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Abstract. The aim of the present paper is to characterize almost co-Kähler manifolds whose metrics are the
Riemann solitons. At first we provide a necessary and sufficient condition for the metric of a 3-dimensional
manifold to be Riemann soliton. Next it is proved that if the metric of an almost co-Kähler manifold is a
Riemann soliton with the soliton vector field ξ, then the manifold is flat. It is also shown that if the metric of
a (κ, µ)-almost co-Kähler manifold with κ < 0 is a Riemann soliton, then the soliton is expanding and κ, µ, λ
satisfies a relation. We also prove that there does not exist gradient almost Riemann solitons on (κ, µ)-almost
co-Kähler manifolds with κ < 0. Finally, the existence of a Riemann soliton on a three dimensional almost
co-Kähler manifold is ensured by a proper example.

1. Introduction

Udrişte ([24], [25]) introduced the notion of Riemann flow. The Riemann flow is defined by

∂
∂t

G(t) = −2R(1(t)), (1)

where G = 1
21 ⊙ 1, R is the Riemann curvature tensor of type (0, 4) corresponding to the metric 1 and ⊙

denotes the Kulkarni-Nomizu product given by

(P ⊙Q)(E,F,W,X) = P(E,X)Q(F,W) + P(F,W)Q(E,X)
−P(E,W)Q(F,X) − P(F,X)Q(E,W).

In the same way as Ricci solitons, Riemann solitons were introduced by Hirică and Udrişte [16] which are
the self-similar solution of Riemann flow. A Riemannian metric 1 on a smooth manifold M is said to be a
Riemann soliton if there exists a smooth vector field Z and a real constant λ such that

2R + λ1 ⊙ 1 + 1 ⊙ £Z1 = 0, (2)
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The first author is financially supported by UGC, Ref. ID. 423044. The second author is the corresponding author and supported

by Science Foundation of China University of Petroleum-Beijing (No.2462020XKJS02, No.2462020YXZZ004).
Email addresses: ggbiswas6@gmail.com (Gour Gopal Biswas), xmchen@cup.edu.cn (Xiaomin Chen), uc de@yahoo.com (Uday

Chand De)



G. G. Biswas et al. / Filomat 36:4 (2022), 1403–1413 1404

where £Z is the Lie derivative along the vector field Z. The vector field Z is known as potential vector field.
We denote a Riemann soliton by (1,Z, λ). When λ ∈ C∞(M), then 1 is said to be an almost Riemann soliton. If
Z is a Killing vector field, then M is a manifold of constant sectional curvature. Thus the Riemann soliton is
the generalization of the space of constant curvature. The soliton will be called expanding, steady or shrinking
according as λ > 0, λ = 0 or λ < 0. When the vector field Z is a gradient of some smooth function u, then
the Riemann soliton is called a gradient Riemann soliton and the equation (2) takes the form

R +
λ
2
1 ⊙ 1 + 1 ⊙ ∇2u = 0, (3)

where ∇2u is the Hessian of the function u. If λ is a smooth function in (3), then the metric 1 is called a
gradient almost Riemann soliton. Using Kulkarni-Nomizu product, the equation (2) can be written as

2R(E,F,W,X) + 2λ{1(E,X)1(F,W) − 1(E,W)1(F,X)}
+1(E,X)(£Z1)(F,W) + 1(F,W)(£Z1)(E,X)
−1(E,W)(£Z1)(F,X) − 1(F,X)(£Z1)(E,W) = 0 (4)

for all vector fields E,F,W,X on M. Contracting the equation (4), we lead

2S(F,W) + 2{(m − 1)λ + divZ}1(F,W) + (m − 2)(£Z1)(F,W) = 0, (5)

where S is the Ricci tensor, m ≥ 3 is the dimension of the manifold M and div denotes the divergence
operator. Contracting again the equation (5), we have

r +m(m − 1)λ + (2m − 2) divZ = 0, (6)

where r is the scalar curvature. From the foregoing equation, we can easily see that divZ is constant if and
only if r is constant.

In [16], Hirică and Udrişte studied Sasaki-Riemann soliton. They proved that, if the metric 1 of a
Sasakian manifold M is a gradient Riemann soliton with potential function u as harmonic or a Riemann
soliton with potential vector field Z is pointwise collinear to Reeb vector field ξ, then M is a Sasaki-space
form. In [14], Venkatesha et al. proved some interesting results on Riemann soliton within the framework
of contact geometry. They also studied Riemann solitons and almost Riemann solitons on almost Kenmotsu
manifolds (cf.[26]).

The present paper is organized as follows: After introduction, in Section 2 we recall the definition and
basic properties of almost co-Kähler manifolds and (κ, µ)-almost co-Kähler manifolds. In the next section,
we characterize a three-dimensional manifold whose metric is the Riemann soliton. In Sections 4 and 5,
we prove some lemmas and theorems on Riemann soliton in almost co-Kähler manifolds and (κ, µ)-almost
co-Kähler manifolds. In the Section 6, we consider gradient almost Riemann solitons on (κ, µ)-almost
co-Kähler manifolds. Finally, we construct an example to verify our results.

2. Almost co-Kähler manifolds

A smooth manifold M2n+1 of dimension (2n + 1) together with the triple (η, ξ, φ), where η is a 1-form, ξ
is a global vector field and φ is a (1, 1)-tensor field, is said to be an almost contact manifold [2] if

φ2 + id = η ⊗ ξ, η(ξ) = 1, (7)

where id is the identity automorphism. From (7) we can obtain φξ = 0 and η ◦ φ = 0. An almost contact
structure (η, ξ, φ) will be called normal if the almost complex structure J on the product manifold M2n+1

×R
defined by

J
(
E, γ

d
dt

)
=

(
φE − γξ, η(E)

d
dt

)
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for all vector field E on M2n+1 and γ ∈ C∞(M2n+1
×R), is integrable. According to Blair [2], [φ,φ] = −2dη⊗ ξ

is the condition for normality of the almost contact structure (η, ξ, φ) and conversely, where [φ,φ] denotes
the Nijenhuis tensor of φ defined by

[φ,φ](E,F) = φ2[E,F] + [φE, φF] − φ[φE,F] − φ[E, φF]

for all vector fields E,F on M2n+1. If a Riemannian metric 1 on M2n+1 satisfies

1(E,F) = 1(φE, φF) + η(E)η(F) (8)

for all vector fields E,F on M2n+1, then the manifold together with (η, ξ, φ, 1) is said to be an almost
contact metric manifold and 1 is called compatible metric with respect to the almost contact structure. The
fundamental 2-form Φ on an almost contact metric manifold is defined by Φ(E,F) = 1(E, φF) for all vector
fields E,F on M2n+1.

An almost contact metric manifold M2n+1 is said to be an almost co-Kähler manifold if both η and Φ are
closed i.e., dη = 0 and dΦ = 0, where d denotes exterior derivative. In addition, if M2n+ is normal, then the
manifold M2n+1 is called co-Kähler manifold. An (almost) co-Kähler manifold is nothing but an (almost)
cosymplectic manifold defined by Blair [3] and studied by several authors (see [1], [4]-[8], [11]-[13], [17, 18]
[23], [27]-[32]).

On any almost co-Kähler manifold, we can define an (1, 1)-tensor field h = 1
2 £ξφ. According to [19], [20]

and [22], it is known that h and h′(= h ◦ φ) are symmetric tensors and satisfy

hξ = 0, h′ = −φh, tr h = tr h′ = 0, (9)

∇ξφ = 0, ∇ξ = h′, (10)
φℓφ − ℓ = 2h2, (11)
∇ξh = −h2φ − φℓ, (12)
S(ξ, ξ) + tr h2 = 0, (13)

where ℓ = R(., ξ)ξ is the Jacobi operator along the Reeb vector field, tr denotes for trace and ∇ is the
Riemannian connection with respect to the metric 1. Using the second equation of (10), we see that
(£ξ1)(E,F) = 21(h′E,F) for all vector fields E,F on M2n+1. Thus, ξ is a Killing vector field if and only if h = 0.

A (κ, µ)-almost co-Kähler manifold M2n+1, introduced by Endo [15], is an almost co-Kähler manifold whose
structure vector field ξ belongs to the (κ, µ)-nullity distribution, i.e. the curvature tensor R satisfies

R(E,F)ξ = κ(η(F)E − η(E)F) + µ(η(F)hE − η(E)hF) (14)

for all vector fields E,F on M2n+1 and (κ, µ) ∈ R2. Taking ξ instead of F in (14), we have ℓ = −κφ2 + µh.
Using this value of ℓ in (11), it follows that

h2 = κφ2. (15)

From the above, it is easy to see that κ ≤ 0 and κ = 0 if and only if M2n+1 is a K-almost co-Kähler manifold.
In particular, if µ = 0 then the manifold is said to be N(κ)-almost co-Kähler manifold [9]. Any co-Kähler
manifold satisfies (14) with κ = µ = 0. Dacko and Olszak [10] defined almost co-Kähler (κ, µ, ν)-spaces. An
almost co-Kähler manifold is said to be a (κ, µ, ν)-space if the curvature tensor R satisfies

R(E,F)ξ = κ(η(F)E − η(E)F) + µ(η(F)hE − η(E)hF)
− ν(η(F)h′E − η(E)h′F)

for all vectors fields E,F on M2n+1.
In a (κ, µ)-almost co-Kähler manifold the following relations hold [21] :

∇ξh = µh′, (16)

∇ξh2 = 0, (17)
ℓφ − φℓ = 2µh′. (18)

Lemma 2.1. [4] The Ricci operator Q of a (κ, µ)-almost co-Kähler manifold M2n+1,n ≥ 1, is given by

Q = µh + 2nκη ⊗ ξ. (19)
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3. Riemann solitons on 3-dimensional manifolds

Suppose a metric (1,Z, λ) of a 3-dimensional manifold M3 is a Riemann soliton. Then from the equation (5),
we have

2S(F,W) + (4λ + 2 divZ)1(F,W) + (£Z1)(F,W) = 0 (20)

for all vector fields F,W on M3. Tracing the previous equation, we have

divZ = −
r + 6λ

4
. (21)

Using this value of divZ in (20), we obtain

2S(F,W) +
(
λ −

r
2

)
1(F,W) + (£Z1)(F,W) = 0 (22)

for all vector fields F,W on M3.
Conversely, suppose the equation (22) is satisfied. It is well known that the curvature tensor R of any

3-dimensional manifold is given by

R(E,F)W = S(F,W)E − S(E,W)F + 1(F,W)QE − 1(E,W)QF
−

r
2 {1(F,W)E − 1(E,W)F}. (23)

Taking inner product of (23) with X, we have

2R(E,F,W,X) = 2S(F,W)1(E,X) − 2S(E,W)1(F,X)
+ 21(F,W)S(E,X) − 21(E,W)S(F,X)
− r{1(F,W)1(E,X) − 1(E,W)1(F,X)}.

Using (22) in the foregoing equation, we obtain the equation (4). Hence (1,Z, λ) is a Riemann soliton. Thus
we obtain the following:

Theorem 3.1. Let (M3, 1) be a three dimensional manifold. Then (1,Z, λ) is a Riemann soliton if and only if

2S +
(
λ −

r
2

)
1 + £Z1 = 0. (24)

4. Riemann solitons on almost co-Kähler manifolds

Suppose the metric 1 of an almost co-Kähler manifold M is the Riemann soliton with the soliton vector
field Z = fξ and d f ∧ η = 0.

The condition d f ∧ η = 0 implies E f = (ξ f )η(E) for all vector field E on M. Taking covariant derivative
of Z = fξ along the vector field E and using the second equation of (10), we have

∇EZ = (ξ f )η(E)ξ + f h′E,

which gives

(£Z1)(E,F) = 1(∇EZ,F) + 1(E,∇FZ) = 2(ξ f )η(E)η(F) + 2 f1(h′E,F) (25)

for all vector fields E,F on M.
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By virtue of (25) and (4), we get

2R(E,F,W,X) + 2λ{1(E,X)1(F,W) − 1(E,W)1(F,X)}
+1(E,X){2(ξ f )η(F)η(W) + 2 f1(h′F,W)}
+1(F,W){2(ξ f )η(E)η(X) + 2 f1(h′E,X)}
−1(E,W){2(ξ f )η(F)η(X) + 2 f1(h′F,X)}

−1(F,X){2(ξ f )η(E)η(W) + 2 f1(h′E,W)} = 0 (26)

for all vector fields E,F,W,X on M. Taking ξ instead of W in (26), we obtain

R(E,F, ξ,X) + (λ + ξ f ){1(E,X)η(F) − 1(F,X)η(E)}
+ f {1(h′E,X)η(F) − 1(h′F,X)η(E)} = 0.

Eliminating X in the previous equation, we infer

R(E,F)ξ = −(λ + ξ f ){η(F)E − η(E)F} + f {η(F)φhE − η(E)φhF}. (27)

This implies that M is a (κ, µ, ν)-space with κ = −(λ+ξ f ), µ = 0 and ν = f . Thus we can write the following:

Lemma 4.1. If the metric (1,Z, λ) of an almost co-Kähler manifold M is a Riemann soliton with the soliton vector
field Z = fξ and d f ∧ η = 0, then M is a (κ, µ, ν)-space with κ = −(λ + ξ f ), µ = 0 and ν = f .

Putting f = 1 in (27), we have

R(E,F)ξ = −λ{η(F)E − η(E)F} + {η(F)φhE − η(E)φhF}, (28)

which gives ℓ = λφ2 + φh. Using this value of ℓ in (11), it follows that

h2 = −λφ2. (29)

Taking covariant derivative of (29) and using first equation of (10), we lead

∇ξh2 = 0. (30)

Using ℓ = λφ2 + φh and (29) in (12), we get

∇ξh = h. (31)

Now

0 = (∇ξh2)E = (∇ξh)hE + h((∇ξh)E) = 2h2E = −2λφ2E

for all vector field E on M, which gives λ = 0. Since h is a symmetric tensor, from (29) we get h = 0.
Consequently, (£ξ1)(E,F) = 0. From (4), we see that R(E,F)W = 0 for all vector fields E,F,W on M. From the
above discussion, we can state the following:

Theorem 4.2. If the metric 1 of an almost co-Kähler manifold M is a Riemann soliton with the soliton vector field ξ,
then M is flat.

5. Riemann solitons on (κ, µ)-almost co-Kähler manifols

Suppose the metric (1,Z, λ) of a (κ, µ)-almost co-Kähler manifold M2n+1 of dimension (2n + 1) is the
Riemann soliton. The equation (5) can be written as

(£Z1)(F,W) = −
2

2n − 1
S(F,W) −

2
2n − 1

(2nλ + divZ)1(F,W) (32)
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for all vector fields F,W on M2n+1. From (19) we have r = 2nκ = constant. Consequently, divZ is a constant.
Taking covariant derivative of (32) along the arbitrary vector field E, we have

(∇E£Z1)(F,W) = −
2

2n − 1
(∇ES)(F,W). (33)

From Yano [33], we recall a well known formula

(£Z∇E1 − ∇E£Z1 − ∇[Z,E]1)(F,W)
= −1((£Z∇)(E,F),W) − 1((£Z∇)(E,W),F).

Using the symmetry property of £Z∇ in the above formula, we have

21((£Z∇)(E,F),W) = (∇E£Z1)(F,W) + (∇F£Z1)(W,E)
− (∇W£Z1)(E,F). (34)

Using (19) and (33) in (34), we lead

1((£Z∇)(E,F),W) =
1

2n − 1
[µ1((∇Wh)E,F) − µ1((∇Eh)F,W)

− µ1((∇Fh)W,E) − 4nκη(W)1(h′E,F)]. (35)

Taking ξ instead of F in (35) and using (10) and (16), we obtain

1((£Z∇)(E, ξ),W) =
1

2n − 1
[2µκ1(E, φW) − µ21(h′E,W)],

which gives

(£Z∇)(E, ξ) = −
1

2n − 1
(2µκφE + µ2h′E). (36)

Taking covariant derivative of (36) along the vector field F, we lead

(∇F£Z∇)(E, ξ) = −
1

2n − 1
(2µκ(∇Fφ)E + µ2(∇Fh′)E)

− (£Z∇)(E, h′F). (37)

Using the above equation in the formula [33]

(£ZR)(E,F)W = (∇E£Z∇)(F,W) − (∇F£Z∇)(E,W),

we get

(£ZR)(E, ξ)ξ =
2

2n − 1
(2µκhE + µ2κφ2E) −

µ3

2n − 1
hE, (38)

where we have used (10), (15) and (16).
On the other hand taking Lie-derivative of R(E, ξ)ξ = κ{E − η(E)ξ} + µhE along Z, we have

(£ZR)(E, ξ)ξ = −κ(£Zη)Eξ − κη(E)£Zξ + µ(£Zh)E
− R(E, £Zξ)ξ − R(E, ξ)£Zξ. (39)

By virtue of (38) and (39) we obtain

2
2n − 1

(2nκhE + µ2κφ2E) −
µ3

2n − 1
hE

= −κ(£Zη)Eξ − κη(E)£Zξ + µ(£Zh)E − R(E, £Zξ)ξ − R(E, ξ)£Zξ.
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Contracting the previous equation with respect to the orthonormal basis {e1, e2, · · · , en, φe1, φe2, · · · , φen, ξ},
where hei =

√
−κei, we get

S(£Zξ, ξ) =
2n

2n − 1
µ2κ.

Utilizing (19) in the above equation, we lead

1(£Zξ, ξ) =
µ2

2n − 1
. (40)

Putting F =W = ξ in (32) and using (40), we infer

divZ = µ2
− 2n(κ + λ). (41)

Contraction the equation (32), it follows that

2 divZ = −κ − (2n + 1)λ. (42)

By virtue of (41) and (42), we get

κ =
2µ2

4n − 1
−

2n − 1
4n − 1

λ.

Thus we are in a position to state the following:

Theorem 5.1. If the metric (1,Z, λ) of a (κ, µ)-almost co-Kähler manifold M2n+1 with κ < 0 is a Riemann soliton,
then κ, µ and λ satisfy the relation

κ =
2µ2

4n − 1
−

2n − 1
4n − 1

λ. (43)

Since κ < 0, from (43) we easily see that λ > 0. Hence, we can state that

Corollary 5.2. If the metric (1,Z, λ) of a (κ, µ)-almost co-Kähler manifold M2n+1 with κ < 0 is a Riemann soliton,
then the soliton is expanding.

In particular, for µ = 0 we can state that the followings:

Corollary 5.3. If the metric (1,Z, λ) of a N(κ)-almost co-Kähler manifold M2n+1 with κ < 0 is a Riemann soliton,
then (4n − 1)κ = −(2n − 1)λ.

Corollary 5.4. If the metric (1,Z, λ) of a N(κ)-almost co-Kähler manifold M2n+1 with κ < 0 is a Riemann soliton,
then the soliton is expanding.

6. Gradient almost Riemann solitons on (κ, µ)-almost co-Kähler manifolds

In this section we consider a (κ, µ)-almost co-Kähler manifold M2n+1 whose metric 1 is a gradient almost
Riemann soliton. We need the following lemma before proving the main results.

Lemma 6.1. (Lemma 3.8 of [14]) If the metric 1 of a Riemannian manifold M2n+1 is a gradient almost Riemann
soliton, then for any vector fields E,F on M2n+1 the curvature tensor R satisfies

R(E,F)Du =
1

2n − 1
{(∇FQ)E − (∇EQ)F + F(2nλ + ∆u)E − E(2nλ + ∆u)F}, (44)

where D denotes the gradient operator and ∆ = divD.
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By virtue (10) and (19) the equation (44) can be written as

R(E,F)Du = =
1

2n − 1
{µ(∇Fh)E − µ(∇Eh)F

+ 2nκη(E)h′F − 2nκη(F)h′E
+ F(2nλ + ∆u)E − E(2nλ + ∆u)F}. (45)

Balkan et al. [1] proved that in a (κ, µ)-almost co-Kähler manifold the tensor field h satisfies

(∇Eh)F − (∇Fh)E = κ(η(F)φE − η(E)φF + 21(φE,F)ξ)
+ µ(η(F)φhE − η(E)φhF). (46)

Using (46) in (45), we obtain

R(E,F)Du =
1

2n − 1
{µκ(η(E)φF − η(F)φE + 21(E, φF)ξ)

+ (µ2
− 2nκ)(η(F)h′E − η(E)h′F)

+ F(2nλ + ∆u)E − E(2nλ + ∆u)F}. (47)

Taking inner product of the foregoing equation with ξ and using (14), it follows that

κ((Fu)η(E) − (Eu)η(F)) + µ(1(hF,Du)η(E) − 1(hE,Du)η(F))

=
1

2n − 1
{2µκ1(E, φF) + F(2nλ + ∆u)η(E) − E(2nλ + ∆u)η(F)}. (48)

Replacing E and F by φE and φF respectively in (48), we infer

0 =
2µκ

2n − 1
1(E, φF),

which gives µ = 0, since κ < 0.
Now letting E = ξ in (48) gives

κ((Fu) − (ξu)η(F)) =
1

2n − 1
{F(2nλ + ∆u) − ξ(2nλ + ∆u)η(F)},

that is,

1
2n − 1

D(2nλ + ∆u) = κDu − κξ(u)ξ +
1

2n − 1
ξ(2nλ + ∆u)ξ. (49)

On the other hand, by (9), contracting (47) with respect to E we find

S(F,Du) =
2n

2n − 1
F(2nλ + ∆u).

Recalling (19), we obtain

2n
2n − 1

D(2nλ + ∆u) = QDu = 2nκξ(u)ξ.

Thus it follows from (49) that

2κξ(u)ξ = κDu +
1

2n − 1
ξ(2nλ + ∆u)ξ.

From this we see Du = ξ(u)ξ. Differentiating this along E and using the second term of (10), we have

∇EDu = E(ξ(u))ξ + ξ(u)h′E. (50)
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Since Equation (5) with Z = Du may be expressed as

∇EDu = −
1

2n − 1
QE −

1
2n − 1

(2nλ + ∆u)E,

inserting (50) into the previous relation yields

1
2n − 1

QE = −E(ξ(u))ξ − ξ(u)h′E −
1

2n − 1
(2nλ + ∆u)E.

Using (19) again in the above relation, we get

2nκ
2n − 1

η(E)ξ = −E(ξ(u))ξ − ξ(u)h′E −
1

2n − 1
(2nλ + ∆u)E. (51)

Applying φ to act on this equation and taking the inner product with φE, we have

−ξ(u)1(h′E,E) −
1

2n − 1
(2nλ + ∆u)1(φE, φE) = 0.

Because trh′ = 0, the above formula shows 2nλ + ∆u = 0 and ξ(u) = 0. Since Du = ξ(u)ξ, u is a constant.
Further, it implies from (51) that κ = 0, which is contradictory with κ < 0.

Theorem 6.2. There does not exist gradient almost Riemann solitons on a (κ, µ)-almost co-Kähler manifolds with
κ < 0.

7. Example

In this section we construct an example of an almost co-Kähler manifold whose metric is a Riemann
soliton.

Let M3 = R3(x, y, z), where (x, y, z) are the standard coordinates of R3. Let 1 be the Riemannian metric
on M3 defined by

1 = dx2 + dy2 +
4(x2 + y2) + 1

e2z dz2
− 4ye−zdx dz − 4xe−zdy dz.

Let e1 =
∂
∂x , e2 =

∂
∂y , e3 = 2y ∂∂x + 2x ∂∂y + ez ∂

∂z . Then {e1, e2, e3} is an orthonormal basis of (M3, 1). We have

[e1, e2] = 0, [e1, e3] = 2e2, [e2, e3] = 2e1.

Let the 1-form η, the vector field ξ and (1, 1)-tensor field φ are defined by

η = e−zdz, ξ = e3, φe1 = e2, φe2 = −e1, φe3 = 0.

The 2-form Φ is given by
Φ = −2dx ∧ dy − 4ye−zdy ∧ dz − 4xe−zdz ∧ dx.

Since dη = 0 and dΦ = 0, M3 is an almost co-Kähler manifold.
The Riemannian connection ∇ is given by

∇e1 e1 = 0, ∇e1 e2 = −2e3, ∇e1 e3 = 2e2,

∇e2 e1 = −2e3, ∇e2 e2 = 0, ∇e2 e3 = 2e1,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

The components of the Riemannian curvature tensor R are

R(e1, e2)e1 = −4e2, R(e1, e2)e2 = 4e1, R(e1, e2)e3 = 0,
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R(e1, e3)e1 = 4e3, R(e1, e3)e2 = 0, R(e1, e3)e3 = −4e1,

R(e2, e3)e1 = 0, R(e2, e3)e2 = 4e3, R(e2, e3)e3 = −4e2.

Using the above expression of the curvature tensor R, it follows that

R(E,F)ξ = −4{η(F)E − η(E)F}

for all E,F ∈ χ(M3). Hence M3 is a N(−4)-almost co-Kähler manifold. The expression of the curvature tensor
R is

R(E,F)W = 4{1(F,W)E − 1(E,W)F}
− 8{η(F)η(W)E − η(E)η(W)F + 1(F,W)η(E)ξ
− 1(E,W)η(F)ξ} (52)

for all E,F,W ∈ χ(M3). The components of of the Ricci tensor S are

S(e1, e1) = S(e2, e2) = 0, S(e3, e3) = −8,

S(ei, e j) = 0, where i, j = 1, 2, 3 and i , j,

which gives r = −8. Also we have

S(E,F) = −8η(E)η(F) (53)

for all E,F ∈ χ(M3).
Let Z = −8xe1 − 8ye2 and λ = 12. By direct computations we obtain

(£Z1)(E,F) = −161(E,F) + 16η(E)η(F), (54)

which gives divZ = −16. From (52), and (54) we see that the equation (4) is satisfied. Hence 1 is a Riemann
soliton. From (53) and (54), we lead

2S(E,F) +
(
λ −

r
2

)
1(E,F) + (£Z1)(E,F) = 0

for all E,F ∈ χ(M3). Thus Theorem 3.1 is verified. Also Corollaries 5.3 and 5.4 are verified.
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