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Recurrence Relations Arising from Confluent Hypergeometric
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Abstract. The aim of this paper is to present some recurrence relations arising from confluent hyper-
geometric functions. In addition, an explicit closed-form expression for a sequence associated to the
hypergeometric series in terms of Bell partition polynomials is proposed. Several examples are given to
illustrate our results.

1. Introduction

As usual, (λ)n ( for λ ∈ C) denotes the Pochhammer symbol defined by

(λ)n = λ (λ + 1) · · · (λ + n − 1)

with (λ)0 = 1. The confluent hypergeometric function M (a, c, z) is defined as [1]

M (a, c, z) =

∞∑
n=0

(a)n

(c)n

zn

n!
, (1)

which converges for any z ∈ C, and is defined for any a ∈ C, c ∈ C − {0,−1,−2, · · · }.
It is well-known that M (a, c, z) is the simplest solution of Kummer’s differential equation

zy′′ + (c − z)y′ − ay = 0. (2)

A second solution of Kummer’s differential equation (2) is the Tricomi confluent hypergeometric function
U (a, c, z) given by

U (a, c, z) =
Γ (1 − c)

Γ (a − c + 1)
M(a, c, z) +

Γ (c − 1)
Γ (a)

z1−cM (a − c + 1, 2 − c, z) , (3)

where Γ(z) is the Euler gamma function.
If Re (c) > Re (a) > 0, the confluent hypergeometric function M (a, c, z) can be represented as an integral

M (a, c, z) =
Γ (c)

Γ (a) Γ (c − a))

1∫
0

eztta−1 (1 − t)c−a−1 dt (4)
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and, if Re (a) > 0, U (a, c, z) can be obtained by the Laplace integral

U (a, c, z) =
1

Γ (a)

+∞∫
0

e−ztta−1 (1 + t)c−a−1 dt. (5)

The (exponential) partial Bell partition polynomials Bn,k (x1, x2, . . .) in an infinite number of variables x j,(
j ≥ 1

)
, were introduced as a mathematical tool [2, 5, 6] for representing the n-th derivative of composite

function. They are defined by their generating function

∞∑
n=k

Bn,k (x1, x2, . . .)
zn

n!
=

1
k!

 ∞∑
m=1

xm
zm

m!


k

(6)

and are given explicitly by the formula

Bn,k (x1, x2, . . . , xn) =
∑
π(n,k)

n!
k1! · · · kn!

(x1

1!

)k1
(x2

2!

)k2

· · ·

(xn

n!

)kn

, (7)

where

π (n, k) =

(k1, . . . , kn) ∈Nn :
n∑

i=1

ki = k,
n∑

i=1

iki = n

 .
An interesting identity is obtained from (6):

Bn,k(abx1, ab2x2, . . . , abnxn) = akbnBn,k(x1, x2, . . . , xn). (8)

Now, for appropriate choices of the variables x j, the (exponential) partial Bell partition polynomials can be
reduced to some special combinatorial sequences. We will mention the following special cases:

s(n, k) = Bn,k (0!,−1!, 2!,−3!, . . .) , (signed) Stirling numbers of the first kind, (9)
S(n, k) = Bn,k (1, 1, 1, . . .) , Stirling numbers of the second kind. (10)

Over the years, generating functions have demonstrated to be a fundamental tool for dealing with mathe-
matical problems, such as in special functions, probability theory and enumerative combinatorics. Recently,
many research articles have been devoted to the closed-form expression for the classical sequences (gener-
alized Bernoulli and Euler polynomials [4], Frobenius-Euler polynomials [13, 15], Truncated-exponential-
based Frobenius–Euler polynomials [9], Frobenius-type Eulerian polynomials [14]).

The aim of this paper is to present an explicit closed-form expression for a sequence associated to the
hypergeometric series in terms of Bell partition polynomials and to demonstrate that the sequence (An)n≥0
associated to the confluent hypergeometric function

M(a, c, α(z)) =

∞∑
n=0

An
zn

n!
, (11)

satisfies the following recurrence relation:

A0,m = 1, An+1,m =

n∑
k=0

(
n
k

)
vn−k+1

(
Ak,m −

c + m − a
c + m

Ak,m+1

)
, (12)

with

α(z) =

∞∑
n=0

vn
zn

n!
, v0 = 0.

More precisely, if we construct an infinite matrix (A)n,m≥0 with the initial sequence given byA0,m = 1, and
each entry is given by (12). Then the first column of the matrix isAn,0 = An.
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2. Recurrence relation for M(a, c, α(z))

First, we have obtained the following result.

Theorem 2.1. The sequence (An)n≥0 associated to the confluent hypergeometric M (a, c, α (z)) is given explicitly by

A0 = 1, An =

n∑
k=1

(a)k

(c)k
Bn,k (v1, v2, . . . , vn−k+1) (13)

with

α (z) =

∞∑
n=0

vn
zn

n!
, v0 = 0.

Proof. It is easily derived directly from the Faà di Bruno formula [6, Theorem A, pp. 137].

As consequence of the last result, we give alternative proofs to some explicit sequences arising from
confluent hypergeometric functions.

Example 2.2. The exponential polynomials φn(x) are defined by means of the following generating function

exp (x (ez
− 1)) =

∞∑
n=0

φn (x)
zn

n!
,

and, can be represented as M(a, a, x(ez
− 1)).

From (13), (8) and (10), we obtain the well-known explicit formula for φn(x)

φn (x) =

n∑
k=0

Bn,k (x, x, . . . , x)

=

n∑
k=0

Bn,k (1, 1, . . . , 1) xk

=

n∑
k=0

S (n, k) xk.

Example 2.3. The H-Cauchy numbers Ck
n are defined by the following generating function [8, 10]

1
k!

M (1, k + 1, ln (1 + z)) =

∞∑
n=0

C
(k)
n

zn

n!
,

or, equivalently,

C
(k)
n = n!

∫ 1

0
dxk

∫ xk

0
dxk−1 · · ·

∫ x2

0

(
x1

n

)
dx1.

Since

ln (1 + z) =

∞∑
n=1

(−1)n−1 (n − 1)!
zn

n!
,

we get

C
(k)
n =

1
k!

n∑
l=0

(1)l

(k + 1)l
Bn,l (0!,−1!, 2!, . . .) .
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Now, from (9), we have obtained the explicit formula for C(k)
n

C
(k)
n =

n∑
l=0

l!
(l + k)!

s (n, l) .

Example 2.4. The Gould-Hopper generalized Hermite polynomials 1m
n (x, h) , (m > 0) are defined by the following

generating function (see [7, 12])

M (1, 1, xz + hzm) =

∞∑
n=0

1m
n (x, h)

zn

n!
.

From (13), we get

1m
n (x, h) = 1 +

n∑
k=1

Bn,k (x, 0, . . . ,m!h, 0, . . . , 0) .

Using (7), we get

1m
n (x, h) = 1 +

n∑
k=1

 ∑
k1+k2=k,k1+mk2=n

n!
k1!k2!

( x
1!

)k1
(

m!h
m!

)k2


= 1 +
∑

k1+mk2=n

n!
k1!k2!

xk1 hk2

=

[n/m]∑
k=0

n!
(n −mk)!k!

xn−mkhk.

By setting m = 2, h = −1 and x := 2x in the above formula, we obtain the explicit formula for the classical Hermite
polynomials.

In order to derive the recurrence relations for M(a, c, α(z)), we suppose that

fm(z) :=
∞∑

n=0

An,m
zn

n!
= M(a, c + m, α(z)), (14)

where m is any non-negative integer and

α(z) =

∞∑
n=0

vn
zn

n!
, (15)

with v0 = 0.
By differentiation (4) with respect to z, we obtain

d
dz

fm(z) =
Γ(c + m)

Γ(a)Γ(c − a + m)

(
d
dz
α(z)

) 1∫
0

teα(z)t(1 − t)c+m−a−1ta−1dt.

Thus,

d
dz

fm(z) =
d
dz
α (z)

Γ(c + m)
Γ(a)Γ(c − a + m)

1∫
0

eα(z)t (1 − t)c+m−a−1 ta−1dt

−
d
dz
α (z)

Γ(c + m)
Γ(a)Γ(c − a + m)

1∫
0

eα(z)t (1 − t)c+m−a ta−1dt,
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and, we get

d
dz

fm(z) =
d
dz
α(z)

(
fm(z) −

c + m − a
c + m

fm+1(z)
)
.

This in turn leads to
∞∑

n=0

An+1,m
zn

n!
=

 ∞∑
n=0

vn+1
zn

n!

 ∞∑
n=0

(
An,m −

c + m − a
c + m

An,m+1

) zn

n!
.

Applying the Cauchy product, we get
∞∑

n=0

An+1,m
zn

n!
=

∞∑
n=0

 n∑
k=0

(
n
k

)
vn−k+1

(
Ak,m −

c + m − a
c + m

Ak,m+1

) zn

n!
.

Equating the coefficients of zn

n! in both sides of the last expression, we may therefore state:

Theorem 2.5. The sequence (An)n≥0 associates to the exponential generating function M(a, c, α(z)) satisfies the
following recurrence relation

A0,m = 1,

An+1,m =

n∑
k=0

(
n
k

)
vn−k+1

(
Ak,m −

c + m − a
c + m

Ak,m+1

)
, (16)

with

An,0 := An.

In particular, for α(z) = z, we derive the following recurrence relations for the solution of Kummer’s
differential equation.

Corollary 2.6. The sequence associates to the exponential generating function M(a, c, z) satisfies the following re-
currence relation

A0,m = 1, An+1,m = An,m −
c + m − a

c + m
An,m+1, (17)

with

An,0 :=
(a)n

(c)n
.

Remark 2.7. If v0 , 0 in (15), then, the sequence (An)n≥0 satisfies (16), with the initial sequence is given by
A0,m = M(a, c + m, α(0)).

Remark 2.8. The confluent hypergeometric function M (a, c, α (z0)) can be computed as power series. We use the
following procedure : define

SN =

N∑
i=0

Ai
zi

0

i!
,

where Ai was computed using (16). For n ≥ 0, let

Z0 = 1, Zn+1 =
z0

n + 1
Zn

Tn = AnZn

Then S0 = A0 and, for n > 0, use the recurrence relationship to compute

Sn+1 = Sn + Tn+1.

The process stop with
∣∣∣Tm+1

Sm

∣∣∣ < ε and return Sm.
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Example 2.9. The generating function of Hermite polynomials Hn (x) can be expressed as

M
(
1, 1, 2xz − z2

)
=

∞∑
n=0

Hn (x)
zn

n!
.

In view of (16), we present the following algorithm for Hn (x) : we start with the sequenceH0,m = 1 as the first row
of the matrix

(
Hn,m

)
n,m≥0. Each entry is determined recursively by

Hn+1,m = 2x
(
Hn,m −

m
m + 1

Hn,m+1

)
− 2n

(
Hn−1,m −

m
m + 1

Hn−1,m+1

)
.

Then

Hn (x) := Hn,0

whereHn,0 are the first column of the matrix
(
Hn,m

)
n,m≥0.

Example 2.10. The generating function of exponential polynomials φn (x) can be expressed as

M (1, 1, x (ez
− 1)) =

∞∑
n=0

φn (x)
zn

n!
.

In view of (16), we obtain

A0,m = 1, An+1,m = x
n∑

k=0

(
n
k

) (
Ak,m −

m
m + 1

Ak,m+1

)
.

Then

φn (x) := An,0.

3. Recurrence relation for U(a, c, α(z))

In the present section, we derive a similar recurrence formula for U(a, c, α(z)). Unlike Kummer’s
function which is an entire function of z, U(a, c, α(z)) usually has a singularity at zero. If a = −N with N ∈N,
U(a, c, α(z)) is a polynomial in z. In this case, letting

1m(z) :=
∞∑

n=0

Bn,m
zn

n!
= U(a, c + m, α(z)), (18)

By differentiation (5) with respect to z, we get

d
dz
1m(z) = −

1
Γ(a)

d
dz
α(z)

+∞∫
0

e−α(z)tta−1 (1 + t)c−a+m dt +
1

Γ(a)
d
dz
α(z)

+∞∫
0

e−α(z)tta−1 (1 + t)c−a−1+m dt.

And so, we obtain

d
dz
1m(z) =

d
dz
α(z)

(
1m(z) − 1m+1(z)

)
.

Applying some series manipulations, we get

∞∑
n=0

Bn+1,m
zn

n!
=

∞∑
n=0

 n∑
k=0

(
n
k

)
vn−k+1

(
Bk,m − Bk,m+1

) zn

n!
.

Upon equating the coefficients of zn

n! , we get the following Theorem.
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Theorem 3.1. The sequence (Bn)n≥0 associates to the exponential generating function U(a, c, α(z)) satisfies the
following recurrence relation

B0,m = U(a, c + m, α(0)),

Bn+1,m =

n∑
k=0

(
n
k

)
vn−k+1

(
Bk,m − Bk,m+1

)
,

with Bn,0 = Bn .

Example 3.2. The generalized Laguerre polynomials LγN (z) can be written as

LγN (x) =
(−1)N

N!
U

(
−N, γ + 1, z

)
.

In view of Theorem 3.1, we obtain

L0,m = (−1)N (
γ + 1 + m

)
N , Ln+1,m = Ln,m − Ln,m+1.

Then

LγN (z) =
(−1)N

N!

N∑
k=0

Lk,0
zk

k!
.

Remark 3.3. If v0 = 0 and Re(c + m) < 1 then B0,m =
Γ(1−(c+m))

Γ(a−(c+m)+1) .

4. Generalized hypergeometric function

It is well-known that a generalized hypergeometric series is a power series of the form

pFq

(
a1, . . . , ap; b1, . . . , bq; z

)
=

∞∑
n=0

(a1)n · · ·
(
ap

)
n

(b1)n · · ·
(
bq

)
n

zn

n!
,

where p and q are nonnegative integers.
In this notation, the confluent hypergeometric function M (a, c, z) and Tricomi confluent hypergeometric

function U (a, c, z) are

M (a, c, z) = 1F1 (a; c; z) ,

U (a, c, z) = z−a
2F0

(
a, 1 + a − c;−;−

1
z

)
.

Theorem 2.1, can be extended as follows:

Theorem 4.1. The sequence (Gn)n≥0 associated to the generalized hypergeometric series

pFq

(
a1, . . . , ap; b1, . . . , bq;α(z)

)
=

∞∑
n=0

Gn
zn

n!
,

is given explicitly by

G0 = 1, Gn =

n∑
k=1

(a1)n · · ·
(
ap

)
n

(b1)n · · ·
(
bq

)
n

Bn,k (v1, v2, . . . , vn−k+1) (19)

with

α (z) =

∞∑
n=0

vn
zn

n!
, v0 = 0.
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Example 4.2. The Bernoulli polynomials Bn (x) are defined by the following generating function

zexz

ez − 1
=

∞∑
n=0

Bn (x)
zn

n!

and can be expressed as [11]
∞∑

n=0

Bn (x)
zn

n!
= 2F1 (1, 1; 2; 1 − ez) exz.

It follows from (19), (8) and (10) that

∞∑
n=0

Bn (x)
zn

n!
=

∞∑
n=0

 n∑
i=0

(1)i (1)i

(2)i
Bn,i (−1,−1, . . . ,−1)

 zn

n!

∞∑
n=0

xn zn

n!

=

∞∑
n=0

 n∑
i=0

(−1)i i!
i + 1

S (n, i)

 zn

n!

∞∑
n=0

xn zn

n!

=

∞∑
n=0

 n∑
k=0

(
n
k

) k∑
i=0

(−1)i i!
i + 1

S (k, i) xn−k

 zn

n!
.

Comparing coefficients, we obtain

Bn (x) =

n∑
k=0

(
n
k

) k∑
i=0

(−1)i i!
i + 1

S (k, i) xn−k

=

n∑
i=0

(−1)i i!
i + 1

n∑
k=0

(
n
k

)
S (k, i) xn−k.

Since

Sk
n (x) =

1
k!

∆kxn

=
1
k!

k∑
j=0

(−1)k− j
(
k
j

) (
x + j

)n

=

n∑
j=0

(
n
j

)
S
(
j, k

)
xn− j,

this reduces to

Bn (x) =

n∑
i=0

(−1)i i!
i + 1

Si
n (x) .

Example 4.3. For λ ∈ C with λ , 1, the Frobenius-Euler numbers H(α)
n (λ) of order α ∈ C are defined by the

following generating function [13]( 1 − λ
ez − λ

)α
=

∞∑
n=0

H(α)
n (λ)

zn

n!
.

It is not difficult to verify that( 1 − λ
ez − λ

)α
= 1F0

(
α;−;

ez
− 1

λ − 1

)
.
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It follows that

H(α)
0 (λ) = 1, H(α)

n (λ) =

n∑
k=1

(α)k Bn,k

( 1
λ − 1

, . . . ,
1

λ − 1

)
.

Using (8) and (10), we get

H(α)
n (λ) =

n∑
k=0

(α)k

(λ − 1)k
S (n, k) . (20)

By substituting λ = −1 into (20), we obtain a known result for Euler numbers of order α

E(α)
n =

n∑
k=0

(−1)k

2k
(α)k S (n, k) .

The results obtained above can be generalized for the polynomials case

H(α)
n (x | λ) =

n∑
k=0

(α)k

(λ − 1)k
Sk

n (x) ,

where Hn (x | λ) are defined by( 1 − λ
ez − λ

)α
exz =

∞∑
n=0

Hn (x | λ)
zn

n!
.

Example 4.4. The Lerch polynomials Φ(λ)
n (x) of order λ are defined by the following ordinary generating function

[3]

1

(1 − x ln (1 + z))λ
=

∞∑
n=0

Φ(λ)
n (x) zn.

Since

1

(1 − x ln (1 + z))λ
= 1F0 (λ;−; x ln (1 + z)) ,

we have

n!Φ(λ)
n (x) = 1 +

n∑
k=1

(λ)k Bn,k (−0!x, 1!x,−2!x, . . .)

=

n∑
k=0

(λ)k s (n, k) xk.

It follows that

Φ(λ)
n (x) =

n∑
k=0

(λ)k

n!
s (n, k) xk.
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