dr , (16)

where d̃h(p) and ds̃h are area and length elements on S, respectively, see (2), and the disk B̃(p0, r0) and the
circle S̃(p0, r) are defined in (14) and (15).

The assertion of Lemma 2.2 includes the measurability of ψ(r) :=
∫

S̃(p0,r)

Q(p) ds̃h(p) with respect to r on the

right-hand side of the integral in (16).
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Proof. According to the definition of a normal neighborhood, the ball B̃(p0, r0) ⊂ S corresponds to the ball
Bh(0, r0) ⊂ F in the hyperbolic metric h. Taking into account the relation (14), Bh(0, r0) = B

(
0, er0−1

er0 +1

)
. By

definition∫
B̃(p0,r0)

Q(p) d̃h(p) = 4
∫

B
(
0, er0−1

er0 +1

)
Q(π(z))

(1 − |z|2)2 dm(z) . (17)

We use the classical Fubini theorem on the plane (see, for example, [20, Theorem 2.6.2] or [21, Theo-
rem 8.1.III]). Using polar coordinates and applying this theorem, we will have that

I = 4

er0−1
er0 +1∫
0

∫
S(0,r)

Q(π(z))
(1 − |z|2)2 |dz| dr =

= 2

er0−1
er0 +1∫
0

1
1 − r2

∫
S(0,r)

2 Q(π(z))
1 − |z|2

|dz| dr . (18)

The last relation takes into account that the function
∫

S(0,r)

2Q(π(z))
1−|z|2 |dz| is measurable by r (which is also part

of the statement of the classical Fubini theorem). Let us make the change t = log 1+r
1−r in the last integral in

accordance with [20, Theorem 3.2.6]. Since dt = 2 dr
1−r2 , we get:

2

er0−1
er0 +1∫
0

1
1 − r2

∫
S(0,r)

2Q(π(z))
1 − |z|2

|dz| dr =

r0∫
0

∫
S(0, er−1

er+1 )

2Q(π(z))
1 − |z|2

|dz| dr =

=

r0∫
0

∫
Sh(0,r)

Q(π(z)) dsh(z) dr =

r0∫
0

∫
S̃(p0,r)

Q(p)ds̃h(p) dr =

r0∫
0

ψ(r) dr . (19)

In particular, by [20, Theorem 3.2.6] the function ψ(r) is measurable by r.Now combining (17), (18) and (19),
we obtain that ∫

B̃(p0,r0)

Q(p) d̃h(p) =

r0∫
0

∫
S̃(p0,r)

Q(p) ds̃h(p) dr ,

as required to prove.

Before proceeding directly to the study of mappings on Riemannian surfaces (including mappings
with (7)), we formulate the following statement, which relates the concept of ”almost all” with respect to
the modulus of families of paths and the Lebesgue sense (its proof is similar to [22, Lemma 4.1]).

Lemma 2.3. Let D be a domain of the Riemannian surface S, p0 ∈ D and let U be some normal neighborhood
of the point p0. If some property P holds for almost all intersections D(p0, r) := S̃(p0, r) ∩D of circles S̃(p0, r)
with a domain D, lying in U, where ”almost all” is understood in the sense of the modulus of families of
paths and the set

E = {r ∈ R : P holds for S̃(p0, r) ∩D}

is Lebesgue measurable, then P also holds for almost all D(p0, r) in U with respect to the linear Lebesgue
measure by a parameter r ∈ R. Conversely, if P holds for almost all D(p0, r) := S̃(p0, r) ∩ D with respect to
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the linear Lebesgue measure in r ∈ R, then P also holds for almost all D(p0, r) := S̃(p0, r) ∩D in the sense of
a modulus.

The proof of the following statement is similar to [8, Theorem 9.2] (see also [22, Lemma 4.2]), and is
therefore omitted.

Lemma 2.4. Let D and D ∗ be domains in S and S∗, respectively, let p0 ∈ D and let Q : D → (0,∞) be
a measurable function. Then f : D → D ∗ satisfies estimate (7) at the point p0 if and only if there is
0 < d0 < sup

p∈D
h̃(p, p0) such that

M( f (Σε)) >

ε0∫
ε

dr
‖Q‖(r)

∀ ε ∈ (0, ε0) , ε0 ∈ (0, d0) , (20)

where, as above, Σε denotes the family of all intersections of the circles S̃(p0, r) with the domain D, r ∈ (ε, ε0),

‖Q‖(r) =

∫
D(p0,r)

Q(p) ds̃h(p)

is L1-norm of the function Q over the intersection D ∩ S̃(p0, r) = D(p0, r) = {p ∈ D : h̃(p, p0) = r}.

3. Basic bound for distortion of the modulus of families of paths

We say that a set A ⊂ S has Lebesgue measure zero if A can be covered by at most countable the number
of normal neighborhoods Uk ⊂ S, k = 1, 2, . . . , such that ϕk(Uk) → D, where ϕk is some homeomorphisms
related to each other conformal transformation, in this case, m(ϕk(Uk ∩ A)) = 0 for any k = 1, 2, . . . , m is the
Lebesgue measure in C. The following statements are true.

Lemma 3.1. Suppose that B0 ⊂ S has a Lebesgue measure zero, p0 ∈ S, U is a normal neighborhood of the
point p0, U , S and 0 < ε0 < dist (p0, ∂U). Then

H
1(ϕ(B0 ∩ Sr)) = 0 (21)

for almost all circles Sr := S̃(p0, r) centered at a point p0, where ϕ = π−1 is a homeomorphism of U into D,
corresponding to the definition of a normal neighborhood U,H 1 is a 1-dimensional Hausdorffmeasure in
C, and ”almost all” should be understood with respect to the parameter r ∈ (0, ε0).

Proof. Indeed, since the Lebesgue measure is regular, there is a Borel set B ⊂ U such that ϕ(B0) ⊂ ϕ(B) and
m(ϕ(B0)) = m(ϕ(B)) = 0,where m is, as usual, the Lebesgue measure inC. Let 1 be the characteristic function
of the set ϕ(B). According to [20, Theorem 3.2.5] for m = 1, we have that∫

ϕ(γ)

1(z)|dz| = H 1(ϕ(B ∩ |γ|)) , (22)

where γ : [a, b] → U is any locally rectifiable path, |γ| us a locus of γ in U, and |dz| is an element of the
Euclidean measure. Arguing similarly to the proof of [2, Theorem 33.1], we put

ρ(p) =

{
∞, p ∈ B,
0, p < B .



E. Sevost’yanov / Filomat 36:4 (2022), 1295–1327 1303

Observe that ρ is a Borel function. Let Γ be a family of all circles Sr := S̃(p0, r) centered at the point p0, for
whichH 1(ϕ(B ∩ Sr)) > 0. By (22), for any Sr ∈ Γ we obtain that∫

Sr

ρ(p) ds̃h(p) =

∫
Sh(0,r)

ρ(ϕ−1(y)) dsh(y) = 2
∫

S(0, er−1
er+1 )

ρ(ϕ−1(y))
1 − |y|2

|dy| =

= 2
∫

S(0, er−1
er+1 )

1(y)ρ(ϕ−1(y))
1 − |y|2

|dy| = ∞ .

Now ρ ∈ adm Γ. Thus, M(Γ) 6
∫
S

ρ2(p) d̃h(p) = 0. Let Γ ∗ be a family of all circles Sr := S̃(p0, r) centered at

p0 for which H 1(ϕ(B0 ∩ Sr)) > 0. Observe that Γ ∗ ⊂ Γ, whence M(Γ ∗) = 0. Finally, note that the function
ψ(r) := H 1(ϕ(B0∩Sr)) is Lebesgue measurable by the classical Fubini theorem, so that (21) is true for almost
all r ∈ (0, ε0) by Lemma 2.3.

Let γ : [a, b]→ S be a (locally rectifiable) path on the Riemannian surface S. Then we define the function
lγ(t) as the length of the path γ|[a,t], a 6 t 6 b (where ”length” is understood in the sense of a Riemannian
surface). For a set B ⊂ S, put

lγ(B) = mes1 {s ∈ [0, l(γ)] : γ(s) ∈ B} , (23)

where, as usual, mes1 denotes the linear Lebesgue measure in R, and l(γ) is the length of γ. Similarly, we

may define the value lγ(B) for the dashed line γ, i.e. when γ :
∞⋃

i=1
(ai, bi)→ S,where ai < bi for any i ∈N and

(ai, bi) ∩ (a j, b j) = ∅ for any i , j.

Lemma 3.2. Let D and D ∗ be domains in S and S∗, respectively, and let f : D → D ∗ be a mapping of the
Sobolev class W1,1

loc. Let p0 ∈ D, let U be a normal neighborhood of p0, U , S and 0 < ε0 < dist (p0, ∂U), and
let B0 ⊂ D has a Lebesgue measure zero. Then H 1( f (B0 ∩ S̃(p0, r))) = 0 for almost any r ∈ (0, ε0) in local
coordinates and, in addition,

l f (S̃(p0,r)∩D)( f (B0)) = 0 , (24)

where l is defined in (23).

Proof. Since the mapping f is continuous, the domain f (D) can be covered by at most a countable number of
neighborhoods Vk, k = 1, 2, . . . , in such a way, that Vk is conformally homeomorphic to some neighborhood

Wk ⊂ D, Wk is compact in D and, moreover, f −1(Vk) = Uk ⊂ D, where Uk is an open set,
∞⋃

k=1
Uk = D.

We may also assume that the length and area in Vk are calculated in terms of the hyperbolic length and
hyperbolic area in Wk. By what was said above, without loss of generality, we may assume that f (D) is
conformally homeomorphic to the set W ⊂ D, whose closure is compact inD. Let the indicated conformal
homeomorphism be realized for using the mapping ψ : f (D) → W, and let ϕ be a homeomorphism of U
intoD, corresponding to the definition of normal neighborhood U, and let ϕ(U) ⊂ B(0, r0), where B(0, r0) is
a compact set inD. Consider a partition of the set B(0, r0) into a countable number of pairwise disjoint ring
segments

Am = {z ∈ C : z = Reiα,R ∈ (rm−1, rm], α ∈ (ψm−1, ψm]} ,m ∈N . (25)

Let hm be an auxiliary quasiisometry that maps Am onto a rectangle Bm such that arcs of circles centered at
zero are mapped to line segments, see Figure 1.
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Figure 1: To the proof of Lemma 3.2.

More precisely, put hm(ω) = logω, ω ∈ Am and Ãm := hm(Am ∩ D). Then, for each m ∈ N, consider the
mapping

1m := ψ ◦ f ◦ ϕ−1
◦ h−1

m , 1m : Ãm → C .

Observe that 1m ∈W1,1
loc(Ãm) (see [23, Section 1.1.7]), whence, in particular, 1m ∈ ACL (see [23, Theorems 1 and

2, Section 1.1.3, § 1.1, Section. I]). Set, as above, Sr := S̃(p0, r). By Lemma 3.1 and in view of the smoothness
of the mapping hm, we obtain that

H
1(ϕ(B0 ∩ Sr) ∩ Am) = H 1(hm(ϕ(B0 ∩ Sr) ∩ Am)) = 0

for any r ∈ [0, ε0] \ A0, where mes1A0 = 0. Set Dr := D ∩ Sr. Then also for any r ∈ [0, ε0] \ A0

H
1(ψ( f (B0 ∩Dr ∩ ϕ

−1(Am)))) = H 1(1m(hm(ϕ(B0 ∩Dr) ∩ Am))) = 0 , (26)

since the absolute continuity of the map 1m on a fixed interval implies the N -property with respect to the

linear Lebesgue measure (see [20, Section 2.10.13]). Observe that U ⊂
∞⋃

m=1
ϕ−1(Am), so from (26), in view of

the countable semi-additivity of the Hausdorff measure,

H
1(ψ( f (B0 ∩Dr))) = 0 , r ∈ [0, ε0] \ A0 . (27)

Let γi be an arbitrary arc of the dashed line ψ( f (Dr)). Then we parametrize γi : [0, l(γi)] → D, γi = γi(s),
where s is a natural parameter on γi in the sense of the Euclidean length. Setting m = 1 in [20, Theorem 3.2.5],
by (27) we obtain that the set B := {s ∈ [0, l(γi)] : γi(s) ∈ ψ( f (B0))} has a linear measure zero. Let χψ( f (B0))(z)
be a characteristic function of the set ψ( f (B0)). Taking into account the Remark 2.1, we obtain that

l f (S̃(p0,r)∩D)( f (B0)) =

∞∑
i=1

2

l(γi)∫
0

χψ( f (B0))(γi(s)) ds
1 − |γi(s)|2

= 0
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for almost any r ∈ (0, ε0), which was required to be established.

Lemma 3.3. Let D and D ∗ be domains in Riemannian surfaces S and S∗, respectively, and let f : D → D ∗
be an open discrete W1,1

loc-mapping with a finite distortion. Let p0 ∈ D, let U be a normal neighborhood of
the point p0, let 0 < ε0 < dist (p0, ∂U), and let B∗ ⊂ D be the set of such points of D, in which the mapping f
is differentiable (in local coordinates), however, J f (p) = 0. Then

l f (S̃(p0,r)∩D)( f (B∗)) = 0 (28)

for almost all r ∈ (0, ε0), where the function l is defined in (23).

Proof. Observe that f is differentiable almost everywhere in D in local coordinates (see the remarks made in
the introduction in [12]). In particular, the set U can be split into a countable number sets Bk, k = 0, 1, 2, . . . ,
such that f |Bk is a bilipschitz homeomorphism for k = 1, 2, . . . , and B0 has a measure zero (see [20, items 3.2.2,
3.1.4 and 3.1.8]). Let, as before, Sr := S̃(p0, r) and Dr := Sr ∩D. By Lemma 3.2H 1( f (B0 ∩Dr)) = 0 for almost
of any r ∈ (0, ε0) in local coordinates, therefore, a 1-dimensional change of variables holds for almost all
r ∈ (0, ε0), (see [20, Theorem 3.2.5 ]).

Repeating the reasoning given in the proof of Lemma 3.2 and using the notation of this proposition, we
conclude that the mapping hm mapsϕ(Sr)∩Am to some part of the segment I(m,R) = {z ∈ C : z = log R+it, t ∈
(ψm−1, ψm),R = (er

− 1)/(er + 1)}. Since f has a finite distortion, 1 ′m(log R + it) = 0 for all t ∈ (ψm−1, ψm) such
that ϕ−1(h−1

m (log R + it)) ∈ B∗. Then, by virtue of [20, Theorem 3.2.5] and in view of the above remarks

H
1(ψ( f (B∗ ∩Dr ∩ ϕ

−1(Am)))) = H 1(1m(hm(ϕ(B∗ ∩Dr) ∩ Am))) 6

6

∫
1m(hm(ϕ(B∗∩Dr)∩Am))

N(y, 1m, hm(ϕ(B∗ ∩Dr) ∩ Am)) dH1y =

=

ψm∫
ψm−1

χhm(ϕ(B∗)∩Am)(log R + it)|1 ′m(log R + it)|dt = 0 ,

where χhm(ϕ(B∗)∩Am) is a characteristic function of the set hm(ϕ(B∗) ∩ Am). Semiadditivity with respect to m of
the one-dimensional Hausdorff measure in the last chain of equalities gives us H 1(ψ( f (B∗ ∩ Dr))) = 0 for
almost all r ∈ (0, ε0). Let γi be an arbitrary dashed arc line ψ( f (Dr)). Parametrize γi as γi : [0, l(γi)] → D,
γi = γi(s), where s ∈ [0, l(γi)] is a natural parameter. Setting m = 1 in [20, Theorem 3.2.5], we obtain that
the set Bi := {s ∈ [0, l(γi)] : γi(s) ∈ ψ( f (B∗))} has a linear measure zero. Let χψ( f (B∗))(z) be the characteristic
function of the set ψ( f (B∗)). Taking into account the Remark 2.1, we obtain that

l f (S̃(p0,r)∩D)( f (B∗)) =

∞∑
i=1

2

l(γi)∫
0

χψ( f (B∗))(γi(s)) ds
1 − |γi(s)|2

= 0

for almost any r ∈ (0, ε0), which was required to be established.

Proof of Theorem 1.1. Since f is open, the mapping f is differentiable almost everywhere in D local
coordinates (see the remarks made in the introduction to [12]; see also [24, Theorem III.3.1]). Let B be the
Borel set of all points p ∈ D, where f has a total differential f ′(p) and J f (p) , 0 in local coordinates. Note
that B may be represented as at most countable unions of Borel sets Bl, l = 1, 2, . . . , such that fl = f |Bl are
bilipschitz homeomorphisms (see [20, Sections 3.2.2, 3.1.4 and 3.1.8]). See Figure 2 for illustrations.



E. Sevost’yanov / Filomat 36:4 (2022), 1295–1327 1306

D
D*

U

p0

(U)

0

*

f

k

Vk

0

k ( )Vk

f =k
f

-1

kk

S =S(p , r)r 0

B1

B2

Bl

B0

U1

U2

Figure 2: To the proof of Theorem 1.1

Without loss of generality, we may assume that the sets Bl are pairwise disjoint. We also denote by B∗
the set of all points p ∈ D, where f has a total differential and f ′(p) = 0.

Since f has a finite distortion, f ′(p) = 0 for almost all points p,where J f (p) = 0. Thus, by construction, the
set B0 := D \ (B

⋃
B∗) has h̃-measure zero. Let U be a normal neighborhood of the point p0 and ϕ : U → D

be a mapping corresponding to this normal neighborhood. We may assume that ϕ(U) ⊂ B(0, r0), 0 < r0 < 1.
Since D∗ is compact in S∗,we can cover D∗ by a finite number of neighborhoods Vk, k = 1, 2, . . . ,m, such that
ψk : Vk → B(0,Rk), 0 < Rk < 1, and ψk are conformal mappings. Let R0 := max

16k6m
Rk. Since the mapping f is

continuous, the sets U ′k := f −1(Vk ∩D ∗) ∩U are open in U and the mapping

fk := ψk ◦ f ◦ ϕ−1

is a mapping from ϕ(U ′k ) ⊂ B(0, r0) into ψk(Vk) ⊂ B(0,R0).

Set U1 = U ′1 , U2 = U ′2 \U ′1 , U3 = U ′3 \ (U ′1 ∪U ′2), . . . ,Um = U ′m \ (U ′1 ∪U ′2 . . .U
′

m−1). Observe that, by the
definition, Um ⊂ U ′m for m > 1 and Us ∩Uk = ∅ for s , k. Let Γ be a family Dr := D ∩ Sr of all intersections
of circles Sr = S̃(p0, r), r ∈ (ε, r0), with D. We fix an admissible function ρ∗ ∈ adm f (Γ), ρ∗ ≡ 0 outside f (D),
and put ρ ≡ 0 outside U and on B0, and

ρ(p) : = ρ∗( f (p))‖ f ′k (ϕ(p))‖ for p ∈ Uk \ B0 ,

where the matrix norm of the derivative ‖1 ′(z)‖ of a given function 1 : D→ C,D ⊂ C, as usual, is defined
as ‖1 ′(z)‖ = |1z| + |1z|, 1z = (1x − i1y)/2, 1z = (1x + i1y)/2, z = x + iy ∈ C. Observe that

Dr := D ∩ Sr =

 ⋃
16k6m
16l<∞

D r
kl

⋃
 m⋃

k=1

Sr ∩Uk ∩ B∗

⋃
 m⋃

k=1

Sr ∩Uk ∩ B0

 ,
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where D r
kl = Sr ∩ Uk ∩ Bl. By Lemmas 3.2 and 3.3 l f (Dr)( f (Uk ∩ B0)) = 0 and l f (Dr)( f (Uk ∩ B∗)) = 0 for any

1 6 k 6 m and almost any r ∈ (0, r0). Thus,

1 6
∫
D ∗r

ρ∗(p∗) dsh̃∗
(p∗) 6 2

m∑
k=1

∞∑
l=1

∫
ψk( f (D r

kl))

ρ∗(ψ−1
k (z))

1 − |z|2
dH 1(z) 6

6
2

1 − R2
0

m∑
k=1

∞∑
l=1

∫
ψk( f (D r

kl))

ρ∗(ψ−1
k (z)) dH 1(z) (29)

for almost any r ∈ (0, r0),whereH 1 denotes 1-dimensional Hausdorff measure. On the other hand, arguing
at each set D r

kl separately and using [20, item 1.7.6, theorem 2.10.43 and theorem 3.2.6], we obtain that∫
D r

kl

ρ(p) ds̃h(p) = 2
∫

ϕ(D r
kl)

ρ∗(ψ−1
k ( fk(y))‖ f ′k (y)‖

1 − |y|2
|dy| >

2
∫

ϕ(D r
kl)

ρ∗(ψ−1
k ( fk(y))‖ f ′k (y)‖ |dy| > 2

∫
ψk( f (D r

kl))

ρ∗(ψ−1
k (z)) dH 1(z) . (30)

Summing (30) over all 1 6 k 6 m and 1 6 l < ∞, and considering (29) and Lemma 2.3, we conclude
that ρ/(1 − R2

0) ∈ ext adm Γ.

Using the change of variables on each Bl, l = 1, 2, . . . (see, e.g. [20, Theorem 3.2.5]), countable additivity
of the Lebesgue integral, and also taking into account (2), we obtain the estimate

1
(1 − R2

0)2

∫
D

ρ2(p)
Kµ(p)

d̃h(p) =

=
4

(1 − R2
0)2

m∑
k=1

∞∑
l=1

∫
ϕ(Uk∩Bl)

ρ2
∗ (( f ◦ ϕ−1)(z))‖ f ′k (z)‖2

(1 − |z|2)2Kµ(ϕ−1(z))
dm(z) 6

6
4

(1 − r2
0)2(1 − R2

0)2

m∑
k=1

∞∑
l=0

∫
S∗

ρ2
∗ (ψ

−1
k (y))N(y, fk, ϕ(Uk ∩ Bl)) dm(y) 6

6
4

(1 − r2
0)2(1 − R2

0)2

m∑
k=1

∫
S∗

ρ2
∗ (ψ

−1
k (y))N(y, fk, ϕ(Uk)) dm(y) 6

6
4

(1 − r2
0)2(1 − R2

0)2

m∑
k=1

∫
S∗

ρ2
∗ (ψ−1

k (y))N(ψ−1
k (y), f ,Uk)

(1 − |y|2)2 dm(y) =

=
1

(1 − r2
0)2(1 − R2

0)2

m∑
k=1

∫
S∗

ρ2
∗ (p∗)N(p∗, f ,Uk) dh̃∗(p∗) 6

6
N( f ,D)

(1 − r2
0)2(1 − R2

0)2

∫
S∗

ρ2
∗ (p∗) dh̃∗(p∗) .

To complete the proof, one should put c := 1
(1−r2

0)2(1−R2
0)2 . �
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4. Boundary extension of mappings with lower modulus distortion

So, we have established the main modulus inequality for the Sobolev classes, with which we will work
further. Now let us talk on the boundary extension of the Sobolev classes, for which we consider an
auxiliary class of mappings with the condition (7).

We recall the following definitions. A mapping f : D → D ∗, f (D) = D ∗, is called boundary preserving, if
C( f , ∂D) ⊂ ∂D ∗, where, as usual,

C( f , ∂D) = {p∗ ∈ S∗ : ∃ pk ∈ D, p ∈ ∂D : pk → p, f (pk)→ p∗, k→∞} .

The following statement is established in [4, Theorem 3.3] for the case of the space Rn. In our case, its
validity directly follows from [25, Proposition 2.1].

Proposition 4.1. Let D and D ∗ be domains in Riemannian surfaces S and S∗, respectively. Let f : D → D ∗
be open discrete and closed mapping in D. Then f is boundary preserving.

A Borel function ρ : D→ [0,∞] is called admissible for the family Γ of paths γ in the sense of hyperbolic
length, write ρ ∈ admh Γ, if

∫
γ

ρ(z) dsh(z) > 1 for any path γ ∈ Γ, where dsh(z) is an element of length

corresponding to (2). The modulus of the family Γ in the sense of a hyperbolic measure is the quantity
Mh(Γ) := inf

ρ∈admh Γ

∫
D

ρ2(z) dh(z), where dh(z) is an element of the hyperbolic area. The following result holds,

see [25, Remark 5.2].

Proposition 4.2. Let Γ be a family of paths inD. Now

Mh(Γ) = Me(Γ) .

An analogue of the following statement is established for the space Rn in Väisälä’s monograph [2, Theo-
rem 7.5].

Proposition 4.3. Let S be a Riemannian surface and p0 ∈ S. Let U be a neighborhood of the point p0 such
that h̃(p, p0) = h(ϕ(p), ϕ(p0)), where ϕ = π−1 and π is the natural projection of the fundamental Dirichlet
polygon D0 with center at the point ϕ(p0) on S. Let 0 < r1 < r2 < dist (p0, ∂U), S̃i = S̃(p0, ri), i = 1, 2,
Ã(p0, r1, r2) = {p ∈ S : r1 < h̃(p0, p) < r2}. If Γ = Γ(S̃1, S̃2, Ã) is family of paths joining S̃1 and S̃2 in Ã, then

M(Γ) =
2π

L(r1, r2)
,

where L(r1, r2) =
(

er2−1
er2 +1

)
:
(

er1−1
er1 +1

)
.

Proof. By the definition of the mapping ϕ and the neighborhood U, M(Γ) = Mh(Γ ∗), where
Γ ∗ = Γ(Sh(ϕ(p0), r1),Sh(ϕ(p0), r2),Ah), Ah := {z ∈ D : r1 < h(z, ϕ(p0)) < r2}. By Proposition 4.2 M(Γ) = Me(Γ ∗).
The required conclusion now follows from [26, Corollary 5.18].

Let Ω be a domain in C, or a domain in S. According to [27, item 3], the connected set E ⊂ Ω is called
cut if E is closed in Ω, E ∩ ∂Ω , ∅ and Ω \ E consists of two components, the boundary of each of which
intersects ∂Ω. A sequence of cuts E1,E2, . . . ,Ek, . . . is called a chain if Ek separates Ek−1 from Ek+1 in Ω, that
is, Ek−1 and Ek+1 belong to different components of Ω \ Ek. It follows from the above definitions that one of
the subdomains Ω \ Ek contains all Em for m > k. This subdomain will be denoted by dk. Two chains of cuts
{σm} and {σ ′k } are called equivalent if for each m = 1, 2, . . . the domain dm contains all domains d ′k except for
a finite number, and for each k = 1, 2, . . ., the domain d ′k also contains all domains dm for excluding a finite
number.

The following statement contains some information on important properties of domains with locally
quasiconformal boundaries.
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Lemma 4.4. Suppose that a domain D in S has a locally quasiconformal boundary, p0 ∈ ∂D and rm > 0 is
an arbitrary sequence such that rm → 0 as m→∞. Let U be a neighborhood of the point p0, for which there
is a quasiconformal mapping ψ : U→ D, ψ(∂D ∩U) = D ∩ I, I := (−1, 1) = {z ∈ D : y = 0, z = x + iy}. Then:

1) there is a sequence of neighborhoods Uk, k = 1, 2, . . . , of the point p0, contracting to this point, such
that ψ(Uk) = B(0, 1/2k), ψ(Uk ∩D) = {z = x + iy ∈ B(0, 1/2k) : x > 0};

2) the sets σk := ∂Uk ∩D are cuts of the domain D, in this case, h̃(σk)→ 0 as k→∞, h̃(σk) := sup
x,y∈σk

h̃(x, y),

and the corresponding domain dk is Uk ∩D;

3) there is a subsequence rml → 0, l → ∞, and the corresponding sequence of arcs γl ⊂ S̃(p0, rml ) ∩ D,
l = 1, 2, . . . , forming a chain of cuts equivalent to σk, k = 1, 2, . . . .

Proof. Arguing similarly to the proof of Theorem 17.10 in [2], we show that the neighborhood U in the
definition of a locally quasiconformal boundary can be chosen arbitrarily small. Indeed, by definition,
the point p0 ∈ ∂D has a neighborhood U, which can be mapped by a quasiconformal mapping ψ onto
the unit disk D ⊂ C so that ψ(∂D ∩ U) = I, where I := (−1, 1) = {z ∈ D : x = 0, z = x + iy}. Since ψ is a
homeomorphism, then either ψ(U∩D) = D+, or ψ(U∩D) = D \D+,whereD+ := {z ∈ D : x > 0, z = x + iy}.
Thus, without loss of generality, we may assume that ψ(U ∩ D) = D+. Choose a neighborhood V ⊂ U
containing the point p0. If r < 1 − |ψ(p0)|, then, by the triangle inequality, the ball B(ψ(p0), r) lies strictly
insideD. Since ψ is a homeomorphism in U, then, in particular, ψ−1 is a continuous mapping. In this case,
there is r < 1 − |ψ(p0)| with the following property: the condition |ψ(p) − ψ(p0)| < r implies that p ∈ V. In
addition, if ψ(p) ∈ D+ ∪ I and |ψ(p) − ψ(p0)| < r, then p ∈ V ∩D. Setting U1 := ψ−1(B(ψ(p0), r)), we note that
U1 ⊂ V and U1 is a neighborhood of the point p0. In this case, U1 ∩D = ψ−1(B(ψ(p0), r) ∩ (D+ ∪ I)). Setting
H(p) = (ψ(p)−ψ(p0))/r,we obtain the mapping H of the neighborhood U1 onD such that H(U1∩D) = D+∪ I
and H(p0) = 0. Since H is a homeomorphism, it follows that H(U1∩∂D) = I. It is also clear that if the original
mapping ψ is quasiconformal, then the same is the mapping H. Thus, the neighborhood U1 satisfies all the
same conditions as the original neighborhood U. In what follows, we use the notation ψ instead of H, and
we assume that ψ(p0) = 0.

From the above reasoning it follows that there is a decreasing sequence of neighborhoods Uk of the point

p0, for which p0 =
∞⋂

k=1
Uk ∩D, ψ(Uk) = B(0, 1/2k), ψ(∂Uk ∩ D) = S(0, 1/2k) ∩D+. By direct calculations it is

easy to see that that the sequence σk := ∂Uk ∩ D forms a chain of cuts of the domain D. From the equality
∞⋂

k=1
Uk ∩D = p0 it follows that h̃(σk) 6 h̃(Uk ∩D)→ 0 as k→∞,where we use the notation h̃(A) := sup

x,y∈A
h̃(x, y).

Items 1) and 2) of Lemma 4.4 are established. It remains to establish item 3). Consider the segment β(t) = it,
t ∈ (0, 1), in D+. Put α(t) := ψ−1(β(t)). Then α is a path in U ∩ D with origin at the point p0. Let m1 ∈ N be
that rm1 < h̃(p0, σ1). By [28, Theorem 1.I.5, § 46] S̃(p0, rm1 ) ∩ α , ∅. Let γ1 be an arc of the set S̃(p0, rm1 ) ∩ D,
such that α(t1) ∈ γ1, where t1 := min{t ∈ (0, 1) : α(t) ∈ S̃(p0, rm1 )} (see Figure 3).

By construction, the ends of the path γ1 lie on ∂D, therefore ψ(γ1) is a path whose ends lie on the
segment I ⊂ D. Obviously, ψ(γ1) splitsD+ into two domains. Therefore, γ1 divides the domain D into two
domains, as well. Let d ′1 be the component of D \ γ1, containing the path α1 := α|(0,t1). Note that there is
k1 ∈ N such that Uk1 ∩D ⊂ d ′1. Indeed, by construction Uk1 ⊂ B̃(p0, rm1 ) for sufficiently large k1 ∈ N and the
point α1(t) belongs to Uk1 ∩ D for sufficiently small t, since Uk1 is a neighborhood of the point p0. Hence,
Uk1 ∩D belongs to some component of D \γ1 containing α1, that is, Uk1 ∩D ⊂ d ′1.Note that σk1 ⊂ d ′1, because
σk1 = ∂Uk1 ∩D ⊂ d ′1.

Observe also that d ′1 ⊂ D \ σ1. This follows from the fact that d ′1 is bounded by γ1 and some part of the
boundary of the domain U ∩D, and σ1 lies in the domain bounded by γ1 and another part of the boundary
U ∩D. Thus, γ1 separates σ1 from Uk1 ∩D in D; in particular, γ1 separates σ1 from σk1 in D.
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Figure 3: On the proof of Lemma 4.4

Let m2 ∈ N, m2 > m1, be such that rm2 < h̃(p0, σk1 ). By [28, Theorem 1.I.5, § 46] S̃(p0, rm2 ) ∩ α , ∅. Let
γ2 be an arc of the set S̃(p0, rm2 ) ∩ D such that α(t2) ∈ γ2, where t2 := min{t ∈ (0, 1) : α(t) ∈ S̃(p0, rm2 )}. By
construction, the ends of the path γ2 lie on ∂D, thereforeψ(γ2) is a path whose ends lie on the segment I ⊂ D.
Obviously, ψ(γ2) splitsD+ into two domains, therefore, γ2 divides the domain D into two domains. Let d ′2
be a component of D \γ2, containing a path α2 := α|(0,t2).Observe that there is k2 ∈N such that Uk2 ∩D ⊂ d ′2.
Indeed, by construction Uk2 ⊂ B̃(p0, rm2 ) for large enough k2 ∈N and α2(t) belongs to Uk2 ∩D for sufficiently
small t, since Uk2 is a neighborhood of the point p0. Hence, Uk2 ∩ D belongs to some component of D \ γ2,

containing α2, that is, Uk2 ∩D ⊂ d ′2. Observe that σk2 = ∂Uk2 ∩D ⊂ d ′2.

Observe also that, d ′2 ⊂ D \ σk1 . Thus γ2 separates σk1 from Uk2 ∩ D in D; in particular, γ2 separates σk1

from σk2 in D.

For the same reason, γ1 ⊂ D \ d ′2. Indeed, d ′2 is one of the components of D \ γ1, not the same as d ′1, in
particular, d ′2 ⊂ D \ γ1. Thus, γ2 also separates γ1 from Uk2 ∩D in D; in particular, γ2 separates γ1 from σk2

in D.

Etc. As a result of the endless process, we will have that some sequence of arcs γl ⊂ S̃(p0, rml ), l = 1, 2, . . . ,
separating σkl from σkl−1 in D, in this case,

(1) Ukl ∩D ⊂ d ′l and, in addition,

(2) γl separates γl−1 from σkl in D,

(3) σkl ∈ d ′l ;

(4) γl+1 ⊂ Ukl ∩D.

Let us show that γl separates γl+1 from γl−1 for any l ∈ N, more precisely, show that γl+1 ⊂ d ′l and
γl−1 ⊂ D \ d ′l . Indeed, step by step (1) and (4) γl+1 ⊂ Ukl ∩D ⊂ d ′l . Since as proved, γl separates γl−1 from σkl

in D and σkl ⊂ d ′l by (3), by [28, Theorem 1.I.5, § 46] γl−1 ⊂ D \ d ′l , as required to establish.

It follows from the above that the sequence of cuts γl, l = 1, 2, . . . , forms a chain. Note that the sequences
of cuts γl and σk are equivalent. Indeed, given l ∈ N, by the property (1) Ukl ∩ D ⊂ d ′l , therefore also
Uk ∩ D ⊂ d ′l for k > kl. Conversely, fix k ∈ N and consider the corresponding number l = l(k) ∈ N such
that kl > k, where kl, l = 1, 2, . . . is the subsequence constructed above. Notice, that d′l+1 belongs to exactly
one of the components of D \ σkl , namely, either d ′l+1 ⊂ Ukl ∩ D, or d ′l+1 ⊂ D \ Ukl . On the other hand, by
the condition (3) σkl+1 ⊂ d ′l+1, in addition, σkl+1 ⊂ Ukl+1−1 ∩ D ⊂ Ukl ∩ D, because σk, k = 1, 2, . . . is a chain of
cuts. Moreover, kl+1 − 1 > kl. In this case, d ′l+1 belongs to the component of D \ σkl , containing σkl+1 , that is,
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d ′l ⊂ Ukl ∩D ⊂ Uk ∩D. Then also d ′l ⊂ Uk ∩D for any l > l(k). Equivalence of chains γl and σk is established.
Lemma 4.4 is completely proved.

The following lemma is technically necessary to establish the main result on the boundary behavior
of mappings. We have specially highlighted it into a separate statement, emphasizing that it refers to
mappings satisfying rather general topological conditions.

Lemma 4.5. Let D and D ∗ be domains on Riemannian surfaces S and S∗, respectively, let D ∗ be a compactum
in S∗, let p0 ∈ ∂D and let Q : D→ (0,∞) be a given function measurable with respect to measure h̃. Let also
f : D → D ∗ be an open discrete closed mapping of the domain D onto the domain f (D) = D ∗. Suppose
the domain D has a locally quasiconformal boundary , and the boundary of the domain D ∗ is strongly
accessible.

Suppose that p0 ∈ ∂D, and that there are at least two sequences pi, p ′i ∈ D, i = 1, 2, . . . , such that pi → p0,
p ′i → p0 as i→∞, f (pi)→ y, f (p ′i )→ y ′ as i→∞ and y ′ , y.

Then there are 0 < δ ′0 and l0 > 0 such that the inequality

l( f (S̃(p0, r) ∩D)) > l0, ∀ r ∈ (0, δ ′0) , (31)

where l denotes the length of the path (dashed line) on the Riemannian surface S∗.

Proof. By the definition of a strongly accessible boundary at the point y ∈ ∂D ∗, for the neighborhood U of
the point y, not containing the point y ′, there is a compact set C ′0 ⊂ D ∗, a neighborhood V of the point y,
V ⊂ U, and a number δ > 0 such that

M(Γ(C ′0,F,D ∗)) ≥ δ > 0 (32)

for an any continuum F, intersecting ∂U and ∂V. By Lemma 4.4, there is a sequence of neighborhoods Ui,
i = 1, 2, . . . , of p0, such that the set di := Ui ∩D is connected. Without loss of generality, we may assume that
pi and p ′i belong to di. In this case, join the points pi and p ′i by the path αi, lying in di. Since f (pi) ∈ V and
f (p ′i ) ∈ D \U for sufficiently large i ∈N, there is a number i0 ∈N, such that by (32)

M(Γ(C ′0, f (|αi|),D ∗)) ≥ δ > 0 (33)

for any i ≥ i0 ∈N (see Figure 4). Let us prove Lemma 4.5 by contradiction. Suppose that (31) does not hold.
Then for any k ∈N there is r = rk > 0 such that l( f (S̃(p0, rk) ∩D)) < 1/k, rk → 0, k→∞.

By Lemma 4.4, there is a subsequence rki of the sequence rk and some sequence of arcs γi ⊂ S̃(p0, rki ) such
that di ⊂ d ′i and d ′i is the corresponding component of the set D \ |γi|, i = 1, 2, . . . . Let ζi, i = 1, 2, . . . , is an
arbitrary sequence of points from f (|γi|). Since D ∗ is a compactum in S∗, we may assume that ζi → ζ0 as
i→∞, ζ0 ∈ D ∗.Observe that ζi = f (xi), xi ∈ S̃(p0, rki )∩D, so ζ0 ∈ ∂D ∗ by the closeness of the mapping f and
Proposition 4.1.

Note that, since the mapping f is closed, there is a number i0 ∈N such that

C ′0 ⊂ D∗ \ f (d ′i ) . (34)

for i > i0. Indeed, if we assume that the inclusion (34) fails, then there is a sequence im > 0, m = 1, 2, . . . ,
im →∞ as m→∞, and ym ∈ f (d ′im )∩C ′0. Since C ′0 is a compactum in f (D),we may assume that ym → y0 ∈ C ′0
as m → ∞. Since ym ∈ f (d ′im ) ∩ C ′0, for any m ∈ N there is a sequence ykm ∈ f (d ′im ) such that ykm → ym as
k→∞. Observe that ykm = f (qkm), qkm ∈ d ′im .
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Figure 4: To the proof of Lemma 4.5

Due to the convergence of yk1 to y1, for the number 1/2, there is a number k1 such that h̃∗(y1, yk11) <
1/2. Similarly, due to the convergence of yk1 to y2, for the number 1/4 there is a number k2 such that
h̃∗(y2, yk22) < 1/4. Generally, since ykm converges to ym, for the number 1/2m there is a number km such that
h̃∗(ym, ykmm) < 1/2m. But then, since by the construction of ym → y0 as m → ∞, for any fixed ε > 0 we have
that

h̃∗(y0, ykmm) 6 h̃∗(y0, ym) + h̃∗(ym, ykmm) 6 ε + 1/2m

for any m > M = M(ε), and thus ykmm → y0 as m → ∞. But, on the other hand hand, ykmm = f (qkmm),
qkmm ∈ d ′im , therefore y0 ∈ C( f , p0), which contradicts the closeness of the mapping f . Indeed, by Lemma 4.4

there exists a sequence ti > 0, ti → 0 as i → ∞, such that d ′i ⊂ B̃(p0, ti). Then y0 ∈ C( f , ∂D) ⊂ ∂D∗ (see
Proposition 4.1). At the same time, y0 ∈ C ′0, that is, y0 is an inner point of the domain D∗. The resulting
contradiction indicates the validity of the inclusion (34).

Let us now show that

∂ f (d ′i ) ∩ f (D) ⊂ f (|γi|) (35)

for any i ∈N.
Indeed, let y0 ∈ ∂ f (d ′i ) ∩ f (D), then there is a sequence ym ∈ f (d ′i ) ∩ f (D) such that ym ∈ f (d ′i ) ∩ f (D),

ym → y0 as m → ∞, where ym = f (ξm), ξm ∈ d ′i . Without loss of generality, we may assume that ξm → ξ0
as m → ∞. Note that the case ξ0 ∈ ∂D is impossible, since in this case y0 ∈ C( f , ∂D), which contradicts the
closeness of the mapping f . Then ξ0 ∈ D. Two situations are possible: 1) ξ0 ∈ d ′i and 2) ξ0 ∈ |γi|. Note that
case 1) is impossible, since, in this case, f (ξ0) = y0 and y0 is an inner point of the set f (d ′i ) by the openness
of the mapping f , which contradicts the choice of y0. Thus, the inclusion (35) is established.

By the assumption l( f (S̃(p0, rk) ∩D)) < 1/k, rk → 0 as k→∞, we obtain that

h̃∗( f (|γi|))→ 0
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as i → ∞, h̃∗( f (|γi|)) := sup
p∗,q∗∈ f (|γi |)

h̃∗(p∗, q∗). Then, for any s ∈ N there is a number is ∈ N such that f (|γis |) ⊂

B̃(ζ0, 1/s). Since C ′0 is a compactum in D ∗, there is s0 > 1 such that C ′0 ∩ B̃(ζ0, 1/s0) = ∅.

Now, note that Γ( f (|γis |),C ′0,D ∗) > Γ(S̃(ζ0, 1/s0), S̃(ζ0, 1/s),D ∗) for any s > s0 (see [28, Theorem 1.I.5, § 46]).
Hence, by the minorization of the modulus of families of paths and by Proposition 4.3

M(Γ( f (|γis |),C
′

0,D ∗)) 6M(Γ(S̃(ζ0, 1/s0), S̃(ζ0, 1/s),D ∗))→ 0 (36)

as s→∞. On the other hand, recall that |αis | ⊂ dis ⊂ d ′is . Now, by (34)

|β| ∩ f (d ′is ) , ∅ , |β| ∩ (D ∗ \ f (d ′is ) ,

for any path β ∈ Γ( f (|αis |),C ′0,D ∗). Thus, by [28, Theorem 1.I.5, § 46] and by (35),

Γ( f (|αis |),C
′

0,D ∗) > Γ( f (|γis |),C
′

0,D ∗).

From this and by (36), we obtain M(Γ( f (|αis |),C ′0,D ∗)) → 0 as s → ∞, which contradicts relation (33). The
resulting contradiction indicates the validity of the inequality (31).

Theorem 4.6. Let D and D ∗ be domains on Riemannian surfaces S and S∗, respectively, let D ∗ be a
compactum in S∗, let p0 ∈ ∂D and let Q : D → (0,∞) be a given function measurable with respect to
the measure h̃. Let also f : D → D ∗ be an open discrete closed mapping of D onto f (D) = D ∗ with the
condition (7) at the point p0. Suppose that the domain D has a locally quasiconformal boundary, and the
boundary of the domain D ∗ is strongly accessible. If the relations

ε0∫
ε

dt
‖Q‖(t)

< ∞ ,

ε0∫
0

dt
‖Q‖(t)

= ∞ , (37)

hold for some 0 < ε0 and any ε ∈ (0, ε0), where ‖Q‖(r) :=
∫

S̃(p0,r)

Q(p) ds̃h(p), then f has a continuous extension

to p0.

Proof. Suppose the opposite. Then, since D ∗ is compact in S∗, there are at least two sequences pi, p ′i ∈ D,
i = 1, 2, . . . , such that pi → p0, p ′i → p0 as i → ∞, f (pi) → y, f (p ′i ) → y ′ as i → ∞ and y ′ , y. Let Γ δi be a

family of all dished lines f (S̃(p0, r) ∩ D), r ∈ (2−i, δ). By Lemmas 2.4 and 2.2, there is 0 < d0 < sup
p∈D

h̃(p, p0)

such that

M(Γ δ0
i ) >

δ0∫
2−i

dr
‖Q‖(r)

∀ i ∈N , (38)

for any 0 < δ0 < d0, where ‖Q‖(r) =
∫

D(p0,r)
Q(p) ds̃h(p) denotes L1-norm of the function Q under the circle

D(p0, r) := S̃(p0, r) ∩D. By (38) and (37) we obtain that

M(Γ δ0
i )→∞ , i→∞ . (39)

On the other hand, by Lemma 4.5 there are 0 < δ ′0 < d0 and l0 > 0 such that

l( f (S̃(p0, r) ∩D)) > l0, ∀ r ∈ (0, δ ′0) ,
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where l denotes the length of the dished line in S∗. In particular, the function

ρ(p) =

{
1/l0 , p ∈ D ∗ ,

0 , p < D ∗

is admissible for Γ
δ ′0
i , 0 < δ ′0 < d0. Since D ∗ is a compactum in S∗, the h̃∗-area of D ∗ is finite. Therefore,

M(Γ
δ ′0
i ) 6 1/l20 · h̃∗(D ∗) < ∞ .

The last condition contradicts the relation (39) for δ0 := δ ′0, which refutes the assumption that the mapping
f has no limit at the point p0.

Proof of Theorem 1.2 follows immediately from Theorems 1.1 and 4.6. �

Let p0 ∈ S and let ϕ : S → R be a function integrable in some neighborhood U of the point p0 with
respect to h̃. Following [29, Section 2] (see also [8, Section 6.1, Ch. 6]), we say that a function ϕ : S→ R has
a finite mean oscillation at the point p0 ∈ D, we write ϕ ∈ FMO(p0), if

lim sup
ε→0

1

h̃(B̃(p0, ε))

∫
B̃(p0, ε)

|ϕ(p) − ϕε| d̃h(p) < ∞ ,

where ϕε = 1
h̃(B̃(p0,ε))

∫
B̃(p0,ε)

ϕ(p) d̃h(p). In what follows, we will talk about results related to the function of the

finite mean oscillation, therefore it is extremely important for us to use the following two most important
facts related to these functions.

Let D be a domain in S, and let ϕ : S→ R be a nonnegative function with a finite mean oscillation at the
point p0 ∈ D ⊂ S, ϕ(x) = 0 for x < D. By [17, Theorem 7.2.2], the surface S is locally Ahlfors 2-regular, so that
by [9, Lemma 3]∫

ε<̃h(p,p0)<ε0

ϕ(p) d̃h(p)(̃
h(p, p0) log 1

h̃(p,p0)

)2 = O
(
log log

1
ε

)
(40)

as ε → 0 for some 0 < ε0 < dist(p0, ∂U) and some normal neighborhood U of the point p0. The following
statement may be proved similarly to [8, Lemma 7.4, Ch. 7], cf. [30, Lemma 3.7] or [10, Lemma 4.2].

Proposition 4.7. Let p0 ∈ S, let U be some normal neighborhood of p0, 0 < r1 < r2 < dist (p0, ∂U), and let
Q : S → [0,∞] be an integrable function in U with respect to the measure h̃. Set Ã = Ã(p0, r1, r2) = {p ∈ S :

r1 < h̃(p, p0) < r2}, ‖Q‖(r) =
∫

S̃(p0,r)

Q(p) ds̃h(p), η0(r) := 1
J·‖Q‖(r) , where J = J(p0, r1, r2) :=

r2∫
r1

dr
‖Q‖(r) . Then

J −1 =

∫
Ã(p0,r1,r2)

Q(p) · η2
0 (̃h(p, p0)) d̃h(p) 6

6

∫
Ã(p0,r1,r2)

Q(p) · η2 (̃h(p, p0)) d̃h(p) (41)

for any Lebesgue measurable function η : (r1, r2)→ [0,∞] such that
r2∫

r1

η(r) dr = 1.
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We now state and prove the following statement.

Theorem 4.8. The conclusion of Theorem 1.2 holds, if instead of conditions (8) we require that Q ∈ FMO(p0).

Proof. Set ψ(t) = 1
(t log 1

t )
. Observe that I(ε, ε0) :=

ε0∫
ε

ψ(t) dt > log log 1
ε

log 1
ε0

. Set η(t) := ψ(t)/I(ε, ε0). Then, by the

relation (40), there is a constant C > 0 such that∫
Ã(p0,ε,ε0)

Q(p) · η2 (̃h(p, p0)) d̃h(p) =
1

I2(ε, ε0)

∫
ε<̃h(p,p0)<ε0

Q(p) d̃h(p)(̃
h(p, p0) log 1

h̃(p,p0)

)2 6

6 C ·

log
log 1

ε

log 1
ε0

−1

→ 0 (42)

as ε → 0. Then by (41), taking into account (42), conditions (8) follow, in view of which the required
conclusion follows directly from Theorem 1.2.

5. Equicontinuity of families homeomorphisms

Our immediate goal is to prove the equicontinuity of the classes of mappings consisting of Sobolev
homeomorphisms of finite distortion. First of all, let us clarify the question on the equicontinuity of these
families at the inner points of the domain. Let us recall some definitions. Let (X, d) and (X ′, d ′) be metric
spaces with distances d and d ′, respectively. A family F of mappings f : X→ X ′ is called equicontinuous at
the point x0 ∈ X, if for any ε > 0 there is δ > 0 such that d ′( f (x), f (x0)) < ε for all x ∈ X such that d(x, x0) < δ
and for all f ∈ F. A family F is equicontinuous if F is equicontinuous at every point x0 ∈ X. Everywhere
below, unless otherwise stated, (X, d) = (S, h̃) and (X ′, d ′) = (S∗, h̃∗) are Riemannian surfaces with metrics h̃
and h̃∗, respectively.

Let Q : S → [0,∞] be a function measurable with respect to the measure h̃ function, Q(x) ≡ 0 for
x < D ⊂ S. We say that f : D→ S∗ is a ring Q-mapping at p0 ∈ D, if the relation

M( f (Γ(E1, E2, D))) 6
∫
A

Q(p) · η2 (̃h(p, p0)) d̃h(p) , (43)

holds for some r0 = r(p0) > 0, any ring Ã = Ã(p0, r1, r2) = {p ∈ S : r1 < h̃(p, p0) < r2}, 0 < r1 < r2 < r0, and any

continua E1 ⊂ B̃(p0, r1) ∩D, E2 ⊂
(
S \ B̃(p0, r2)

)
∩D, where η : (r1, r2)→ [0,∞] may be arbitrary nonnegative

Lebesgue measurable function such that
r2∫

r1

η(r) dr > 1 . (44)

The next definition can be found, e.g., in [31]. A domain D ⊂ S is called a uniform if for every r > 0 there
is δ > 0 such that M(Γ(F,F ∗,D)) > δ for any continua F and F ∗ in D, satisfying the conditions h̃(F) > r and
h̃(F ∗) > r. Domains Di, i ∈ I, are called equi-uniform if for each r > 0 the above the inequality holds for every
Di with the same number δ.

For a given δ > 0, D ⊂ S and a measurable function Q : D → [0,∞] with respect to the measure h̃, we
denote by RQ,δ(D) the family of all homeomorphisms f : D → S∗ \ G f of class W1,1

loc with finite a distortion,

such that K f (p) 6 Q(p) for almost all p ∈ D,where G f is some continuum in S∗ and h̃∗(G f ) = sup
x,y∈G f

h̃∗(x, y) > δ.

The following statement holds.
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Lemma 5.1. The family RQ,δ(D) is equicontinuous in D, if S∗ is a uniform domain, Q ∈ L1
loc and, for any

p0 ∈ D, one of the following conditions is satisfied: either (8), or Q ∈ FMO(p0).

Proof. Since S is a manifold, S is locally compact and locally path connected. Besides that, f (D) is a domain
by Brower’s theorem, see [32, Theorem VI 9 and Corollary].

Observe that the condition∫
ε<̃h(p,p0)<ε0

Q(x) · ψ2 (̃h(p, p0)) d̃h(p) = o(I2(ε, ε0)) (45)

holds as ε→ 0 for some nonnegative measurable function ψ : (0,∞)→ (0,∞) such that I(ε, ε0) :=
ε0∫
ε

ψ(t)dt <

∞ for some ε0 > 0 and any ε ∈ (0, ε0).
Indeed, if the relations (8) hold, then (45) holds by Proposition 4.7 by selecting a function I(ε, ε0) :=

ε0∫
ε

dr
‖Q‖(r) . If Q ∈ FMO(p0) at any p0 ∈ D, then, by the reasoning given in the proof of Theorem 4.8, conditions (8)

are satisfied, and therefore, by what was proved above, (45) holds.
Finally, by [12, Lemma 3.1], the mapping f ∈ RQ,δ(D) satisfies (43) in D, therefore the desired conclusion

follows from [25, Lemma 5.1].

Let us turn to the question on the equicontinuity of mappings in the closure of a domain. For this
purpose, consider the following class mappings. Given δ > 0, D ⊂ S, a continuum A ⊂ D and a measurable
function Q : D→ [0,∞] we denoteFQ,δ,A(D) the family of all Sobolev homeomorphisms f : D→ S∗\G f with
a finite distortion such that G f ⊂ S∗ is some continuum satisfying the condition h̃∗(G f ) = sup

x,y∈G f

h̃∗(x, y) > δ,

moreover, h̃∗( f (A)) > δ. An analogue of the following theorem was obtained in [31, Theorem 3.1] for
quasiconformal of mappings of the Euclidean space.

Lemma 5.2. Let D be a domain in S and Q : S → (0,∞) is a function locally integrable in D, Q(x) ≡ 0 for
x ∈ S \D. Assume that, for any point p0 ∈ D there are ε0 = ε0(p0) > 0 and a function ψ : (0,∞)→ (0,∞) such
that

I(ε, ε0) :=

ε0∫
ε

ψ(t) dt < ∞ ∀ ε ∈ (0, ε0) (46)

and, in addition,∫
ε<̃h(p,p0)<ε0

Q(x) · ψ2 (̃h(p, p0)) d̃h(p) = o(I2(ε, ε0)) , ε→ 0 . (47)

Let D f = f (D). Assume also that D is locally connected on ∂D, D f is a compact in S∗ for any f ∈ FQ,δ,A(D),
besides that, domains D f and S∗ are equi-uniform over f ∈ FQ,δ,A(D).Then any f ∈ FQ,δ,A(D) has a continuous
extension f : D→ D f and, besides that, the familyFQ,δ,A(D) consisting of all extended mappings f : D→ D f

is equicontinuous in D.

Proof. Observe that ∂D f = ∂ f (D) is strongly accessible for any f ∈ FQ,δ,A(D). Indeed, let x0 ∈ ∂D f and let U
be an arbitrary neighborhood of x0. Choose ε1 > 0 such that V := B̃(x0, ε1), V ⊂ U. Let ∂U , ∅ and ∂V , ∅.
Now ε2 := h̃∗(∂U, ∂V) > 0. Observe that, the inequalities h̃∗(F) > ε2 and h̃∗(G) > ε2 hold for any F and G in
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D f satisfying the conditions F ∩ ∂U , ∅ , F ∩ ∂V and G ∩ ∂U , ∅ , G ∩ ∂V. Now, by the uniformity of D f
there is δ > 0 depending only on ε2 such that

M(Γ(F,G,D f )) > δ .

Thus, ∂D f is strongly accessible. Now, by [12, Lemma 6.1] any f ∈ FQ,δ,A(D) has a continuous extension
f : D→ D f .

Observe that FQ,δ,A(D) ⊂ RQ,δ(D). Besides that, by (46)–(47) we obtain that the divergence conditions (8)
hold. Indeed, in (41) we set η(t) = ψ(t)/I(ε, ε0) and let us use Proposition 4.7. Then the desired conclusion
immediately follows from (41). In this case, the equicontinuity of the family FQ,δ,A(D) in the inner points of
the domain D follows directly from Lemma 5.1.

It remains to prove the equicontinuity of the family FQ,δ,A(D) on ∂D. Suppose the opposite. Then there
is p0 ∈ ∂D and a number a > 0 such that, for each m = 1, 2, . . . there is a point pm ∈ D and an element f m of
the family FQ,δ,A(D) such that h̃(p0, pm) < 1/m and h̃∗( f m(pm), f m(p0)) > a. Since fm := f m|D has a continuous
extension to the point p0,we may assume that pm ∈ D. In view of the same considerations, there is a sequence
fm := f m|Dp ′m ∈ D, p ′m → p0 as m→∞ such that h̃∗( fm(p ′m), f m(p0)) 6 1/m. Thus

h̃∗( fm(pm), fm(p ′m)) > a/2 ∀ m ∈N . (48)

Since D is locally connected at the point p0 ∈ ∂D ⊂ S, and S is a smooth manifold, D is also locally path-
connected at p0 (see [8, Proposition 13.1]). In other words, for any neighborhood U of the point p0 there is
a neighborhood V ⊂ U of the same point such that V ∩D is a path-connected set. Then there is a sequence
neighborhoods Vm of the point p0 with h̃(Vm) → 0 as m → ∞, such that the sets D ∩ Vm are domains and
D∩Vm ⊂ B̃(p0, 2−m).Without loss of generality, passing to a subsequence, if necessary, we may assume that
p0 ∈ ∂D ⊂ S, pm, p ′m ∈ D ∩ Vm. Join the points pm and p ′m of the path γm : [0, 1] → S such that γm(0) = pm,
γm(1) = p ′m and γm(t) ∈ Vm ∩ D for t ∈ (0, 1). Denote by Cm the image of the path γm(t) under the mapping
fm. It follows from the relation (48) that

h̃∗(Cm) > a/2 ∀m ∈N , (49)

where h̃∗(Cm) the diameter of the set Cm in the metrics h̃∗ (see Figure 5).

A

mp0 pm

pm

D

fm

Dfm

Cm

fm(A)

fm(    )m
m

*

Figure 5: To the proof of Lemma 5.2
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Without loss of generality, we may assume that the continuum A from the definition of the family
FQ,δ,A(D) is such that B̃(p0, ε0)∩A = ∅ and B(p0, 2−m)∩A = ∅,m = 1, 2, . . . , . Let Γm be family of paths joining
|γm| and A in D. By [12, Lemma 3.1] the mapping f ∈ RQ,δ(D) satisfies the relation (43) in D, so that

M( fm(Γm)) 6
∫

Ã(p0,2−m,ε0)

Q(p) · η2 (̃h(p, p0)) d̃h(p) (50)

for any Lebesgue measurable function η : (2−m, ε0) → [0,∞] such that
ε0∫

2−m

η(r) dr > 1. Observe that, the

function

η(t) =

{
ψ(t)/I(2−m, ε0), t ∈ (2−m, ε0),

0, t ∈ R \ (2−m, ε0) ,

I(ε, ε0) :=
ε0∫
ε

ψ(t)dt, satisfies the condition (44) for r1 := 2−m, r2 := ε0, therefore by (46)–(47) and (50) we

obtain that

M( fm(Γm)) 6 α(2−m)→ 0 (51)

as m→∞,where α(ε) is some nonnegative function converging to zero as ε→ 0,which exists by (46)–(47).

On the other hand, observe that fm(Γm) = Γ(Cm, fm(A),D fm ), moreover, h̃( fm(A)) > δ for any m ∈ N by
the definition of the class FQ,δ,A(D). Taking into account the relation (49) and the definition of an equally
uniform family of domains, we conclude that there exists σ > 0 such that

M( fm(Γm)) = M(Γ(Cm, fm(A),D fm )) > σ ∀ m ∈N ,

which contradicts the condition (51). The resulting contradiction proves the lemma.

By Lemma 5.2 and Proposition 4.7 and also the reasoning used in the proof of Theorem 4.8, we obtain
the following statement.

Theorem 5.3. Let D be a domain in S and let Q : S→ (0,∞) be a function locally integrable in D,Q(x) ≡ 0 for
x ∈ S\D.Assume that, for any p0 ∈ D, one of the following conditions is satisfied: either (8), or Q ∈ FMO(p0).
Let also D be locally path-connected on ∂D, D f = f (D) be a compactum in S∗ for any f ∈ FQ,δ,A(D). Assume
that the domains D f and S∗ are equi-uniform over f ∈ FQ,δ,A(D).

Then any f ∈ FQ,δ,A(D) has a continuous extension f : D → D f and, in addition, the family FQ,δ,A(D),
consisting of all extended maps f : D→ D f , is equicontinuous in D.

6. Equicontinuity of Sobolev Classes with Branching

The question of the local and global behavior of mappings with a branching looks much more com-
plicated, since for mappings of Riemannian surface estimates of the form (43) have not been established.
Instead, we may only use the estimates (7) or (20), which are obtained in this paper. As in the previous
section, let us start by investigation of mappings at interior points. Let us prove, first of all, the following
auxiliary statement.

Proposition 6.1. Let (X, d) be an arbitrary metric space with metric d and F j, j = 1, 2, . . . , be a sequence
of continua in X such that d(F j) = sup

x,y∈F j

d(x, y) > δ ∀ j = 1, 2, . . . . Let x0 ∈ X and B(x0, δ/4) = {x ∈ X :

d(x, x0) < δ/4}. Then there is ε0 > 0 and a sequence of continua C j such that C j ⊂ F j \ B(x0, δ/4) and
d(C j) = sup

x,y∈C j

d(x, y) > δ/4, j = 1, 2, . . . .
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Proof. Fix j ∈N. If F j ∩ B(x0, δ/4) = ∅, there is nothing to prove. Let F j ∩ B(x0, δ/4) , ∅.

Since F j is a continuum in X, there are x j, y j ∈ F j such that d(F j) = d(x j, y j). Since d(F j) > δ, at least
one of the points x j or y j does not belong to B(x0, δ/4), because, otherwise, by the triangle inequality
d(x j, y j) 6 d(x j, x0) + d(x0, y j) < δ/2. Let, for definiteness, x j ∈ D \B(x0, δ/4). Then two situations are possible:

1) y j ∈ B(x0, δ/4). Let C j be x j-component of F j \ B(x0, δ/4). Since F j is connected and F j ∩ B(x0, δ/4) , ∅,
we obtain that C j ∩ F j \ C j , ∅ (see, e.g., [28, Section I.5.46]). Observe that

F j \ C j = (F j ∩ B(x0, δ/4)) ∪
⋃
α∈A

Kα , (52)

where A is some set of indices α and
⋃
α∈A

Kα is a union of all components of F j \ B(x0, δ/4), except C j. By [28,

Theorem 1.III.46.5], Kα and C j are closed disjoint sets in F j \ B(x0, δ/4), α ∈ A. Then, by (52) the relation
C j ∩ F j \ C j , ∅ is possible if and only if C j ∩B(x0, δ/4) , ∅. Then there is z j ∈ C j ∩ S(x0, δ/4). By the triangle
inequality

δ 6 d(x j, y j) 6 d(x j, z j) + d(z j, y j) < d(C j) + δ/2 ,

whence it follows that d(C j) > δ/2, as required. Consider the second situation:

2) y j ∈ D \ B(x0, δ/4). Let, as before, C j be x j-component of F j \ B(x0, δ/4), and let D j be-y j- j \ B(x0, δ/4).
Reasoning similar to the above, we conclude that there are z j ∈ C j ∩S(x0, δ/4) and z ′j ∈ D j ∩S(x0, δ/4). Then,
by the triangle inequality

δ 6 d(x j, y j) 6 d(x j, z j) + d(z j, z ′j ) + d(z ′j , y j) 6 d(C j) + d(D j) + δ/2 ,

whence it follows that either d(C j) > δ/4, or d(D j) > δ/4. The proposition is proved.

The next statement concerns the situation in which the images of two points under mappings are
separated by a fixed nonzero number. It will be shown below that in this case the length of the images of
circles centered at one of the points under these mappings is separated from zero from below.

Lemma 6.2. Let D ∗ be a uniform domain in S∗ such that D ∗ is a compactum. Let fk : D→ D∗ \Gk, k = 1, 2, . . .
be a family of mappings open in D such that h̃∗(Gk) = sup

x,y∈Gk

h̃∗(x, y) > δ, where Gk ⊂ D∗ is some continuum

and the number δ does not depend on k.
Suppose that p0 ∈ D, pk ∈ D, k = 1, 2, . . . , and δ0 > 0 such that pk → p0 as k→∞ and

h̃∗( fk(pk), fk(p0)) > δ0 k = 1, 2, . . . . (53)

Then there are l0 > 0, r0 > 0 and k0 > 1 such that

l( fk(S̃(p0, r)) > l0, ∀ r ∈ (̃h(p0, pk), r0) , ∀ k > k0 , (54)

where l denotes the length of the path on the Riemannian surface S∗.

Proof. Suppose the opposite. Then for each i ∈N there are ki > i and h̃(p0, pki ) < ri < 1/i such that

l( fki (S̃(p0, ri))) < 1/i, i = 1, 2, . . . , ri → 0 (55)

as i→∞.Without loss of generality, we may assume that the sequence numbers ki, i = 1, 2, . . . is increasing.
Let ζi, i = 1, 2, . . . , be an arbitrary sequence of points from fki (S̃(p0, ri)). Since D ∗ is a compactum in S∗, we
may assume that ζi → ζ0 as i→∞, ζ0 ∈ D ∗. Note that ζi = fki (p

′

i ), p ′i ∈ S̃(p0, ri), and that

Gki ⊂ D∗ \ fki (B̃(p0, ri)) , (56)
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because by the condition Gk ⊂ D∗ \ fk(D) for any k ∈N. Since fki is open for any i ∈N, we obtain that

∂ fki (B̃(p0, ri)) ⊂ fki (S̃(p0, ri)) . (57)

The assumption (55) implies that
h̃∗( fki (S̃(p0, ri)))→ 0

as i→∞, h̃∗( fki (S̃(p0, ri))) := sup
p∗,q∗∈ fki (S̃(p0,ri))

h̃∗(p∗, q∗). Now, for any s ∈N there exists a number is ∈N such that

fki (S̃(p0, ri)) ⊂ B̃(ζ0, 1/s) , i > is . (58)

By Proposition 6.1, there is s0 ∈N and a sequence Eki of continua such that

Eki ⊂ Gki \ B̃(ζ0, 1/s0), h̃∗(Eki ) > δ/4 , i = 1, 2, . . . . (59)

We fix s > s0 and consider the family Γ( fki (S̃(p0, ri)),Eki ,D∗) for i > is, see Figure 6.
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Figure 6: To the proof of Lemma 6.2

Let γ ∈ Γ( fki (S̃(p0, ri)),Eki ,D∗), i.e., γ = γ(t), t ∈ (0, 1), γ(0) ∈ fki (S̃(p0, ri)), γ(1) ∈ Eki and γ(t) ∈ D∗ for
t ∈ (0, 1). By (58) and (59) |γ|∩ B̃(ζ0, 1/s) , ∅ , |γ|∩(D∗ \ B̃(ζ0, 1/s)), therefore by [28, Theorem 1.I.5, § 46] there

is t1 ∈ (0, 1) such that γ(t1) ∈ S̃(ζ0, 1/s). Without loss of generality we may assume that γ(t) ∈ D∗ \ B̃(ζ0, 1/s)
for t > t1. Set γ1 := γ|[t1,1]. Again, by (58) and (59) |γ1| ∩ B̃(ζ0, 1/s0) , ∅ , |γ1| ∩ (D∗ \ B̃(ζ0, 1/s0)), therefore
by [28, Theorem 1.I.5, § 46] there is t2 ∈ (t1, 1) : γ1(t2) ∈ S̃(ζ0, 1/s0). Without loss of generality we may
assume that γ1(t) ∈ B̃(ζ0, 1/s0) for t ∈ (t1, t2). Set γ2 := γ1|[t1,t2], γ2 ∈ Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0)),
Ã(ζ0, 1/s, 1/s0)) = {p∗ ∈ S∗ : 1/s < h̃∗(p∗, ζ0) < 1/s0}. From the above it follows that

Γ( fki (S̃(p0, ri)),Eki ,D∗) > Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0)) , i > is ,

and, therefore, in view of [33, Theorem 1(c)] and by Proposition 4.3

M(Γ( fki (S̃(p0, ri)),Eki ,D∗)) 6
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6M(Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0)))→ 0 (60)

as s→∞ for i > is. Let us fix ε > 0 and find for it a number S = S(ε) such that

M(Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0))) < ε, s > S(ε) .

Set I0 = I0(ε) := iS(ε). Now, it follows from (60) that

M(Γ( fki (S̃(p0, ri)),Eki ,D∗)) < ε, i > I0 = I0(ε) . (61)

Since S is a smooth manifold, we may consider that the balls B̃(p0, ri) are path connected for any i ∈ N. Let
αi be a path joining pki and p0 in B̃(p0, ri). By (53) h̃∗( fki (|αi|)) > δ0.Now, by the definition of a uniform domain

M(Γ( fki (|αi|),Eki ,D∗)) > ε1 , ∀ i ∈N . (62)

On the other hand, by (56) and (57)

Γ( fki (|αi|),Eki ,D∗) > Γ( fki (S̃(p0, ri)),Eki ,D∗) ,

whence by [33, Theorem 1(c)] and also by (62)

ε1 < M(Γ( fki (|αi|),Eki ,D∗)) 6M(Γ( fki (S̃(p0, ri)),Eki ,D∗)) . (63)

The inequalities (63) and (61) contradict each other, which proves 54).

Let D ⊂ S and D∗ ⊂ S∗ be fixed domains. Given δ > 0 and a measurable function Q : S → (0,∞) with
a respect to the measure h̃, Q(x) ≡ 0 for x ∈ S \ D, we demote by GQ,δ(D) the family of all open mappings
f : D → D∗ \ G f satisfying the relation (7) in D such that h̃∗(G f ) = sup

x,y∈G f

h̃∗(x, y) > δ, where G f ⊂ D∗ is some

continuum.

Lemma 6.3. Assume that Q satisfies (8) in D, or Q ∈ FMO(p0) at any point p0 ∈ D. If D∗ is uniform and D ∗
is a compactum in S∗, then the family GQ,δ(D) is equicontinuous in D.

Proof. In view of the reasoning used in the proof of Theorem 4.8, it suffices to establish Lemma 6.3 in the
case when Q satisfies relations (8) in D.

Suppose that the conclusion of the lemma does not hold. Then there are p0 ∈ D, pk ∈ D, k = 1, 2, . . . ,
fk ∈ GQ,δ(D) and δ0 such that pk → p0 as k→∞ and

h̃∗( fk(pk), fk(p0)) > δ0 . (64)

By Lemma 6.2, there are l0 > 0 and r0 > 0 such that

l( fk(S̃(p0, r)) > l0 (65)

for all r ∈ (̃h(p0, pk), r0), for any k > k0 and some k0 > 1. Without loss of generality, we may assume that
r0 < ε0, where ε0 is a number from (8) that exists by the condition of the lemma. In this case, the function

ρ(p) =

{
1/l0 , p ∈ D ∗ ,

0 , p < D ∗

is admissible for Γr0
k , consisting of the union of the paths fk(S̃(p0, r)) over all r ∈ (̃h(p0, pk), r0), k = 1, 2, . . . . In

this case, by the definition of the modulus of families of paths,

M(Γr0
k ) 6 (1/l20) · h̃∗(D ∗) < ∞ , (66)
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because D ∗ is a compactum in S∗. On the other hand, by Lemma 2.4 and also by (8) we obtain that

M(Γr0
k ) >

r0∫
h̃(p0,pk)

dr
‖Q‖(r)

→∞ (67)

as k→∞. The relations (66) and (67) contradict each other, which refutes the assumption made in (64).

As usual, we formulate the main results of this section for Sobolev classes. For this purpose, consider
the following definition of the family of mappings. Given numbers δ > 0, N ∈ N, a domain D ⊂ S and a
function Q : S → (0,∞) that is measurable with respect to the measure h̃, Q(x) ≡ 0 for x ∈ S \ D, denote by
SQ,δ,N(D) a family of all open discrete mappings f : D→ D∗ \G f of the class W1,1

loc(D) with a finite distortion

such that K f (p) 6 Q(p) for almost all p ∈ D, N( f ,D) 6 N and h̃∗(G f ) = sup
x,y∈G f

h̃∗(x, y) > δ, where G f ⊂ D∗ is

some continuum. The following theorem holds.

Theorem 6.4. Suppose that the function Q satisfies the relations (8) in D, or Q ∈ FMO(p0) at any point p0 ∈ D.
If the domain D∗ is uniform and D ∗ is a compactum in S∗, then the family SQ,δ,N(D) is equicontinuous at
any point p0 ∈ D.

Proof immediately follows from Lemma 6.3 and Theorem 1.1. �

Let us turn to the study of equicontinuity at the points of the boundary. First of all, similarly to
Lemma 6.2, we prove the following statement.

Lemma 6.5. Let D and D∗ be domains in S and S∗, respectively, p0 ∈ ∂D, pk ∈ D, k = 1, 2, . . . , pk → p0 as
k→∞, and let a domain D has a locally quasiconformal boundary. Let fk : D→ D∗, k = 1, 2, . . . be a family
of mappings such that fk|D is open and closed in D. Suppose that

1) the domains Dk := fk(D) and D∗ are equi-uniformly over k ∈N, in addition, D ∗ is a compactum in S∗;

2) there is a number δ > 0 with the following property: for any k ∈ N there is a continuum Ak ⊂ fk(D),
such that h̃∗(Ak) > δ > 0, moreover, h̃( f −1

k (Ak), ∂D) > δ > 0;

3) there is δ0 > 0 such that

h̃∗( fk(pk), fk(p0)) > δ0 ∀ k = 1, 2, . . . . (68)

Then there are l0 > 0, r0 > 0 and k0 > 1 such that

l( fk(S̃(p0, r) ∩D) > l0, ∀ r ∈ (̃h(p0, pk), r0) , ∀ k > k0 , (69)

where l denotes the length of the dashed line S̃(p0, r) ∩D on the Riemannian surface S∗.

Proof. Suppose the opposite. Then for each i ∈N there are ki > i and h̃(p0, pki ) < ri < 1/i, for which

l(1i(S̃(p0, ri) ∩D)) < 1/i, i = 1, 2, . . . , ri → 0 , (70)

as i → ∞, 1i := fki . Without loss of generality, we may assume that the sequence numbers ki, i = 1, 2, . . . is
increasing. We also denote pki := qi.

Since D is a domain with a locally quasiconformal boundary, by Lemma 4.4 there is a sequence of
neighborhoods Um of the point p0, m = 1, 2, . . . , contracting to p0 such that Um ∩ D is connected and,
moreover, for each m = 1, 2, . . . , there is a cut γm of D such that Um ∩D ⊂ D \ |γm|, |γm| ⊂ S̃(p0, rim ) for some
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subsequence rim of the sequence ri, i = 1, 2, . . . . Since fk is continuous in D, there is a sequence p ′k ∈ D such

that h̃∗( fk(p0), fk(p ′k )) < 1/k. Put q ′i := p ′ki
. Then it follows from (68) that

h̃∗(1i(qi), 1i(q ′i )) > δ0/2 (71)

for i > i0 ∈ N. For any m ∈ N, we may find jm ∈ N, jm > i0, such that q jm , q ′jm ∈ Um. Now, by (71) we obtain
that

h̃∗(1 jm (q jm ), 1 jm (q ′jm )) > δ0/2 ∀ m = 1, 2, . . . . (72)

Let us show that

A jm ⊂ D∗ \ 1 jm (Um ∩D) ∀ m > m0 . (73)

Indeed, if yl ∈ A jml
∩1 jml

(Uml∩D) for arbitrarily large l = 1, 2, . . . and some increasing sequence ml, l = 1, 2, . . . ,
then yl = 1 jml

(xl), xl ∈ Uml ∩ D and, at the same time, xl ∈ 1
−1
jml

(A jml
). Since Uml contracts to p0 ∈ ∂D, then

xl → p0 as l→∞, which contradicts the condition h̃( f −1
k (Ak), ∂D) > δ > 0, 1 jml

= fk jml
. Thus, (73) holds.

Now let dm be the component of D \ |γm|, containing Um ∩D. Let us show that

∂1 jm (dm) ∩ 1 jm (D) ⊂ 1 jm (|γm|) (74)

for any m = 1, 2, . . . .
We fix m ∈ N and consider ym ∈ ∂1 jm (dm) ∩ 1 jm (D). Then there is ymk ∈ 1 jm (dm), ymk → ym as k → ∞.

Since fk are open, 1 jm (D) is a domain, so we may assume that ymk ∈ 1 jm (dm) ∩ 1 jm (D). Since ymk ∈ 1 jm (dm),
then ymk = 1 jm (ηmk), ηmk ∈ dm. By lemma 4.4 dn ⊂ Um for all n > n(M), therefore dm also contract to the point
p0 as m → ∞. Thus, we may assume that dm is a compactum in S, and that ηmk → η0 as k → ∞. Observe
that the case η0 ∈ ∂D is impossible, because now ym ∈ C(1 jm , ∂D) ⊂ ∂1 jm (D) by the closeness of the mapping
1 jm = fk jm

, which contradicts the choice of ym. Then η0 ∈ D. Two situations are possible: 1) η0 ∈ dm and 2)
η0 ∈ |γm|.Observe that the case 1) is impossible, because now 1 jm (η0) = ym and ym is an inner point of the set
1 jm (dm) by the openness of the mapping 1 jm ,which also contradicts the choice of ym. Thus, the inclusion (74)
is proved.

The further course of reasoning largely repeats the scheme of the proof of Lemma 6.2. Letξm,m = 1, 2, . . . ,
be an arbitrary sequence of points from |γm|. Since D ∗ is a compactum in S∗, without loss of generality, we
may assume that ζm := 1 jm (ξm)→ ζ0 as m→∞, ζ0 ∈ D ∗. It follows from (70) that

h̃∗(1 jm (|γm|))→ 0

as m→∞, h̃∗(1 jm (|γm|)) := sup
p∗,q∗∈1 jm (|γm |)

h̃∗(p∗, q∗). Now, for any s ∈N there is a number ms ∈N such that

1 jm (|γm|) ⊂ B̃(ζ0, 1/s) , m > ms . (75)

By Proposition 6.1 there is s0 ∈N and a sequence of continua E jm such that

E jm ⊂ A jm \ B̃(ζ0, 1/s0), h̃∗(E jm ) > δ/4 , i = 1, 2, . . . . (76)

We fix s > s0 and consider the family Γ(1 jm (|γm|),E jm , 1 jm (D)) for m > ms. Let γ ∈ Γ(1 jm (|γm|),E jm , 1 jm (D)),
i.e., γ = γ(t), t ∈ (0, 1), γ(0) ∈ fki (1 jm (|γm|), γ(1) ∈ E jm and γ(t) ∈ 1 jm (D) for t ∈ (0, 1). By (75) and (76)
|γ| ∩ B̃(ζ0, 1/s) , ∅ , |γ| ∩ (1 jm (D) \ B̃(ζ0, 1/s)), therefore, according to [28, Theorem 1.I.5,§ 46] there is
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Figure 7: To the proof of Lemma 6.5

t1 ∈ (0, 1) such that γ(t1) ∈ S̃(ζ0, 1/s).Without loss of generality, we may assume that γ(t) ∈ 1 jm (D) \ B̃(ζ0, 1/s)
for t > t1. Put γ1 := γ|[t1,1].Again, by (75) and (76) |γ1| ∩ B̃(ζ0, 1/s0) , ∅ , |γ1| ∩ (1 jm (D) \ B̃(ζ0, 1/s0)), therefore
by [28, Theorem 1.I.5,§ 46] there is t2 ∈ (t1, 1) such that γ1(t2) ∈ S̃(ζ0, 1/s0).Without loss of generality, we may
assume that γ1(t) ∈ B̃(ζ0, 1/s0) for t ∈ (t1, t2). Put γ2 := γ1|[t1,t2], γ2 ∈ Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0)),
Ã(ζ0, 1/s, 1/s0)) = {p∗ ∈ S∗ : 1/s < h̃∗(p∗, ζ0) < 1/s0}, see Figure 7.

Hence it follows that

Γ(1 jm (|γm|),E jm , 1 jm (D)) > Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0))

for m > ms. Thus, by [33, Theorem 1(c)] and by Proposition 4.3

M(Γ(1 jm (|γm|),E jm , 1 jm (D))) 6

6M(Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0))) , (77)

M(Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0)))→ 0

as s→∞. Given ε > 0 we may find a number S = S(ε) such that

M(Γ(S̃(ζ0, 1/s), S̃(ζ0, 1/s0), Ã(ζ0, 1/s, 1/s0))) < ε, s > S(ε) .

Set M0 = M0(ε) := mS(ε). It follows from (77) that

M(Γ(1 jm (|γm|),E jm , 1 jm (D))) < ε, m > M0 = M0(ε) . (78)

Now let us join the points q jm and q ′jm by the path αm ⊂ Um. By assumption (71) h̃∗(1 jm (|αm|)) > δ0/2. Then by
the definition of a uniform domain, there exists ε1 > 0 such that

M(Γ(1 jm (|αm|),E jm , 1 jm (D))) > ε1 , m ∈N . (79)
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On the other hand, by (73) and (74)

Γ(1 jm (|αm|),E jm , 1 jm (D)) > Γ(1 jm (|γm|),E jm , 1 jm (D)) ,

whence by [33, Theorem1(c)] and also by (79) we obtain that

ε1 < M(Γ(1 jm (|αm|),E jm , 1 jm (D))) 6M(Γ(1 jm (|γm|),E jm , 1 jm (D))) (80)

for m = 1, 2, . . . . The inequalities (80) and (78) contradict each other, which proves (69).

LetD and D∗ be domains in S and S∗, respectively. Given δ > 0 and a measurable function Q : S→ (0,∞)
with respect the measure h̃, Q(x) ≡ 0 for x ∈ S \ D, denote by LQ,δ(D) the family of all open discrete
mappings f : D → D∗ with (7) for which: 1) there is a continuum G f ⊂ D∗ such that f : D → D∗ \ G f and
h̃∗(G f ) := sup

x,y∈G f

h̃∗(x, y) > δ; 2) there exists a continuum A f ⊂ f (D) such that h̃∗(A f ) > δ and h̃( f −1(A f ), ∂D) > δ.

The following theorem holds.

Theorem 6.6. Assume that the following conditions are satisfied:

1) Q is locally integrable in D and either Q satisfies (8), or Q ∈ FMO(p0) at any point p0 ∈ D;

2) domains D f = f (D) and D∗ are equi-uniform over f ∈ LQ,δ(D);

3) a domain D has a locally quasiconformal boundary;

4) the set D ∗ is a compactum in S∗.

Then any mapping f ∈ LQ,δ(D) has a continuous extension f : D → D ∗ and a family LQ,δ(D) of all
extended mappings f is equicontinuous in D.

Proof. Arguing similarly to the beginning of the proof of Lemma 5.2, we conclude that the domain D f = f (D),
f ∈ LQ,δ(D), has a strongly accessible boundary. In this case, the possibility of continuous extension
f : D → D ∗ follows from Theorem 4.6, and the equicontinuity of LQ,δ(D) in D is from Lemma 6.3, since
LQ,δ(D) ⊂ GQ,δ(D). It remains to show the equicontinuity of the family LQ,δ(D) in ∂D.

Suppose the opposite. Then there are p0 ∈ ∂D, pk ∈ D, k = 1, 2, . . . , fk ∈ LQ,δ(D) and δ0 such that pk → p0
as k→∞ and

h̃∗( fk(pk), fk(p0)) > δ0 . (81)

By Theorem 4.6 we may assume that pk ∈ D, besides that, by Lemma 6.2 there are l0 > 0 and r0 > 0 such
that for some k0 > 1

l( fk(S̃(p0, r)) > l0, ∀ r ∈ (̃h(p0, pk), r0) , ∀ k > k0 , (82)

where l denotes the length of a path on the Riemannian surface S∗. Without loss of generality, we may
assume that r0 < ε0, where ε0 is a number from (8), existing by the conditions of the lemma. In this case,
the function

ρ(p) =

{
1/l0 , p ∈ D ∗ ,

0 , p < D ∗

is admissible for Γr0
k , consisting from the union of all dished lines fk(S̃(p0, r)), k = 1, 2, . . . ,over r ∈ (̃h(p0, pk), r0).

In this case, by the definition of the modulus of families of paths, we obtain that

M(Γr0
k ) 6 (1/l20) · h̃∗(D ∗) < ∞ , (83)
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because D ∗ is a compactum in S∗. On the other hand, by Lemma 2.4 and by the conditions (8) we have that

M(Γr0
k ) >

r0∫
h̃(p0,pk)

dr
‖Q‖(r)

→∞ (84)

as k→∞. The relations (83) and (84) contradict each other,, which refutes the assumption made in (81).

Let D and D∗ be domains in S and S∗, respectively. Given δ > 0, a natural number N > 1 and a function
Q : S → (0,∞), Q(x) ≡ 0 for x ∈ S \ D, measurable with respect to the measure h̃, denote by MQ,δ,N(D) the
family of all open discrete and closed mappings f : D→ D∗ of the class W1,1

loc(D) with a finite distortion for

which: 1) there is a continuum G f ⊂ D∗ such that f : D → D∗ \ G f and h̃∗(G f ) := sup
x,y∈G f

h̃∗(x, y) > δ; 2) there

is a continuum A f ⊂ f (D) such that h̃∗(A f ) > δ and h̃( f −1(A f ), ∂D) > δ; 3) K f (p) 6 Q(p) for any p ∈ D; 4)
N( f ,D) 6 N.

The following theorem holds.

Theorem 6.7. Assume that the following conditions are satisfied:

1) Q is locally integrable in D and either Q satisfies (8), or Q ∈ FMO(p0) at any point p0 ∈ D;

2) domains D f = f (D) and D∗ are equi-uniform over f ∈MQ,δ,N(D);

3) a domain D has a locally quasiconformal boundary;

4) the set D ∗ is a compactum in S∗.

Then any mapping f ∈MQ,δ,N(D) has a continuous extension f : D→ D ∗ and the familyMQ,δ,N(D) of all
extended mappings f is equicontinuous in D.

Proof of Theorem 6.7 immediately follows from Theorems 6.6 and 1.1. �
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