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Abstract. The aim of this paper is to establish new transcendence criteria of p-adic continued fractions.
We prove that a p-adic number whose sequence of partial quotients is bounded in Qp and begins with
arbitrarily long palindromes is either quadratic or transcendental.

1. Introduction

Throughout the present work, A denotes a countable set. Recall that the length of a finite word W
on the alphabet A, that is, the number of letters composing W, is denoted by |W|. The reversal (or the
mirror image) of W = a1, . . . , an is the word W = an, . . . , a1. In particular, W is a palindrome if and only if
W = W. From now on, we will identify any sequence a = (an)n≥1 of elements fromAwith the infinite word
a1 a2 . . . an . . ..

Continued fractions beginning with arbitrarily large palindromes appear in several works [1–4, 7]
and afford other interesting transcendence criteria. As an example, we mention a result obtained by
Adamczewski and Bugeaud [3] in the real case that is based on Schmith’s theorem [15] on simultaneous
approximations of two algebraic numbers by rationals.

Theorem 1.1. [3] Let a = (an)n≥1 be a sequence of positive integers. If the word a begins with arbitrarily long
palindromes, then the real number α = [0; a1, a2, . . . , an, . . .] is either quadratic or transcendental.

Subsequently, they studied the case of quasi-palindromic continued fractions given by the following
theorem:

Theorem 1.2. [3] Let a = (an)n≥1 be a sequence of positive integers not eventually periodic and (Un)n≥1 and (Vn)n≥1
two sequences of finite words such that:

(i) For any n ≥ 1, the word UnVnUn is a prefix of the word a;
(ii) The sequence

(
|Vn |

|Un |

)
n≥1

is bounded;
(iii) The sequence (|Un|)n≥1 is increasing.

Let
pn

qn
denote the sequence of convergents to the real number α = [0; a1, a2, . . . , an, . . .]. Assume that the sequence

(q
1
n
n )n≥1 is bounded. Then, α is transcendental.
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In the same context, Adamczewski and Bugeaud [4] were interested in studying pairs (α, α′) of real
numbers where the continued fractions of α and α′ are dependent, and they proved that, under some
conditions, at least one of them is transcendental. Their proof rests on the Schmidt Subspace Theorem [14].

Theorem 1.3. [4] Let a = (an)n≥1 and a ′ = (a′n)n≥1 be two sequences of positive integers. Set

α = [0; a1, a2, ...] and α′ = [0; a′1, a
′

2, ...].

If there exists a sequence of finite words (Vn)n≥1 such that:
i) For every n ≥ 1, the word Vn is a prefix of the word a ;
ii) For every n ≥ 1, the word Vn is a prefix of the word a ′;
iii) The sequence (|Vn|)n≥1 is increasing;

then, either (at least) one of α and α′ is transcendental, or both are in the same real quadratic field.

In the field of p-adic numbers Qp, there exist continued fraction expansions. In 1968, Schneider [13]
proposed one of the first algorithms to compute a p-adic continued fraction expansion. Two years later,
Ruban [11] introduced a simpler definition which is more similar to the real case. Since then, various authors
studied properties of Ruban’s continued fractions, motivated by the same type of questions studied in the
real case. As an example, Laohakosol [8] and Wang [16] independently gave a characterization of rational
numbers in terms of Ruban continued fractions. They proved that a p-adic number α is rational if and only if
its Ruban continued fraction expansion is finite or ultimately periodic with all partial quotients in the period

equal to p− p−1 = (p− 1) +
(p − 1)

p
. After that, Ubolsri, Laohakosol, Deze, and Wang [6, 9, 16, 17] studied the

transcendence and algebraic independence of elements inQp which have certain Ruban continued fractions
expansion. Recently, Ooto [10] proved that the analogue of Lagrange’s theorem about the periodicity of
real continued fractions does not hold for Ruban’s continued fractions in Qp. In a recent paper Capuano,
Veneziano and Zannier [5] gave an effective criterion to detect whether a p-adic number has periodic
Ruban’s continued fraction expansion.

In this work, we study the p-adic analogous of the results of Adamczewski and Bugeaud mentioned
above for Ruban continued fractions by using the p-adic version of the Schmidt Subspace Theorem, due to
Schlickewei [12]. The rest of this paper is organized as follows: In Section 2, we start with introducing the
p-adic absolute value |.|p, the field of p-adic numbers Qp and the Ruban continued fraction and we review
some basic properties necessary in our work. In Section 3, we state our transcendence criteria in Qp, after
that, we present some lemmas and notations needed to prove our results and we close this section by giving
the proofs of our theorems and an example to illustrate our results.

2. Field of p-adic numbers Qp

Let p be a prime number. The field of p-adic numbers, Qp, is the completion of Q with respect to the
metric induced by the valuation |.|p . It is equivalent to the fraction field of the p-adic integersZp defined by

Zp =

α =

+∞∑
i=0

cipi; ci ∈ {0, . . . , p − 1}

 ,
and

Qp =

α =

+∞∑
i=k

cipi; ci ∈ {0, . . . , p − 1}; k ∈ Z

 .
The ultrametric absolute value over Q is defined by

|α|p =

{
0 for α = 0;
p−νp(α) for α , 0.
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where νp is the p-adic valuation such that νp : Q→ Z
⋃
{+∞} is defined as follows:

for all α ∈ Q, νp(α) =

{
+∞ if α = 0,
inf{i| ci , 0} otherwise.

Then, every element α ∈ Qp can be written as:

α = c−dp−d + c−d+1p−d+1 + . . . + c−1p−1 + c0 + c1p + c2p2 + . . .

where d ∈ Z, c−d , 0 and ci ∈ {0, . . . , p − 1}. We define the p-adic floor part of α by

[α]p = c−dp−d + c−d+1p−d+1 + . . . + c−1p−1 + c0.

Set a0 = [α]p , if [α]p , α, then α can be written in the form

α = α0 = a0 +
1
α1
,

with α1 ∈ Qp. Note that |α1|p ≥ p and [α1]p , 0. Similarly, if α1 , [α1]p, then, we have

α1 = [α1]p +
1
α2
,

with α2 ∈ Qp. We continue the process as soon as αn , [αn]p. In this way, we obtain

α = [α0]p +
1

[α1]p +
1

. . . +
1

[αn−1]p +
1
αn

= [a0, a1, a2, . . . , αn]p.

where ak = [αk]p is called a partial quotient of α and αn is called the nth complete quotient of α. Then, ak is a
rational number such that 0 ≤ ak < p and, if ak , 0, we have that |ak|p ≥ p for all k ≥ 1.
If the above process stops at a certain step, then

[a0, a1, a2, . . . , an]p

is called a finite Ruban continued fraction.
Otherwise, we have

[a0, a1, a2, . . . , an, . . .]p

which is called an infinite Ruban continued fraction.
Now, for an infinite Ruban continued fraction α = [a0, a1, . . .]p, we define non-negative rational numbers pn,
qn by using recurrence equations:

p−1 = 1, p0 = a0, q−1 = 0, q0 = 1

and
pn = anpn−1 + pn−2, qn = anqn−1 + qn−2, for any n ≥ 1.

We can easily check that the Ruban continued fraction has the following properties which are the same
properties as the continued fraction of real numbers, for all n ≥ 0 :

pn

qn
= [a0, a1, . . . , an]p, (1)

α = [a0, a1, . . . , an−1, αn]p =
αnpn−1 + pn−2

αnqn−1 + qn−2
, (2)

qnpn−1 − pnqn−1 = (−1)n. (3)
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pn

qn
is called the nth convergent of α and in Qp the convergents satisfy lim

n→∞

pn

qn
= α = [a0, a1, . . . , an, . . .]p.

Since |an+1|p > 1 for all n ≥ 0, we have the following equality:∣∣∣∣∣α − pn

qn

∣∣∣∣∣
p

= |an+1|
−1
p |qn|

−2
p < |qn|

−2
p .

For more properties of Ruban continued fraction see [16].

3. Results

In this paper, we study p-adic numbers whose sequence of partial quotients of the p-adic continued
fraction expansion begins with arbitrarily large palindromes.

Throughout this section, for a given sequence (ai)i≥1 ∈ Q∞+ , we denote by A = max{ai| i ≥ 1} and by
B = B(A) = A+

√

A2+4
2 .

Let a = (ai)i≥1 and a′ = (a′i)i≥1 be two sequences of elements from an alphabet A, that we identify with
the infinite words a1 a2 . . . and a′1 a′2, . . . respectively. We say that the pair (a, a′ ) satisfies Condition (∗) if
there exists a sequence of finite words (Vn)n≥1 such that:

(i) For every n ≥ 1, the word Vn is a prefix of the word a;
(ii) For every n ≥ 1, the word Vn is a prefix of the word a′ ;

(iii) The sequence (|Vn|)n≥1 is increasing.

Theorem 3.1. Let p be a prime number. Let α = [0; a1, a2, . . . , ai, . . .]p and α′ = [0; a′1, a
′

2, . . . , a
′

i , . . .]p be two p-adic

numbers such that a = (ai)i≥1 and a′ = (a′i)i≥1 are two sequences of rational numbers inZ
[

1
p

]
∩ (0, p) not ultimately

periodic and satisfy Condition (∗). Assume that −νp(ai) is bounded. If

log p
log B

> 3,

then, either (at least) one of α and α′ is transcendental, or both are in the same quadratic field.

We display the immediate consequences of Theorem 3.1.

Corollary 3.2. Let p be a prime number. Let a = (ai)i≥1 be a sequence of rational numbers in Z
[

1
p

]
∩ (0, p) not

ultimately periodic such that −νp(ai) is bounded. Suppose that the word a begins with arbitrarily long palindromes.
If

log p
log B

> 3,

then the p-adic number α = [0; a1, a2, . . . , ai, . . .]p is either quadratic or transcendental.

Corollary 3.3. Let p ≥ 5 be a prime number. Let a = (ai)i≥1 be a sequence of rational numbers in Z
[

1
p

]
∩ (0, p) not

ultimately periodic such that −νp(ai) is bounded. Suppose that the word a begins with arbitrarily long palindromes.
If A < 1, then the p-adic number α = [0; a1, a2, . . . , ai, . . .]p is either quadratic or transcendental.

The purpose of our next transcendence criterion is to investigate the case of quasi-palindromic p-adic
continued fractions with bounded partial quotients in Qp.

Let a = (ai)i≥1 be a sequence of elements fromA. We say that a satisfies Condition (∗∗) if there exist two
sequences of finite words (Un)n≥1 and (Vn)n≥1 such that:
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(i) For every n ≥ 1, the word UnVnUn is a prefix of the word a;
(ii) The sequence (|Vn|/|Un|)n≥1 is bounded from above by ω > 0;

(iii) The sequence (|Un|)n≥1 is increasing.

Theorem 3.4. Let p be a prime number. Let α = [0; a1, a2, . . .]p be a p-adic number such that a = (ai)i≥1 is a sequence

of rational numbers in Z
[

1
p

]
∩ (0, p) not ultimately periodic and satisfies Condition (∗∗). Assume that −νp(ai) is

bounded. If
log B
log p

<
1

2(2 + ω)
,

then α is either quadratic or transcendental.

Corollary 3.5. Let p be a prime number. Let α = [0; a1, a2, . . .]p be a p-adic number such that a = (ai)i≥1 is a sequence

of rational numbers in Z
[

1
p

]
∩ (0, p) not ultimately periodic and satisfies Condition (∗∗) with 0 < ω < 1. Assume

that −νp(ai) is bounded. If
log B
log p

<
1
6
,

then α is either quadratic or transcendental.

The main tool for the proofs of our theorems is the p-adic version of the Schmidt Subspace Theorem,
established by Schlickewei [12], which is recalled below.
Let k ≥ 2 be an integer, x = (x1, ..., xk) a k-tuple of rational numbers. Put
|x|∞ = {max |xi|; 1 ≤ i ≤ k} and |x|p = {max |xi|p; 1 ≤ i ≤ k}.

Theorem 3.6. [12] Let p be a prime number, L1,∞, . . . ,Lk,∞ be k linearly independent forms with k-dimensional
variable x and algebraic real coefficients, L1,p, . . . ,Lk,p be k linearly independent forms with algebraic p-adic coefficients
and the same variables and ε > 0 be a real number. Then, the set of solutions x ∈ Zk of the inequality :

k∏
i=1

(|Li,∞(x)||Li,p(x)|p) ≤ |x|−ε∞

is contained in the union of a finite number of proper subspaces of Qk.

Moreover, the proofs of our theorems rest on the following four lemmas:

Lemma 3.7. [16] The convergents
pn

qn
of α = [0; a1, a2, . . .]p satisfy

|qn|p = |a1 . . . an|p, ∀n ≥ 1 (4){
|pn|p = |a0 . . . an|p ∀n ≥ 1, if a0 , 0
|p1|p = 1, |pn|p = |a2 . . . an|p ∀n ≥ 2, if a0 = 0 (5)

|qn|p < |qn+1|p and |pn|p < |pn+1|p. (6)

Lemma 3.8. [10] Let α = [0; a1, a2, . . .]p be a p-adic number with nthconvergent
pn

qn
. Then

qn−1

qn
= [0; an, an−1, . . . , a1]p.

Lemma 3.9. [10] Let α = [0; a1, a2, . . .]p and α′ = [0; a′1, a
′

2, . . .]p be two p-adic numbers having the same first (n + 1)
partial quotients. Then

|α − α
′

|p < |qn|
−2
p .
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Lemma 3.10. Suppose that ai ∈ Q∗+ and that {ai| i ∈ N} is bounded. Let A = max{ai| i ∈ N}. Then, we have the
following inequalities for all n:

qn ≤

A +
√

A2 + 4
2

n

(7)

and

pn ≤

A +
√

A2 + 4
2

n+1

. (8)

Proof : Clearly (7) is true for n = 0 and n = 1. Let k ≥ 1 and assuming that (7) is true for n = 0, . . . , k, we
obtain

qk+1 = ak+1qk + qk−1

≤ Aqk + qk−1

≤ ABk + Bk−1 where B =
A +
√

A2 + 4
2

= Bk−1 (AB + 1)
= Bk+1 (because AB + 1 = B2)

We prove (8) in the similar way.

Note that pn and qn are not integers. Therefore we introduce the following notations:

Notation 3.11. Let ai ∈ Z

[
1
p

]
∩ (0, p). Set ai = bi

ci
where bi ∈N∗ and ci = p−νp(ai) ∈N∗. We take

Pn =

 n∏
j=0

c j

 pn and Qn =

 n∏
j=0

c j

 qn.

It is clear from the recurrent formulae for pn and qn that Pn and Qn are integers.

Proof of Theorem 3.1. Since
3 + 1/m2

1 − 1/m
decreases to 3 as m grows, we can take m large enough such that

−νp(ai) ≤ m for all i ≥ 1 and
3 + 1/m2

1 − 1/m
<

log p
log B

.

Assume that α and α
′

are two p-adic algebraic numbers. Set sn = |Vn|, for any n ≥ 1. We denote by
(

pn

qn

)
n≥1

the sequence of convergent of α
′

. By assumption, we have

psn

qsn

= [0; Vn]p,

and by using Lemma 3.8, we obtain
qsn−1

qsn

= [0; Vn]p.

Since α and
qsn−1

qsn

have the same first (sn + 1) partial quotients, and according to Lemma 3.9, we have

|qsnα − qsn−1|p < |qsn |
−1
p . (9)
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By using that sn → +∞ and the property that |qsn |p → +∞, we obtain

lim
n→+∞

qsn−1

qsn

= α (in Qp). (10)

Moreover, we have

|qsnα
′

− psn |p < |qsn |
−1
p and |qsn−1α

′

− psn−1|p < |qsn−1|
−1
p . (11)

Let us consider the following six independent linear forms with algebraic (real and p-adic) coefficients in
variable X = (X1,X2,X3):

Li,∞(X) = Xi, for 1 ≤ i ≤ 3,
L1,p(X) = αX1 − X2,
L2,p(X) = α

′X1 − X3,
L3,p(X) = X2.

Keeping Notations 3.11, we evaluate the product of these linear forms at the integer points

X = (Qsn
, csn Qsn−1,Psn ),

and we infer from (9) and (11) that:

3∏
i=1

|Li,p(X)|p <
|csn |p|Qsn−1|p|Πsn |

2
p

|qsn |
2
p

,

where Πsn =

sn∏
j=0

c j.

Since |ak|p ≥ p for all k ≥ 1 and |qsn |p = |a1 . . . asn |p, then |qsn |p ≥ psn . So, we obtain

3∏
i=1

|Li,p(X)|p < |Πsn |
3
p|qsn |

−1
p ≤

|Πsn |
3
p

psn
.

On the other hand,
3∏

i=1

|Li,∞(X)|∞ = |Qsn
|∞|csn Qsn−1|∞|Psn |∞ = |Π3

sn
|∞|qsn qsn−1psn |∞.

Using the inequalities given in Lemma 3.10, we have

3∏
i=1

|Li,∞(X)|∞ ≤ |Π3
sn
|∞B3sn

where B = B(A) = A+
√

A2+4
2 . This easily implies that:

|X|ε∞
3∏

i=1

|Li,∞(X)|∞ ≤ |Π3+ε
sn
|∞Bsn(3+ε).

Therefore, we obtain

|X|ε∞
3∏

i=1

(|Li,∞(X)|∞|Li,p(X)|p) ≤
|Πε

sn
|∞Bsn(3+ε)

psn
≤

(
B3+ε

p1−mε

)sn

.

Then, from the hypothesis of Theorem 3.1, we can choose ε = 1
m2 such that for n large enough, we get

3∏
i=1

(|Li,∞(X)|∞|Li,p(X)|p) ≤
1
|X|ε∞

.
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Applying Schlickewei’s theorem, the points (Qsn
, csn Qsn−1,Psn ) lie in a finite number of proper subspaces

of Q3 and then it implies the existence of non-zero integer triple (y1, y2, y3) and an infinite set of distinct
positive integersN1 such that

y1Qsn
+ y2csn Qsn−1 + y3Psn = 0,

for every n ∈ N1. From this equation, we have that

y1qsn + y2qsn−1 + y3psn = 0. (12)

By dividing (12) by qsn and letting n tend to infinity alongN1, we obtain from (10) that

y1 + y2α + y3α
′

= 0. (13)

Let us consider now the linearly independent forms with variable X = (X1,X2,X3) and algebraic (real and
p-adic) coefficients:

L′i,∞(X) = Xi, for 1 ≤ i ≤ 3,
L′1,p(X) = α

′X2 − X3,
L′2,p(X) = αX1 − X2,
L′3,p(X) = X2.

Evaluating them on the triple (Qsn
, csn Qsn−1, csn Psn−1), we get again from (9) and (11) that

3∏
i=1

(|L
′

i,∞(X)|∞|L
′

i,p(X)|p) ≤
1
|X|ε∞

holds for the same positive real number ε = 1
m2 and for n large enough inN1.

Furthermore, it then follows from Theorem 3.6 that the points (Qsn
, csn Qsn−1, csn Psn−1) with n ∈ N1 lie in a

finite number of proper subspaces of Q3. Consequently, there exists a non-zero integer triple (z1, z2, z3) and
an infinite set of distinct positive integersN2 such that

z1Qsn
+ z2csn Qsn−1 + z3csn Psn−1 = 0,

for every n ∈ N2. From this equation, we obtain

z1qsn + z2qsn−1 + z3psn−1 = 0. (14)

By dividing (14) by qsn and passing to the limit asN2 3 n 7−→ +∞, it follows from (10) that

z1 + z2α + z3αα
′

= 0. (15)

Note that y3 is non-zero since α is not a rational. Therefore, we derive from (13) and (15) that

z1 + z2α − z3α

(
y1 + y2α

y3

)
= 0. (16)

Since y2z3 is non-zero, (16) implies that α is a p-adic quadratic number, and we deduct from (15) that α
′

lies
in the same quadratic field as α.

Proof of Corollary 3.2. It suffices to check that the pair (a, a) satisfies Condition (∗).

Proof of Corollary 3.3. If p ≥ 5, then p > φ3, where φ is the golden ratio and so
log p
logφ

> 3. Moreover, if we

have A < 1, then B < φ.
Applying Corollary 3.2, this concludes the proof.
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To illustrate our results, we give the following example:

Example 3.12. Let p = 5, a = 1
p , b = 2

p2 + 1
p and c = 3

p3 + 2
p2 + 1

p .
Let (Un)n≥0 be the sequence of blocks defined as follows:

U0 = ab and Un = Un−1, c, c, . . .︸ ︷︷ ︸
n times

,Un−1.

It is easy to check that (Un)n≥0 is a Cauchy sequence in Q5. Let U = lim
n7→+∞

Un. According to Corollary 3.3, the 5-adic
number α = [0; U]5 is either quadratic or transcendental.

Proof of Theorem 3.4. Since
4 + 1/m2

2
2+ω − 1/m

decreases to 2(2 +ω) as m grows, we can take m large enough such

that −νp(ai) ≤ m for all i ≥ 1 and
4 + 1/m2

2
2+ω − 1/m

<
log p
log B

.

Assume contrary that α is algebraic of degree at least three. Let (Un)n≥1 and (Vn)n≥1 be the sequences

satisfying the conditions of Theorem 3.4. For n ≥ 1, set rn = |Un| and sn = |UnVnUn|. We denote by
(

pn

qn

)
n≥1

the sequence of convergent of α. By assumption, we have

psn

qsn

= [0; UnVnUn]p,

and Lemma 3.8 ensures that
qsn−1

qsn

= [0; UnVnUn]p.

Since α and
qsn−1

qsn

have the same first (rn + 1) partial quotients, and by using Lemma 3.9, we obtain

|qsnα − qsn−1|p < |qsn |p|qrn |
−2
p , (17)

this yields that in Qp

lim
n→+∞

qsn−1

qsn

= α. (18)

Furthermore, we have

|qsnα − psn |p < |qsn |
−1
p and |qsn−1α − psn−1|p < |qsn−1|

−1
p . (19)

Now, let us consider now the following independent linear forms with algebraic coefficients in variable
X = (X1,X2,X3,X4):

Li,∞(X) = Xi, for 1 ≤ i ≤ 4,
L1,p(X) = αX1 − X3,
L2,p(X) = αX2 − X4,
L3,p(X) = αX1 − X2,
L4,p(X) = X2.

Evaluating them on the quadruple (Qsn
, csn Qsn−1,Psn , csn Psn−1), we can derive from (17) and (19) that

4∏
i=1

|Li,p(X)|p <
|csn |p|Πsn |

4
p

|qrn |
2
p

,
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where Πsn =

sn∏
j=0

c j. This implies that:

4∏
i=1

|Li,p(X)|p <
|Πsn |

4
p

|qrn |
2
p
≤

|Πsn |
4
p

p2rn
.

On the other hand,

4∏
i=1

|Li,∞(X)|∞ = |Qsn
|∞|csn Qsn−1|∞|Psn |∞|csn Psn−1|∞ = |Π4

sn
|∞|qsn qsn−1psn psn−1|∞

Using the inequalities (7) and (8), we obtain

4∏
i=1

|Li,∞(X)|∞ ≤ |Π4
sn
|∞B4sn

where B = B(A) = A+
√

A2+4
2 .

Hence, we have

|X|ε∞
4∏

i=1

|Li,∞(X)|∞ ≤ |Π4+ε
sn
|∞Bsn(4+ε).

Therefore, we obtain the following inequality

|X|ε∞
4∏

i=1

(|Li,∞(X)|∞|Li,p(X)|p) ≤
|Πε

sn
|∞Bsn(4+ε)

p2rn
≤

 B4+ε

p
2

2+ω−mε

sn

.

Then, from the hypothesis of Theorem 3.4, we can choose ε = 1
m2 such that for n large enough, we get

4∏
i=1

(|Li,∞(X)|∞|Li,p(X)|p) ≤
1
|X|ε∞

.

Schlickewei’s theorem confirms that the points (Qsn
, csn Qsn−1,Psn , csn Psn−1), lie in a finite number of proper

subspaces ofQ4 and then it implies the existence of non-zero integer quadruple (y1, y2, y3, y4) and an infinite
set of distinct positive integersN1 such that

y1Qsn
+ y2csn Qsn−1 + y3Psn + y4csn Psn−1 = 0,

for every n ∈ N1. From this equation, it results that

y1qsn + y2qsn−1 + y3psn + y4psn−1 = 0. (20)

Dividing (20) by qsn and letting n tend to infinity alongN1, we get from (18) that

y1 + (y2 + y3)α + y4α
2 = 0. (21)

Since, and by assumption, α is not a quadratic number, we have y1 = y4 = 0 and y2 = −y3. Therefore, (20)
involve that:

qsn−1 = psn (22)

Likewise, we consider the linearly independent linear forms with variable X = (X1,X2,X3) and algebraic
coefficients:
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L′i,∞(X) = Xi, for 1 ≤ i ≤ 3,
L′1,p(X) = αX1 − X2,
L′2,p(X) = αX2 − X3,
L′3,p(X) = X1.

Evaluating them on the triple (Qsn
,Psn , csn Psn−1), we get again from (17) and (22) that

|X|ε∞
3∏

i=1

(|L′i,∞(X)|∞|L
′

i,p(X)|p) ≤
Πε

sn
Bsn(3+ε)

psn
≤

(
B3+ε

p1−mε

)sn

≤

 B4+ε

p
2

2+ω−mε

sn

.

Then, from the hypothesis of Theorem 3.4, we can choose ε = 1
m2 such that for n large enough, we get

3∏
i=1

(|L′i,∞(X)|∞|L
′

i,p(X)|p) ≤
1
|X|ε∞

.

holds for the same positive real number ε = 1
m2 and for n large enough inN1.

Moreover, it then follows from Theorem 3.6 that the points (Qsn
,Psn , csn Psn−1) with n ∈ N1 lie in a finite

number of proper subspaces of Q3. Thereby, there exists a non-zero integer triple (z1, z2, z3) and an infinite
set of distinct positive integersN2 such that

z1Qsn
+ z2Psn + z3csn Psn−1 = 0,

for every n ∈ N2. From this equation, we obtain

z1qsn + z2qsn−1 + z3psn−1 = 0. (23)

By dividing (23) by qsn and passing to the limit asN2 3 n 7−→ +∞, it follows from (18) that

z1 + z2α + z3α
2 = 0. (24)

Since (z1, z2, z3) is a non-zero triple of integers, a contradiction is achieved.
Consequently, the p-adic number α is transcendental and finally the proof of our theorem is reached.

Proof of Corollary 3.5. It suffices to observe that inf
ω∈]0,1[

{
1

2(2 + ω)

}
=

1
6

.
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