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Abstract. Abu-Omar and Kittaneh [Numerical radius inequalities for products of Hilbert space operators,
J. Operator Theory 72(2) (2014), 521–527], wonder what is the smallest constant c such that w(AB) ≤ c∥A∥w(B)
for all bounded linear operators A,B on a complex Hilbert space with A is positive. Here, w(·) stands for

the numerical radius. In this paper, we prove that c =
3
√

3
4

.

1. Introduction

LetH denote a complex Hilbert space with inner product ⟨·, ·⟩ and ∥ · ∥ denotes the induced norm. Let
B(H) denote the collection of all bounded linear operators acting onH . For T ∈ B(H), the numerical range
of T is given by

W(T) =
{
⟨Tx, x⟩ : x ∈ H and ∥x∥ = 1

}
.

It is known that W(T) is a nonempty bounded convex subset (not necessarily closed) of the complex plane.
To measure the location and relative size of W(T), one frequently used quantity; numerical radius of T. It is
denoted and given by

w(T) = sup
{
|λ| : λ ∈W(T)

}
.

It is well-known that

1
2
∥T∥ ≤ w(T) ≤ ∥T∥ (1)

for all T ∈ B(H), that is w(·) defines an equivalent norm to ∥ · ∥ onB(H). Also, it is a basic fact that the norm
w(·) is self-adjoint

(
i.e., w(T∗) = w(T) for all T ∈ B(H) where T∗ is the adjoint of T

)
. For more material about

the numerical radius and other information on the basic theory of numerical range, we refer the reader to
[3].
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The problem of the numerical radius of a product of operators consists in finding the best constant c, which
satisfies the following inequality

w(AB) ≤ c∥A∥w(B), (2)

where A,B ∈ B(H) satisfy some given conditions. It follows readily from the inequalities (1) that if
A,B ∈ B(H), then

w(AB) ≤ 2∥A∥w(B). (3)

The constant 2 in the inequality (3) is the best possible. Indeed, the sharpness of the inequality (3) is evident

by taking A :=
[
0 1
1 0

]
and B :=

[
0 1
0 0

]
. The question of whether, when A and B commute,

w(AB) ≤ ∥A∥w(B), (4)

was open for about twenty years. In [4], Müller proved by a counterexample that the inequality (4) fails to
be true. The related question of the best constants for the inequality (2) for commuting A and B has also

been considered (see [5]), the best known result is that 1 < c ≤
1
2

√
2 + 2

√

3. In [1], Abu-Omar and Kittaneh
wonder what is the smallest constant c such that the inequality

w(AB) ≤ c∥A∥w(B)

holds for all A,B ∈ B(H) with A is positive
(
i.e., ⟨Ax, x⟩ ≥ 0 for all x ∈ H

)
. They proved that

√
5−1 ≤ c ≤ 3/2.

In this paper, we prove that for any A,B ∈ B(H) with A is positive, we have

w(AB) ≤
3
√

3
4
∥A∥w(B).

Moreover, we show by giving an example, that the constant
3
√

3
4

is the smallest possible.

2. Main result

In order to prove our result, we need the following lemma.

Lemma 2.1. Let A,B be two 2 × 2 matrices with A is positive non-invertible. Then

w(AB) ≤
3
√

3
4
∥A∥w(B).

Proof. Without loss of generality we may assume that A =
[
1 0
0 0

]
. Let B =

[
a b
c d

]
. If b = 0, then AB =

[
a 0
0 0

]
and w(AB) = |a| =

〈
B
[
1
0

]
,

[
1
0

] 〉
≤ w(B) and we are done.

Therefore, suppose that b , 0. We may assume that |b| = 1 and a ≥ 0. So, AB =
[
a b
0 0

]
, and then

w(AB) =
a +
√

a2 + 1
2

(see, [2]). If 1 ≤ a, we have

w(AB) ≤
1 +
√

2
2

a ≤
1 +
√

2
2

w(B).
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Let 0 ≤ a < 1. According to [6],

w(B) = sup
θ∈R

∥∥∥∥Re
(
eiθB

)∥∥∥∥
= sup
θ∈R

|Re
(
eiθa

)
+ Re

(
eiθd

)
| +

√
(Re (eiθa) − Re (eiθd))2 +

∣∣∣eiθb + e−iθc̄
∣∣∣2

2

≥ sup
θ∈R

√
a2 cos2 θ +

1
4

∣∣∣eiθb + e−iθc̄
∣∣∣2

= w
([

a b
c −a

])
.

We claim that for any scalar c there is θ ∈ R such that(
1 + a2

)2
≤ 4a2 cos2 θ +

∣∣∣1 + e−2iθc̄
∣∣∣2 .

If a2
≤ |c|, the result follows immediately. Now let |c| < a2, then

∣∣∣1 + e−2iθc̄
∣∣∣ ≥ 1 − a2, hence by taking

θ = 0 we have
(
1 + a2

)2
= 4a2 + (1 − a2)2

≤ 4a2 + |1 + c̄|2. Our claim is then proved. It follows that

a2 + 1
2
≤ w

([
a b
c −a

])
≤ w(B) and since

a +
√

a2 + 1
a2 + 1

≤
3
√

3
4

for all 0 ≤ a < 1, we derive that

w(AB) =
a +
√

a2 + 1
2

=
a +
√

a2 + 1
a2 + 1

a2 + 1
2
≤

3
√

3
4

w(B)

as desired.

Now, we are ready to state and prove our main result.

Theorem 2.2. Let A,B ∈ B(H) with A is positive. Then

w(AB) ≤
3
√

3
4
∥A∥w(B). (5)

Moreover, the constant
3
√

3
4

is the smallest possible.

Proof. We prove that for all unit vector x ∈ H , we have

∣∣∣∣⟨ABx, x⟩
∣∣∣∣ ≤ 3

√
3

4
∥A∥w(B).

Let x ∈ H be a unit vector. We may assume that x and Bx are linearly independent. Otherwise, |⟨ABx, x⟩| ≤
w(A)w(B) = ∥A∥w(B). Therefore, let Y be the subspace spanned by x and Bx, and let P be the orthogonal

projection ofH onY. Put λ := ⟨Bx, x⟩, β := ∥Bx−⟨Bx, x⟩x∥ and y :=
1
β

(Bx−λx). Then {y, x} is an orthonormal

basis of Y. We identify the operators PAP and PBP with their restrictions to Y. With respect to the basis

{y, x}, PAP and PBP may be represented by the matrices
[
a b
b̄ c

]
and

[
u β
v λ

]
, respectively, where u, v, a, b and

c are scalars. Since PAP is positive, the scalars a and c are non-negative. Furthermore, we may assume that
c , 0, otherwise b = 0 (reason: ac ≥ |b|2), Ax = 0 and ⟨ABx, x⟩ = 0. Therefore, as Px = x and PBx = Bx, we
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have ∣∣∣∣⟨ABx, x⟩
∣∣∣∣ =∣∣∣∣⟨ABPx,Px⟩

∣∣∣∣
=
∣∣∣∣⟨PAPPBPx, x⟩

∣∣∣∣
=

∣∣∣∣∣∣
〈
|b|2/c b

b c


u β

v λ


01

 ,
01


〉 ∣∣∣∣∣∣

≤w



|b|2/c b

b c


u β

v λ




≤
3
√

3
4

∥∥∥∥∥∥

|b|2/c b

b c


∥∥∥∥∥∥w


u β

v λ


 (by Lemma 2.1).

Since ac ≥ |b|2, it is easy to verify that∥∥∥∥∥∥

|b|2/c b

b c


∥∥∥∥∥∥ = |b|2c

+ c ≤

∥∥∥∥∥∥

a b

b c


∥∥∥∥∥∥.

It follows that∣∣∣∣⟨ABx, x⟩
∣∣∣∣ ≤3
√

3
4
∥PAP∥w(PBP)

≤
3
√

3
4
∥A∥w(B).

Consequently, for any unit vector x ∈ H ,∣∣∣∣⟨ABx, x⟩
∣∣∣∣ ≤ 3

√
3

4
∥A∥w(B),

and the inequality (5) is obtained by taking the supremum over all unit vectors x ∈ H .

The sharpness of the inequality (5) is evident by taking A =
[

3
√

3
√

3 1

]
and B =

[
0 1
0 0

]
. Indeed, A is

positive, ∥A∥ = 4, w(B) = 1/2, and w(AB) = 3
√

3/2, that is, w(AB) =
3
√

3
4
∥A∥w(B). This completes the

proof.
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