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Abstract. In this paper, by virtue of the properties of the generalized inverses of the elements in rings
with involution, we construct the related equations. By discussing the solutions of these equations, the
generalized invertible elements are characterized.

1. Introduction

Let R be an associative ring with 1, and let a ∈ R. a is said to be group invertible if there exists a#
∈ R

such that
aa#a = a, a#aa# = a#, aa# = a#a.

The element a# is called a group inverse of a, which is uniquely determined by the above equations [1]. We
denote the set of all group invertible elements of R by R#.

An involution in R is an anti-isomorphism ∗ : R→ R, a 7→ a∗ of degree 2, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗.

If a∗a = aa∗, the element a is called normal [5]. In [6, 7], we discussed many properties of normal elements.
An element a+ ∈ R is called the Moore-Penrose inverse (or MP-inverse) [1] of a, if

aa+a = a, a+aa+ = a+, (aa+)∗ = aa+, (a+a)∗ = a+a.

If a+ exists, then it is unique.
Let a ∈ R. Then a is called partial isometry if a = aa∗a. Clearly, a ∈ R+ is partial isometry if and only if

a∗ = a+. Denote by RPI the set of all partial isometries of R. If a ∈ R#
∩ R+ and a# = a+, then a is called an EP

element. We write REP to denote the set of all EP elements of R. If a ∈ REP
∩ RPI, then a is called a strongly

EP element [8]. Also we write RSEP for the set of all strongly EP elements of R.
In this paper, we provide some equivalent conditions for an element to be an EP element, normal

element, partial isometry and strongly EP element by using solutions of some equations.
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2. Generalized inverses and the solutions of equation in a fixed set

Lemma 2.1. ([3])Let a ∈ R#
∩ R+. Then the following conditions are equavilent:

1) a ∈ REP;
2) a+ = aa+a+;
3) a+ = a+a+a;
4) a+a = a#a;
5) aa+ = aa#;
6) a = a+a2;
7) a = a2a+.

Lemma 2.2. Let a ∈ R#
∩ R+. Then (1) a+a∗(a#)∗ = a+ = (a#)∗a∗a+.

(2) (a+)∗aa# = (a+)∗ = a#a(a+)∗.

Lemma 2.3. ([3, Theorem 1.2.1]) Let a ∈ R#
∩ R+. Then a ∈ REP if and only if aa+a# = a+a#a.

Lemma 2.3 implies us to construct the following equation:

xa+a# = a+a#x. (1)

Theorem 2.4. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the equation (1) has at least one solution in χa =:

{a, a#, a+, a∗, (a#)∗, (a+)∗}.

Proof. ” =⇒ ” Assume that a ∈ REP, then, by Lemma 2.3, we have aa+a# = a+a#a, which implies x = a is a solution
of the equation (1) in χa.
”⇐= ” 1) If x = a is a solution, then aa+a# = a+a#a. Hence we have a ∈ REP by Lemma 2.3.

2) If x = a#, then a#a+a# = a+a#a#, that is (a#)3 = a+(a#)2. Multiplying the equality on the right by a3, we have
a#a = a+a. By Lemma 2.1, one has a ∈ REP .

3) If x = a+, then a+a+a# = a+a#a+, it follows that a+a#a+(1−a+a) = a+a+a#(1−a+a) = 0. Multiplying the equality
on the left by a∗a3, we have a∗(1− a+a) = 0. Applying the involution on the last equality, we have (1− a+a)a = 0, this
gives a = a+a2. Hence a ∈ REP by Lemma 2.1.

4) If x = a∗, then a∗a+a# = a+a#a∗. Multiplying the equality on the right by 1− aa+, we have a∗a+a#(1− aa+) = 0.
Multiplying the last equality on the left by a3(a#)∗, it follows from Lemma 2.2 that a(1 − aa+) = 0, which implies
a = a2a+. Hence a ∈ REP by Lemma 2.1.

5) If x = (a#)∗, then (a#)∗a+a# = a+a#(a#)∗. Multiplying the equality on the right by 1− aa+, we have (a#)∗a+a#(1−
aa+) = a+a#(a#)∗(1 − aa+) = 0. Multiplying the last equality on the left by a3a∗, we have a(1 − aa+) = 0 by Lemma
2.2. It follows that a = a2a+, by Lemma 2.1 we have a ∈ REP .

6) If x = (a+)∗, then (a+)∗a+a# = a+a#(a+)∗. Multiplying the equality on the left by 1 − a+a, we have (1 −
a+a)(a+)∗a+a# = (1 − a+a)a+a#(a#)∗ = 0. Multiplying the last equality on the right by a2a∗a, we have (1 − a+a)a = 0.
Hence a ∈ REP by Lemma 2.1.

Lemma 2.5. [2, Lemma 1.7] Let a ∈ R+. If a is normal, then a ∈ REP.

Lemma 2.6. [8, Lemma 2.11] Let a ∈ R#
∩ R+ and x ∈ R. (1) If xa+a+ = 0, then xa+ = 0.

(2) If a+a+x = 0, then a+x = 0.

Lemma 2.7. Let a ∈ R#
∩ R+ and x ∈ R. (1) If xa+a∗ = 0, then xa+ = 0.

(2) If a∗a+x = 0, then a+x = 0.

Proof. (1) Since a+a+a = a+a∗(a+)∗, xa+a+ = xa+a+(aa+) = xa+a∗(a+)∗a+ = 0. By Lemma 2.6, we have xa+ = 0.
(2) Similar to (1).
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Theorem 2.8. Let a ∈ R#
∩ R+. Then a is normal if and only if the following equation (2) has at least one solution

in χa.

xa+a∗ = a#a∗x. (2)

Proof. ” =⇒ ” Assume that a is normal, then aa∗ = a∗a and a ∈ REP by Lemma 2.5. Hence a#a∗a = a#aa∗ = aa#a∗ =
aa+a∗, it follows that x = a is a solution of the equation (2) in χa.
” ⇐= ” (1) If x = a is a solution, then aa+a∗ = a#a∗a. Multiplying the equality on the right by aa+, we have
a#a∗a = a#a∗a2a+. Multiplying the last equality on the left by (a+)∗a+a2, we have a = a2a+. By Lemma 2.1, one has
a ∈ REP. It follows that a∗ = a+aa∗ = aa+a∗ = a#a∗a, hence aa∗ = aa#a∗a = a#aa∗a = a+aa∗a = a∗a, which implies a is
normal.

(2) If x = a#, then a#a+a∗ = a#a∗a#. Multiplying the equality on the left by a+a2, we have a+a∗ = a∗a#. Hence
a ∈ REP by [3, Theorem 2.1]. It follows that a∗ = a+aa∗ = aa+a∗ = aa∗a# and aa∗ = aa∗a#a = a∗a. Thus a is normal.

(3) If x = a+, then a+a+a∗ = a#a∗a+. Multiplying the equality on the left by aa+, we have a+a+a∗ = aa+a+a+a∗. By
Lemma 2.7, one gets a+a+ = aa+a+a+. By Lemma 2.6, one has a+ = aa+a+. By Lemma 2.1 we obtain a ∈ REP. Hence
x = a+ = a# is a solution, by (2), a is normal.

(4) If x = a∗, then a∗a+a∗ = a#a∗a∗, this gives (a∗ − a#a∗a)a+a∗ = 0. By Lemma 2.7 we have (a∗ − a#a∗a)a+ = 0, that
is a∗a+ = a#a∗. Similar to the proof of (2) we know that a is normal.

(5) If x = (a+)∗, then (a+)∗a+a∗ = a#a∗(a+)∗ = a#, it follows that a∗a# = a∗(a+)∗a+a∗ = a+aa+a∗ = a+a∗. By (2), we
have a is normal.

(6) If x = (a#)∗, then (a#)∗a+a∗ = a#a∗(a#)∗. Multiplying the equality on the left by a+a, we have a#a∗(a#)∗ =
a+aa#a∗(a#)∗. Multiplying the equality on the right by a+a , we have a# = a+aa#. Hence a ∈ REP, this gives
x = (a#)∗ = (a+)∗ is a solution. By (5), a is normal.

Theorem 2.9. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the following equation (3) has at least one solution in

χ2
a =: {(u, v)|u, v ∈ χa}.

xya+ = a#yx. (3)

Proof. ” =⇒ ” Assume that a ∈ REP. Choose x = y = a, then a2a+ = a = a#a2. Hence (x, y) = (a, a) is the solution of
the equation (3).

”⇐= ” (1) If (x, y) = (a, a) is a solution, then a2a+ = a#a2 = a. By Lemma 2.1, a ∈ REP.
(2) If (x, y) = (a#, a), then a#aa+ = a#aa# = a#. By Lemma 2.1, a ∈ REP.
(3) If (x, y) = (a+, a), then a+ = a+aa+ = a#aa+. By Lemma 2.1, a ∈ REP.
(4) If (x, y) = (a∗, a), then a∗ = a∗aa+ = a#aa∗. By [3, Theorem 2.1], a ∈ REP.
(5) If (x, y) = ((a+)∗, a), then (a+)∗aa+ = a#a(a+)∗. By Lemma 2.2, one gets (a+)∗aa+ = (a+)∗. Applying the

involution on the equality, we have a+ = aa+a+. By Lemma 2.1, a ∈ REP.
(6) If (x, y) = ((a#)∗, a), then (a#)∗ = (a#)∗aa+ = a#a(a#)∗. Multiplying the equality on the right by (a∗)2, we have

a∗ = a#aa∗. By (4), a ∈ REP.
(7) If (x, y) = (a, a#), then aa#a+ = a#a#a = a#. By Lemma 2.1, a ∈ REP.
(8) If (x, y) = (a#, a#), then a#a#a+ = a#a#a#. Multiplying the equality on the left by a3, we have aa+ = aa#. By

Lemma 2.1, a ∈ REP.
(9) If (x, y) = (a+, a#), then a+a#a+ = a#a#a+. Multiplying the equality on the right by a3, we have a+a = a#a. By

Lemma 2.1, one yields a ∈ REP.
(10) If (x, y) = (a∗, a#), then a∗a#a+ = a#a#a∗. Multiplying the equality on the left by a+a, we have a#a#a∗ = a+a#a∗.

Multiplying the last equality on the right by (a+)∗a2, we have a#a = a+a. By Lemma 2.1, a ∈ REP.
(11) If (x, y) = ((a+)∗, a#), then (a+)∗a#a+ = a#a#(a+)∗. Multiplying the equality on the right by aa+, we have

a#a#(a+)∗ = a#a#(a+)∗aa+. Multiplying the last equality on the left by a2, one gets (a+)∗ = (a+)∗aa+ by Lemma 2.2.
Hence we have a+ = aa+a+. By Lemma 2.1, a ∈ REP.

(12) If (x, y) = ((a#)∗, a#), then (a#)∗a#a+ = a#a#(a#)∗. Multiplying the equality on the left by a+a, we have
a#a#(a#)∗ = a+a#(a#)∗. Multiplying the last equality on the right by a∗a+a, we have a#a# = a+a#. Hence a ∈ REP by [3,
Theorem 2.1].
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(13) If (x, y) = (a, a+), then aa+a+ = a#a+a = a#. Hence a ∈ REP by [3, Theorem 2.1].
(14) If (x, y) = (a#, a+), then a#a+a+ = a#a+a#. Multiplying the equality on the right by aa+, we have a#a+a# =

a#a+a#aa+. Multiplying the equality on the left by a2, we have a#aa+ = a#. Hence a ∈ REP.
(15) If (x, y) = (a+, a+), then a+a+a+ = a#a+a+. By Lemma 2.6, we have a+a+ = a#a+. Multiplying the equality

on the right by a, we have a+a+a = a#. Then multiplying the equality on the left by a+a, we have a+aa# = a#. Hence
a ∈ REP by [3, Theorem 2.1].

(16) If (x, y) = (a∗, a+), then a∗a+a+ = a#a+a∗. Multiplying the equality on the left by a+a, we have a+aa#a+a∗ =
a#a+a∗. Multiplying the last equality on the right by (a#)∗a, one gets a+aa# = a# by Lemma 2.2. Hence a ∈ REP.

(17) If (x, y) = ((a+)∗, a+), then (a+)∗a+a+ = a#a+(a+)∗. Multiplying the equality on the right by a+a, we have
(a+)∗a+a+ = (a+)∗a+a+a+a. Multiplying the last equality on the left by a∗, one obtains a+a+a+a = a+a+. By Lemma
2.6, a+a+a = a+. Hence a ∈ REP by Lemma 2.1.

(18) If (x, y) = ((a#)∗, a+), then (a#)∗a+a+ = a#a+(a#)∗. Multiplying the equality on the left by a+a, we have
a#a+(a#)∗ = a+aa#a+(a#)∗. Multiplying the last equality on the right by a∗a, we have a+aa# = a#. Hence a ∈ REP.

(19) If (x, y) = (a, a∗), then aa∗a+ = a#a∗a. Multiplying the equality on the right by a+a, we have aa∗a+ = aa∗a+a+a.
Multiplying the last equality on the left by a+(a+)∗a+, we have a+a+ = a+a+a+a. By Lemma 2.6, one has a+ = a+a+a.
Hence a ∈ REP by Lemma 2.1.

(20) If (x, y) = (a#, a∗), then a#a∗a+ = a#a∗a#. Multiplying the equality on the left by a+(a+)∗a+a2, we have
a+a+ = a+a#. It follows from [3, Theorem 2.1] that a ∈ REP.

(21) If (x, y) = (a+, a∗), then a+a∗a+ = a#a∗a+. By Lemma 2.6, one has a+a∗ = a#a∗. Hence a ∈ REP by [3, Theorem
2.1].

(22) If (x, y) = (a∗, a∗), then a∗a∗a+ = a#a∗a∗. Multiplying the equality on the left by a+a, we have a#a∗a∗ = a+aa#a∗a∗.
Multiplying the equality on the right by (a#)∗(a#)∗a+a, we have a#a+a = a+aa#a+a, that is a# = a+aa#. Hence a ∈ REP

by Lemma 2.1.
(23) If (x, y) = ((a+)∗, a∗), then (a+)∗a∗a+ = a#a∗(a+)∗, that is aa+a+ = a#a+a = a#. Hence a ∈ REP.
(24) If (x, y) = ((a#)∗, a∗), then (a#)∗a∗a+ = a#a∗(a#)∗, that is a+ = a#a∗(a#)∗. Multiplying the equality on the left by

1 − aa+, we have (1 − aa+)a+ = (1 − aa+)a#a∗(a#)∗ = 0, this gives a+ = aa+a+. Hence a ∈ REP by Lemma 2.1.
(25) If (x, y) = (a, (a+)∗), then a(a+)∗a+ = a#(a+)∗a. Multiplying the equality on the right by 1 − aa+, we have

a#(a+)∗a(1 − aa+) = 0. Multiplying the last equality on the left by a#aa∗a, we have a(1 − aa+) = 0, that is a = a2a+.
Hence a ∈ REP.

(26) If (x, y) = (a#, (a+)∗), then a#(a+)∗a+ = a#(a+)∗a#. Multiplying the equality on the left by a∗a, we have
a+ = a+aa#. It follows from [3, Theorem 2.1] that a ∈ REP.

(27) If (x, y) = (a+, (a+)∗), then a+(a+)∗a+ = a#(a+)∗a+. Multiplying the equality on the right by aa∗, we have
a+ = a#aa+. Hence a ∈ REP by [3, Theorem 2.1].

(28) If (x, y) = (a∗, (a+)∗), then a∗(a+)∗a+ = a#(a+)∗a∗, that is a+ = a#aa+. Hence a ∈ REP.
(29) If (x, y) = ((a+)∗, (a+)∗), then (a+)∗(a+)∗a+ = a#(a+)∗(a+)∗. Multiplying the equality on the right by a+a, we

have (a+)∗(a+)∗a+ = (a+)∗(a+)∗a+a+a. Applying the involution on the equality, we have (a+)∗a+a+ = a+a(a+)∗a+a+.
By Lemma 2.6 we have (a+)∗a+ = a+a(a+)∗a+. Again applying the involution on the last equality, we have (a+)∗a+ =
(a+)∗a+a+a. Then multiplying the equality on the left by a∗, we have a+ = a+a+a. By Lemma 2.1, a ∈ REP.

(30) If (x, y) = ((a#)∗, (a+)∗), then (a#)∗(a+)∗a+ = a#(a+)∗(a#)∗. Multiplying the equality on the left by a+a, we have
a#(a+)∗(a#)∗ = a+aa#(a+)∗(a#)∗ = a+(a+)∗(a#)∗. Multiplying the last equality on the right by (a∗)2, we have a#aa+ = a+.
Hence a ∈ REP.

(31) If (x, y) = (a, (a#)∗), then a(a#)∗a+ = a#(a#)∗a. Multiplying the equality on the right by aa+, we have
a#(a#)∗a = a#(a#)∗a2a+. Then multiplying the last equality on the left by a+a2, we have (a#)∗a = (a#)∗a2a+. Again
multiplying the last equality on the left by aa+a∗, we have a = a2a+. By Lemma 2.1, a ∈ REP.

(32) If (x, y) = (a#, (a#)∗), then a#(a#)∗a+ = a#(a#)∗a#. Multiplying the equality on the right by aa+, we have
a#(a#)∗a# = a#(a#)∗a#aa+. Multiplying the last equality on the left by aa+a∗a+a2, we have a# = aa+a# = aa+a#aa+ =
a#aa+. It follows that a ∈ REP.

(33) If (x, y) = (a+, (a#)∗), then a+(a#)∗a+ = a#(a#)∗a+. Multiplying the equality on the right by aa∗, we have
a+ = a#(a#)∗a∗. Then multiplying the last equality on the left by 1− aa+, we have (1− aa+)a+ = (1− aa+)a#(a#)∗a∗ = 0.
Hence a ∈ REP.

(34) If (x, y) = (a∗, (a#)∗), then a∗(a#)∗a+ = a#(a#)∗a∗. By Lemma 2.2, we have a+ = a#(a#)∗a∗. By (33), we have
a ∈ REP.
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(35) If (x, y) = ((a+)∗, (a#)∗), then (a+)∗(a#)∗a+ = a#(a#)∗(a+)∗. Multiplying the equality on the right by a+a, we
have (a+)∗(a#)∗a+ = (a+)∗(a#)∗a+a+a. Then multiplying the last equality on the left by a∗a∗, we have a+ = a+a+a by
Lemma 2.2. Hence a ∈ REP by Lemma 2.1.

(36) If (x, y) = ((a#)∗, (a#)∗), then (a#)∗(a#)∗a+ = a#(a#)∗(a#)∗. Multiplying the last equality on the left by a+a, we
have a#(a#)∗(a#)∗ = a+aa#(a#)∗(a#)∗. Then multiplying the equality on the right by (a∗)3(a+)∗, we have a# = a+aa#.
Hence a ∈ REP.

3. Generalized inverses and the general solutions of equation

The equation (1) can be generalized as follows

xa+a# = a+a#y. (4)

Lemma 3.1. Let a ∈ R#
∩ R+. Then a+a#

∈ REP, and (a+a#)+ = a+a3.

Proof. It is a routine verification.

Theorem 3.2. Let a ∈ R+ ∩ R#. Then the general solution of the equation (4) is given by the following formula.

 x = −a+apa+a3 + u − ua+a

quy = −a+a3pa+a + z − a+az
,where p,u, z ∈ R. (5)

Proof. First, we prove that the formula (5) is the solution of the equation (4).
In fact, (−a+apa+a3 + u − ua+a)a+a# = −a+apa+a + ua+a#

− ua+aa+a# = −a+apa+a;
a+a#(−a+a3pa+a + z − a+az) = −a+apa+a + a+a#z − a+a#a+az = −a+apa+a;
Hence the formula (5) is the solution of the equation (4).
Next, we prove that all solutions of the euqation (4) can be written in the form of (5).
Suppose that x = x0, y = y0 is a solution of the equation (4), then x0a+a# = a+a#y0. By Lemma 3.1, we have
−a+a(−a+a#y0)a+a3+x0−x0a+a = a+a#y0a+a3+x0−x0a+a = x0a+a#a+a3+x0−x0a+a = x0a+a+x0−x0a+a = x0;
−a+a3(−x0a+a#)a+a+y0−a+ay0 = a+a3x0a+a#+y0−a+ay0 = a+a3(a+a#y0)+y0−a+ay0 = a+ay0+y0−a+ay0 = y0.
Hence the general solution of the equation (4) is given by the formula (5).

The formula (5) can be changed as follows.

x = −aa+pa+a3 + u − ua+a

y = −a+a3pa+a + z − a+az
,where p,u, z ∈ R. (6)

Corollary 3.3. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the general solution of the equation (4) is given by

formula (6).

Proof. ” =⇒ ” Assume that a ∈ REP, then aa+ = a+a. Hence the formula (5) is same as (6). By Theorem 3.2, we know
that the general solution of the equation (4) is given by formula (6).

”⇐= ” Assume that the general solution of the equation (4) is given by formula (6). Then

(−aa+pa+a3 + u − ua+a)a+a# = a+a#(−a+a3pa+a + z − a+az).

Hence aa+pa+a = a+apa+a for any p ∈ R. Especially choose p = a, we have a = a+a2. Hence a ∈ REP by Lemma
2.1.

Similarly, we have the following corollary.
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Corollary 3.4. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if the general solution of the equation (4) is given byx = −a+apa+a3 + u − ua+a

y = −a+a3paa+ + z − a+az
,where p,u, z ∈ R. (7)

Theorem 3.5. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if the general solution of the equation (4) is given by

x = −a∗apa+a3 + u − ua+a

y = −a+a3pa+a + z − a+az
,where p,u, z ∈ R. (8)

Proof. ” =⇒ ” Assume that a ∈ RPI, then a+ = a∗, this infers the formula (5) is same as (8). Hence, by Theorem
3.2, one knows that the general solution of equation (4) is given by the formula (8).

”⇐= ” Assume that the formula (8) is the general solution of the equation (4). Then

(−a∗apa+a3 + u − ua+a)a+a# = a+a#(−a+a3pa+a + z − a+az).

It follows that a∗apa+a = a+apa+a for all p ∈ R. Especially, choose p = 1, we have a∗a = a+a. Hence a ∈ RPI

by [5, Theorem 2.2].

4. Generalized and inverse problem of the general solution

We don′t know the general solution of which equation is given by the formula (6) and (7). However, we
can construct the following equation.

xa+a# = aa+a+a#y. (9)

The following lemma follows from Lemma 2.2.

Lemma 4.1. Let a ∈ R#
∩ R+. Then (aa#)∗aa+a+ = a+ = a+a+a(aa#)∗.

Theorem 4.2. Let a ∈ R#
∩ R+. Then the general solution of the equation (9) is given byx = −aa+pa+a3 + u − ua+a

y = −a+a3pa+a + z − a+az
,where u, z ∈ R and p ∈ R with a+p = a+a+ap. (10)

Proof. First, the formula (10) is the general solution of the equation (9). In fact,

(−aa+pa+a3 + u − ua+a)a+a# = −aa+pa+a = −aa+a+apa+a = aa+a+a#(−a+a3pa+a + z − a+az).

Next, let x = x0 and y = y0 be a solution of the equation (9). Then x0a+a# = aa+a+a#y0. Choose p = −a+a#y0,
u = x0 and z = y0. Then by Lemma 4.1, we have

−aa+pa+a3 + u − ua+a = −aa+(−a+a#y0)a+a3 + x0 − x0a+a = x0a+a + x0 − x0a+a = x0,

−a+a3pa+a + z − a+az = −a+a3(−a+a#y0)a+a + y0 − a+ay0 = a+a3(aa#)∗(aa+a+a#y0)a+a + y0

−a+ay0 = a+a3(aa#)∗(x0a+a#)a+a + y0 − a+ay0 = a+a3(aa#)∗(x0a+a#) + y0 − a+ay0

= a+a3(a+a#y0) + y0 − a+ay0 = a+ay0 + y0 − a+ay0 = y0,

a+a+ap = a+a+a(−a+a#y0) = −a+a+a#y0 = a+p.

Hence the general solution of the equation (9) is given by the formula (10).
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Question 4.3. Let a ∈ R#
∩ R+. We consider if p which appears in the formula (10) takes all the elements of R, then

a ∈ REP?

xa+a#(aa#)∗ = a+a#y. (11)

Similar to Theorem 4.1, we have the following theorem.

Theorem 4.4. Let a ∈ R#
∩ R+. Then the general solution of the equation (11) is given byx = −a+apa+a3 + u − ua+a

y = −a+a3paa+ + z − a+az
,where u, z ∈ R and p ∈ R with pa+ = paa+a+. (12)

5. Generalized inverses and invertible elements

Lemma 4.1 implies the following lemma.

Lemma 5.1. Let a ∈ R#
∩ R+. Then (aa#)∗a ∈ REP and ((aa#)∗a)+ = a+a+a.

It is well known that if a ∈ R#, then a + 1 − aa#
∈ R−1 and (a + 1 − aa#)−1 = a# + 1 − aa#. Hence Lemma 5.1

leads to the following lemma.

Lemma 5.2. Let a ∈ R#
∩ R+. Then (aa#)∗a + 1 − a+a ∈ R−1 and ((aa#)∗a + 1 − a+a)−1 = a+a+a + 1 − a+a.

The following theorem follows from Lemma 2.1 and Lemma 5.2.

Theorem 5.3. Let a ∈ R#
∩ R+. Then a ∈ REP if and only if ((aa#)∗a + 1 − a+a)−1 = a+ + 1 − a+a.

Noting that for any a ∈ R#
∩ R+, a ∈ RPI if and only if a∗a+a = a+a+a. Hence we have the following

theorem by Lemma 5.2.

Theorem 5.4. Let a ∈ R#
∩ R+. Then a ∈ RPI if and only if ((aa#)∗a + 1 − a+a)−1 = a∗a+a + 1 − a+a.

Since a ∈ RSEP if and only if a∗ = a∗a+a, Theorem 5.4 infers the following corollary.

Corollary 5.5. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if ((aa#)∗a + 1 − a+a)−1 = a∗ + 1 − a+a.
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