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Abstract. New inequalities for the A-numerical radius of the products and sums of operators acting on

a semi-Hilbert space, i.e. a space generated by a positive semidefinite operator A, are established. In
particular, for every operators T and S which admit A-adjoints, it is proved that

1 1
0A(TS) < 5wa(ST) + 7 (ITIlAlISILa + ITS]),

where w,(T) and ||T]|4 denote the A-numerical radius and the A-operator seminorm of an operator T
respectively.

1. Introduction and Preliminaries

Let B(H) stand for the C*-algebra of all bounded linear operators on a complex Hilbert space H with inner
product (-, -) and the corresponding norm || - ||. Let I be the identity operator. For T € B(H), we denote by
R(T), N(T) and T* the range, the kernel and the adjoint of T, respectively. For a given linear subspace M of
‘H, its closure in the norm topology of H will be denoted by M. Further, let Pg stand for the orthogonal
projection onto a closed subspace S of H. An operator T € B(H) is called positive if (Tx,x) > 0 for all
x € H, and we will write T > 0. Furthermore, if T > 0, then the square root of T is denoted by T'/2. For
T € B(H), the absolute value of T, denoted by |T], is defined as |T| = (T*T)V2. Throughout this article,
A denotes a non-zero positive operator on H. The positive operator A induces the following semi-inner
product
Gyt HXH — C, (x,y) — (x,y)a = (Ax, y) = (A2x, AV2y).

The seminorm induced by (-, "), is given by ||x||4 = ||AY2x|| for all x € H. It is easy to check that || - |, is
a norm if and only if A is injective and that the semi-Hilbertian space (H, || - ||4) is complete if and only if
R(A) = R(A). It is well-known that the semi-inner product -, -), induces an inner product on the quotient
space H /N (A) which is not complete unless R(A) is closed. However, a canonical construction due to de

2020 Mathematics Subject Classification. 47A12, 46C05, 47A05.

Keywords. Positive operator, A-numerical radius, Semi-inner Product, Sum, Product.

Received: 21 May 2021; Accepted: 19 August 2021

Communicated by Fuad Kittaneh

Email addresses: pintubhunia5206@gmail.com ; pbhunia.math.rs@jadavpuruniversity.in (Pintu Bhunia),
kais.feki@hotmail.com ; kais.feki@fsegma.u-monastir.tn (Kais Feki),
kalloldada@gmail.com ; kallol.paul@jadavpuruniversity.in (Kallol Paul)



P. Bhunia et al. / Filomat 36:4 (2022), 1415-1431 1416

Branges and Rovnyak [12] (see also [19]) shows that the completion of H /N (A) is isometrically isomorphic
to the Hilbert space R(A'/?) with the inner product

(Al/zx,Al/sz(Auz) = (PWX, Pm]/), Vx,y eH.

For the sequel, the Hilbert space (R(Al/ 2), ¢, IR A1/2)) will be simply denoted by R(A'/?). For an account of
results related to R(A!/?), we refer the readers to [6] and the references therein.

Let T € B(H). We recall that an operator S € B(H) is called an A-adjoint of T if (T, y)a = (x, Sy)a for all
x,y € H. One can observe that the existence of an A-adjoint of T is equivalent to the existence of a solution
in B(H) of the equation AX = T*A. Clearly, the existence of an A-adjoint operator is not guaranteed. If the
set of all operators admitting A-adjoints is denoted by B4 (H), then by Douglas theorem [15], we have

BA(H) = {T € B(H); R(T'A) C R(A)}.

If T € BA(H), then the reduced solution of the equation AX = T*A is a distinguished A-adjoint operator of
T, which will be denoted by T#4 and satisfies R(T#) C R(A). Note that T* = A'T*A, where A" is the Moore-

Penrose inverse of A (see [5]). If T € Ba(H), then T# € B(H), (TH)# = Pz TPy and ((T#)#a)a = Tha,

Moreover, if S € B4(H) then TS € Ba(H) and (TS)* = S$#T#. For more results concerning T#, we invite
the readers to see [4, 5]. An operator T is called A-bounded if there exists A > 0 such that [|Tx[|4 < Allx]|a, for
every x € H. In virtue of Douglas theorem, one can see that the set of all operators admitting A'/?-adjoints,
denoted by B 412(H), is same as the collection of all A-bounded operators, i.e.,

Baiz(H) ={T € B(H); A > 0; [[Txlla < Allxlla, ¥ x € H}.

It is well-known that B4 (H) and B12(7H) are two subalgebras of B(H) which are, in general, neither closed
nor dense in B(H). Further, we have Bs(H) C B12(H) (see [4, 17]). If T € B12(H), then the seminorm of
T induced by (-, -)4 is given by

1Tl
ITlla := sup R sup{IITxIIA; xeH, |lxlla = 1} < co.
veR(A), 1A
x#0

It was shown in [5, Proposition 2.3] that, for every T € Ba(H), we have
IT*Tlla = ITT (|4 = ITIG = IT#15.

Several generalizations for the notion of numerical radius of Hilbert space operators have recently been
defined (see for example [8] and the reference therein). One of these generalizations is the A-numerical
radius of an operator T € B(H). This new concept was firstly introduced by Saddi in [28] as

wa(T) :=sup {{Tx,x)al ; x € H, lIxlla =1}.

We mention here that it may happen that ||T||4 and wa(T) are equal to +co for some T € B(H) \ B2 (H)
(see [17]). However, it was shown in [7] that || - [|4 and wa(-) are equivalent seminorms on B 412(H). More
precisely, for every T € B412(H), the following inequalities hold

1
51Tl < @a(T) < [ITlla-

Let T € Bai2(H). Then ||T]|4 = 0 if and only if AT = 0. Furthermore, ||Tx|[4a < [|T|lallx|la, for every x € H.
This implies that ||TS|[4 < [|T]|allSlla for all T, S € Bi2(H). An operator T € B(H) is called A-selfadjoint if
AT is selfadjoint and it is called A-positive if AT is a positive operator. For the sequel, if A = I then ||T||, #(T)
and w(T) denote respectively the classical operator norm, the spectral radius and the numerical radius of
an operator T.
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For any operator T € B4(H), we write Ru(T) := @ We keep into account from [31, Theorem 2.5]
that for every T € B4 (H), we have
wa(T) = sup||‘)%A(ei9T)||A. )
OeR

The A-spectral radius of an operator T € B4i2(H) was defined by the second author in [17] as

1
no_ 13 n|n
= lim [IT"]I}. 2)

1
— 1 amn
ra(T) = inf T

The second equality in (2) is also proved in [17, Theorem 1]. In addition, it was shown in [17] that r4(-)
satisfies the commutativity property, i.e.,

YA(TS) = TA(ST), VT,S¢e ]BA1/2(7’{). (3)

Also, the following relation between the A-spectral radius and the A-numerical radius of A-bounded
operators is also proved in [17]:

ra(T) € wa(T), Y T € Bpp(H). 4)
Recently, many mathematicians have obtained different A-numerical radius inequalities of semi-Hilbertian
space operators, the interested readers are invited to see [9-11, 14, 18, 21, 26, 27, 31] and the references
therein. Here, we obtain several new inequalities for the A-numerical radius of the products and the sums
of semi-Hilbertian space operators. The bounds obtained here improve on the existing bounds.
2. On A-Numerical radius inequalities for products of operators
We begin this section with the following known lemma which can be found in [17].
Lemma 2.1. Let T € B(H) be an A-selfadjoint operator. Then,
ITlla = wa(T) = ra(T).
Our first result reads as:

Theorem 2.2. Let T, S € B4 (H). Then,
1
©A(TS) < ITlls @A(S) + 5 min {wa (TS +ST™), wx (TS - ST )}

Proof. Let 0 € R. Clearly, R4(¢'TS) is an A-selfadjoint operator. Therefore, from Lemma 2.1, we get
[RAEOTS)|, wa (Ra(®TS))

_— (%(eieTS +eiogh TﬁA))
= wa (%(eieTS +e7OTSM 4 0GR Th e—if’TsﬁA))

. 1 .
= wa (T‘RA(e’GS) + SO — TsﬁA))

< wa(TRAES)) + w2 (%e—’f’(sm Th _ Ts'iA))
< [TRA@°9)], + 5ea (s4TH ~ T5H)

< Tl [RA@7S)], + 30a (59 T# — T5H)

< ITIhwA(S) + swa (S4T% ~ Tsh).
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So, by taking the supremum over all 0 € R, we get
wa(TS) < | Tllawa(S) + %wA (S*Th - TS™).

On the other hand, for every x € H we see that
[((S*T™ — TSP)x, x)a| = [(SMTHx, x)4 — (TSMx, x)4

= [($#T#x, x)4 = (Pes TPz S™x, X)a

7

where the last equality follows from the fact that APz = A. So, we get

|<(5ﬁATﬁA _ TsﬁA)x, X)Al — |<(SﬁATﬁA _ (TﬂA)ﬁAsﬁA)x’ X>A|
=|(Ts - ST*‘A)”" X, x)4]
= [((TS - ST ) x,x)4

This implies that wa (SﬁA Tha — TSﬁA) = wy (TS - ST“A) . Thus, it follows from (5) that
wa(TS) < ITllawa(S) + %a)A (TS - sT#).

Also, by replacing T by iT in (6), we get
wa(TS) < | Tllawa(S) + %wA (TS +ST#).

Thus, the proof is finished by combining (6) together with (7). O

Remark 2.3. It has been proved in [23, Theorem 2.13.] that

wa (TS £ ST#) < 2||Tllawa(S), VT,S € Ba(H).

1418

Therefore, ||T|awa(S) + %a)A (TS + ST”A) < 2||T||awa(S). Thus, the inequality obtained in Theorem 2.2 is stronger

than the well-know inequality
wA(TS) < 2|[Tllawa(S).

In order to obtain our next inequality that gives an upper bound for the A-numerical radius of product
of two operators, we need the following lemmas. First we consider the 2 X 2 operator diagonal matrix

A= (A 0). Clearly, A is a positive operator on H & H. So, A induces the following semi-inner product

0 A
on H @& H defined as
A = (Ax, y) = (x1, y1)a + (X2, y2)4,

forall x = (x1,x2), ¥ = (y1,y2) € HOH.

Lemma 2.4. ([21]) Let T, S € B(H) be A-positive operators. Then,

0T 1

Lemma 2.5. ([20]) Let T, S € Bai2(H). Then,
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(a) wa [(g g)] = max{wa(T), wa(S)}. In particular,

S P

0T T 0
ol ol -1
A A

Now we are in a position to obtain the following inequality.

= max {|[T|la, lISlla} -

Theorem 2.6. Let T, S € B4 (H). Then,
1 1
wA(TS) < 304(ST) + Z(ITIAISILA + ITSl1) ©)

Proof. Let 0 € R. Since R 4(eTS) is an A-selfadjoint operator, so by Lemma 2.1, we have
IRAETS)lla = ralRa(@’TS)]

= %rA(eieTS +e70GhTh), (10)

On the other hand, we have

ra(@?TS +e705%TH) = 1 e0TS + 05 Th O)]

0 0

B :eiGT Sha S 0
“"llo o )leort 0
[( S 0)\[efT st
( 5" %) e o

(ST~ SSha
ThaT  oi0THagHa ||

:TA

:rA

By applying (4), we get

IA

1. » d9ST St
ra(@”TS +e70SMTH) < wp [(TﬁAT eTI0T# Gt

¢osT 0 0  SSHa
WAl o eiorhagh )| T YA T

1
= wa(ST) + §||ssﬁA + THT|,,

IA

where the last equality follows from Lemma 2.4 together with (8). Therefore, from (10), we get
i0 1 Lot 1
IRAEOTS)ls < 5@a(ST) + 7ISSH + T#T]Ls.
Hence, by taking the supremum over all 0 € R and then using (1), we get

1 1
wA(TS) < Swa(ST) + ZI||55ﬁA + TMT)|4. (11)
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If AT = 0 or AS = 0, then the inequality (9) holds trivially. Assume that AT # 0 and AS # 0. By Replacing T

and S by ”;HA T and %S, respectively in (11), we obtain

wa(TS) < Zwa(ST) + SSha

H ISl g, 1Tl (12)

Tl 1Sl

A

It is easy to see that the operator ”?HA TT + Hg”’* SS* is A-positive. So, an application of Lemma 2.1 gives

[ISI]4 ThaT ”T”A " (IISIIA " T4 ¢t )
SSHAll =714 THAT + SSha 13
H IITIIA IISIIA A ITl.A lISIl4 13)
Next, ones observes that
5 Tl
' (”S”A ptar o [Tl SSﬂA) _ [(“ T T + 1t 55 o)]
IT1]4 ISl 0 0

e ds [Tl AT
=7ra { e 51l 5] i J .

0 0 /HTIIA Sia 0

Further, by applying (3), we get

1ISlla
T 0 11Slla 44 ITlla
“\IITlla lIS1l.4 IMa g 0 0
[EY
1Slia T7a
TT TS
— (1T
g (e | "

H?HA TTﬁA TS

SﬁA Th Mg S] is an A-selfadjoint operator. Hence, in view of Lemma
ISl

In addition, one can see that [

2.1, we have

BlaTrts TS BeTTh TS 5
ShaTha llllgl‘l‘ﬁ siagll TTA| ghaTia l\‘lgllllj Stag (15)

So, it follows from (13), (14) and (15) that

H”S”A o Mlagen|l _ Blrré 18
(1T 1IS]].4 " GhaTHA ||g‘|||:SﬂAS

‘wam g, 1Tl g,

1Tl 115114

TS
+ StaTh 0

Finally, by applying the triangle inequality and then using Lemma 2.5, we get
[H[A

S T

ax{ T ITTH 1L, TS5l + TSl

ISlla 7
< ’ (HTA e 0 ]
Tl 151l

ITlla ctia
0 Tl G R
= [ISIAllTIla + ITS]|a-

Therefore, we get (9) as desired by taking (12) into account. [J
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Remark 2.7. (i) By taking A = I in Theorem 2.6 we get a recent result proved by Kittaneh et al. in [2].

(ii) If we consider T = I, then it is easy to see that the inequality in Theorem 2.2 is stronger than that in Theorem
2.6. On the other hand, if we consider S = 1, then the inequality in Theorem 2.6 is stronger than that in Theorem 2.2.
Thus, we conclude that the inequalities in Theorems 2.2 and 2.6 are, in general, not comparable.

The following corollary is an immediate consequence of Theorem 2.6.

Corollary 2.8. Let T,S € B4(H). Then
1
wA(TS) < 3 (0a(ST) + ITllalISIlA) -

Next, we obtain the following inequalities when T is assuming to be A-positive.
Theorem 2.9. Let T,S € Bi2(H). If T is A-positive, then
wA(TS) < [Tllawa(S) and  wa(ST) < [[Tllawa(S)-
Proof. For all a € [0,1], we have

wA(TS) = wa (T = al[TllaD)S + al[T1[4S)
< wa (T = allTl|aD)S) + all Tl awa(S)
< (T = allTllaDSll4 + allTllawa(S)
<IT = allTllallla ISlla + alITllawA(S).

Since T is A-positive, so we observe that ||T — a||T||alll4 = (1 — a)||T||4 for all & € [0, 1]. Therefore,

wA(TS) < ”T”A((1 —a)lSlla + awA(S))- (16)

So, by considering a = 1 in (16), we get
wA(TS) < ITllawa(S).

Similarly, we can prove that
wA(ST) < ITllawa(S).

Thus, we complete the proof. [

Considering A = I in Theorem 2.9, we get the following numerical radius inequalities for the product of
Hilbert space operators.

Corollary 2.10. Let T, S € B(H) with T positive. Then,
w(TS) < ||Tllw(S) and  w(ST) < ||Tl|w(S).

Remark 2.11. (1) We would like to note that the numerical radius w(.) satisfies w(TS) < w(T)w(S) if either T or
S is positive.

(2) Abu-Omar and Kittaneh proved in [3, Cor. 2.6] the following result: if T,S € B(H) with T positive, then
w(TS) < %IITIla)(S). Thus, Corollary 2.10 is stronger than this result.
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3. On A-Numerical radius inequalities for sums of operators
Our starting point in this section is the following lemma.
Lemma 3.1. Forany x,y,z € H, we have
[, Yol + 1, 2)al < lxl (max(llyl, Nzl ) + |<]//Z>A|)- (17)
Proof. First note that, by the proof of [16, Th. 3] we have,
Kx, PP + [, 2) < IIXII2(max{IIJ/||2, 2P} + Ky, Z)I), (18)
for every x,y,z € H. Now,
x, )al? +x, 2)a? = KAY2x, AV2y)P + KA 23, AV22)P
So, by applying (18), we obtain
x, oAl + G, 204 < A x| max{l| A2yl 1A 2]} + I(Al/zy,AmZ)I)-
Hence, we get (17) as required. [J

Now, we are in a position to prove the following theorem.

Theorem 3.2. Let T,S € Bs(H). Then

wa(T +8) < \/%( |TT# + SS#||, + || TT# — SSH|, ) + wa (ST#) + 24 (T) A (S).
Proof. Recall first that for every ¢,s € R it holds
max{t,s} = %(t +s+|t— sl). (19)

Now, let x € H with ||x|[4 = 1. By using Lemma 3.1, we get
K(T + S)x, x)al?
< K, THx)Al + [, S* )l + 20(Tx, x)al (S, )4l
< max {IT# x|, 11S% |3} + KST#x, x)al + 2(Tx, x4l KSx, x)a]
1
= (Il + NSy + 1Ty ~ 5™ xdf3 | ) + KSTH, x0al + 2KTx, x)al KSx, x0al - by (19))
% ((TT# + 88%)x, x)4 + [((TT* = SS¥)x, x)a| ) + KSTHx, x)al + 2T, x) Al S, X

(wA(TTﬁA + S5%) + wu(TTH — ssﬂA)) + wa(ST™) + 204 (T) w4 (S)

NI—= N -

ITTH + S8l + ITT# — SS™|la) + wa(STH) + 204 (T wa (),

where the last equality follows from Lemma 2.1 since the operators TT# + SS% are A-selfadjoint. So, we
infer that

1
KT+ )%, 2)aP < S(ITT# + S5l +ITT# — SSH[l4) + @A(STH) + 204 (T) @ (S).

Therefore, the desired result follows by taking supremum over all x € H with [[x||4 = 1 in the last inequal-
ity,. O
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Our next objective is to refine the triangle inequality related to wa(-). To do this, we need to recall from
[22] the following lemma.

Lemma 3.3. Let T1,T», S1,S2 € Ba2(H). Then,

( 151 T4 14 VISi T2l ||52T1||A)
VIS T2llA 11S2 Tl o 1S2Tlla

Now, we are ready to prove the following theorem which covers and generalizes a recent result proved
by Abu-Omar and Kittaneh in [1].

Theorem 3.4. Let T, S € By(H). Then,

ra(T151 + T1S57) <

wa (T +8) < % [wA (T) + @a (S) + \/(wA (T) - wa (S)) +4 sup [RaE@@T)RA?S)||,
S wu (T) +wa(S).
Proof. Let O € R. Tt can be seen that R 4[¢!(T + S)] is an A-selfadjoint operator. So, by Lemma 2.1, we get
[Rale®(T + )|, = ra(Rale(T +9)1).

By letting T1 = I, S; = Ra(€T), To» = Ra(€?S) and S, = I in Lemma 3.3 and then using the norm
monotonicity of matrices with nonnegative entries, we get

IRl + )|, = ra(Ra@T) + Ra(e?S))

. IR AEO DL JIRACDRAC5)],
IR s R AE0S)], R4Sl
wa(T) \/sup R DRAE)]
< OeR
\/sup [RAET)RAES)]], wA(S)
OeR

= % wa (T) + wa (S) + \/(cuA (T) —wa (S) )2 + 4 sup ”%A(EieT)%A(eiGS)”A|.
OeR

By taking supremum over all 6 € IR, we get

wa(T+85) < % [wA (T) + wa (S) + \/(wA (T) — wa (S))* + 4sup ||9&A(ei9T)m(ei65)||A} . (20)
OeR

This proves the first inequality in the theorem. Moreover,

\/m (T) = wa (S))* + 4sup || Ra(@T)Ra(?S)|, < \/ (wa (T) = w4 (S) )2 +4ws (T) w4 (5)
feR

- \/(wA (D +wa®) = w0a () +wa(S).

So, by using (20), we easily get the second inequality. [

The following lemma is an extension of Buzano’s inequality (see [13]) and plays a crucial role in proving
our next result.
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Lemma 3.5. ([28]) Let x, y, e € H with |le||a = 1. Then,

1
K, €)ate, al < (166 al + Ixllallylla).
Now, we prove the following theorem.

Theorem 3.6. Let T,S € By(H). Then

1
wa(T+8) < \/a)j(T) +@%(S) + 5 |T#T + SSk |, + @wa(ST).

Proof. Let x € H be such that [|[x||4 = 1. One can verify that

(T + S)x, xpal* < KTx, x)al* + [(Sx, x)al* + 2KTx, x)al [{SX, ) Al
= (T, x)al?* + [(Sx, x)al? + 2T, x)al [(x, S¥x) a].

By using Lemma 3.5, we get

K(T + 8)x, x)al* < KT, x)al” + KSx, x)a + ITlallS* xlla + (Tx, S¥x)4]

= KTx, x)al + [(Sx, )al* + \/mw X, X)a(S5%x, x4 + KSTx, x)al.
By using the arithmetic-geometric mean inequality, we get
2 2 2 Lot #
K(T + S)x, x)al < @G (1) + wj(S) + 5 (<T*Tx, x)a + (SS™x,x)4) + wA(ST)
1
= W4(T) + @?(S) + E<(:r*‘AT +55%)x, x)4 + wa(ST)
1
< @A (T) + W4 (S) + S@i (T T + S5*) + wA(ST)
1
= W4(T) + @?(S) + 5 [T#T + SS#]|, + wa(ST),
where the last equality follows from Lemma 2.1. So, we infer that
1
(T + S)x, x)al* < @’ (T) + @’ (S) + 5 | T#T + SS#]|, + wa(ST),
for all x € H with [|x||4 = 1. Thus, by taking the supremum over all x € H with ||x||4 = 1, we get
1
@W(T +8S) < @A (T) + W (S) + 5 |T#T + S5%||, + wa(ST).
This proves the desired result. [

As an application of the above theorem, we get the following corollary.

Corollary 3.7. Let T € B4(H). Then

1 2
wA(T) < 5 [T + TT||, + 204(T2) < T\F ITET + T .




P. Bhunia et al. / Filomat 36:4 (2022), 1415-1431 1425

Proof. Clearly, the first inequality follows by taking S = T in Theorem 3.6. Moreover, it is well-known that
wa(T?) < WA(T) (see [17]) and w?(T) < %“TTW + TﬁAT”A. So, we get that

1 1 1 1
Z||TT¢‘A +ThT||, + S0A(T?) < Z“TT“A + ThT]|, + 5@4(D)
1 1
=\t ti ||t 4
< JlTTE + T, 4 f|TTR 4 TR,
1
—_— # #
= 5|[TT* + TR .
This proves that the second inequality in Corollary 3.7. O
Remark 3.8. Note that Corollary 3.7 has been recently proved in [31].
Our next improvement reads as:

Theorem 3.9. Let T, S € B(H) be A-selfadjoint aperators. Then,

0A(T +5) < \Jw2 (T +iS) + w4(ST) + [ITlAlISIls < wA(T) + wA(S).

Proof. Let x € H be such that |x||4 = 1. Then, we have

K(T + S)x, )al” < (KT, X)al + T, x)al)?
= KTx, x)al® + (Sx, x)al* + 2KTx, 2)4l[(Sx, %)l
= (T, x)4 + 1(Sx, x)al* + 2(Tx, x) 4(Sx, x) 4|
= |((T +iS)x, x)a|* + 21(Tx, x)a(x, SﬁAx>A|.

So, an application of Lemma 3.5 gives
K(T + S)x, 047 < K(T +iS)x, )4l + ITxllallS*xlla + KTx, S*x)4

= [((T +iS)x, x)a* + I TxllallS* xlla + (STx, x).al
< @4 (T +1S) +ITllallSlla + @A(ST).

Taking supremum over all x € H with ||x]|4 = 1 yields that
wi(T +85) < wi(T +1S) + [|T]|allSlla + wa(ST).

Thus, we prove the first inequality of the theorem. On the other hand, it is not difficult to show that
@5 (T+iS) < ITIE +1ISI;- Alsowe have wa(ST) < |ITllallSlla. So, @’ (T+iS)+[|TllallSlla+wa(ST) < (ITlla+lISlla)>.
Finally, since T and S are A-selfadjoint operators, so Lemma 2.1 implies that w4 (T) = [|T|la and w4(S) = [ISla-
So, we get the required second inequality of the theorem. This finishes the proof of our result. [

Our next objective is to establish some A-numerical radius inequalities for the sum of d operators. To
achieve this goal, we shall need the following three lemmas. Note that the second assertion of the first
lemma is known as McCarthy inequality [29, p. 20]. The second lemma is known as Bohr’s inequality.

Lemma 3.10. ([24, pp. 75-76], [29, p. 20]) Let T € B (H). Then, the following assertions hold:
(i) KTx, ) < (|T}x, x){|T"|x, x) for every x € H.

(ii) If T > 0, then (Tx,x)" < (T"x, x) for every x € H with ||x|| = 1 and all ¥ > 1.
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Lemma 3.11. ([30]) Let a; be positive real numbers for alli € {1,2,...,d}. Then, for all r > 1 we have

Lemma 3.12. ([6, 17, 25]) Let T € B(H). Then, T € B u2(H) if and only if there exists a unique T € B(R(AY/2))
such that ZoT = TZ . Here, Zs : H — R(AY?) is defined by Zx = Ax. Further, the following properties hold

() ITlla = ||:I:||]B(R(A1/2))-
(ii) wa(T) = w(T).
(iii) If T € Bo(H), then Tt = (T,
On the basis of the above results we obtain the following theorems.

Theorem 3.13. Let S; € Bo(H) forallie(1,2,...,d}. Then,

gk

i=1

d

Y ((sts)" + (sist)”)

i=1

+2 Zd" wa((s™s)(s:s2))],

A i=1

foralln=1,2,3,....

Proof. Let x € H be such that [|x|| = 1. Since S; € Ba(H), then S; € B(H). So, we see that

4n d 4n
< [Z |Six, x)|]

i=1

LN

i=1

d

< gin-1 Z

i=1

(by Lemma 3.11)
d

< g4n-1 Z<|Si|xl x>2”<|5:|xl x>2", (by Lemma 3.10 (1))
d

< a1 Y (P, x)(IS;P"x, x),  (by Lemma 3.10 (i)

d
= @Y IS, 10, ISP,

i=1
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Moreover, by applying Lemma 3.5 with A = I, we obtain
d d
()| <5 st
i=1 i=1
L1 2
<5 ;(E(HISI»I%II +]
no1 d
-2 Z (151 + 1551 )1, 2)
d4n 1 f d 1 d
({Z( St + |s:|4">)x x Z [IS:P18; P, )
d gin-1 &
Z('S |4n + |S |4n Zw |271|S |2n
i=1 =1

Taking the supremum over all x € H with ||x|| = 1 yields that

4 41 || &
w4n {Z J Z |S |4n + |S |4n
i=1

i=1
Now, since B4 (H) € Bai2(H), so Si € Byi2(H) for each i € {1,2,...,d}. Therefore, there exists unique S~1 in

B(R(A?)) such that Z4S; = S;Za for all i. By taking into consideration the fact that R(A/?) is a complex
Hilbert space, then (21) implies that

d
— d4n—1
4n k
@ [E SIJS 1

i=1

4n

1S5 P + KIS, 1S5 "))

i) + i s P )

d4n 1

d
Z (ISP 1S; P, )]

d4n -1

d4n1 d

5= 2 w(IsisP). (21)

i=1

a4 —~ —~%
(IS + 15 1)
i=1

d

Z |S |211|S |2n

B(R(A1/2)) i=1

d4n 1

We keep into account from [19] that for every T, S € B12(H), we have
TS=ST and T+AS=T+AS YAeC. (22)

So, in view of (22), we obtain
d

w4n[§';i]< X5y + G6))

Also, by Lemma 3.12 (iii), we have (S~,-)* = S?*‘ for all i. So,

/d\-/ 4n—1 d —~ _\2n o 2n
Wt {Z si] <4 ) Z((sf.‘f*si) +(sist) )

d4n 1

B(R(A1/2)) i=1

i=1 i=1 B(R(A/2))

d4n—1

-= i(sﬁf‘s (sish)’ ) +d4;_1iw((s§Asiﬂ§is§A)").

i=1

Hence, by applying Lemma 3.12 (i) and (ii), we get

d _ d d
o (L)< T [ (s s(st")) + B Ton((s) 5t

i=1 i=1 A i=1

Thus, we complete the proof. [



In particular, by considering d = n = 1 in Theorem 3.13, we get the following result.

Corollary 3.14.
wi(S) <

Theorem 3.15.

wi” [Zd: S;
i=1

P. Bhunia et al. / Filomat 36:4 (2022), 1415-1431

Let S € Bo(H). Then

411 [(ss)" + (ss)]| + %wA (ss25™).

Let S; € Bo(H) forallie{1,2,...,d}. Then
d

Z S”As +( s‘i‘A)”)

i=1

dZn 1

7

A

foralln=1,2,3,....

Proof. Letx € H with ||x|| = 1. S; € Bo(H) implies S; € B(H). So, we have

i=1

£

2n d 2n
3 < [Z|<six,x>|]
i=1
d

<d 1Y [Sxr,)P", (by Lemma3.11)

i=1

d
< 1 Z<|Si|x’ x)"(|S;|x, x)", (by Lemma 3.10 (l))

i=1

< d2n -1 2<|S |”x x>(|s |”x x), (by Lemma 3.10 (ll))

=
S 3" (A5 + s )
=
S 3" (5P + 457, )
=
= dz; : Zd:<(|si|2” +I5;P) x,2)
=
- dz; 1<i (1S + 15;P") %, x)
=
< Y (s + 1)
=

By taking the supremum over all x € H with ||x[| = 1, we get

I

i=1

On the other hand, since S; € B4(H) C Bai2(H) for all i, then by Lemma 3.12, for each i € {1, 2,.

d
Z |S |2n+|s |2n
i=1

) 2n-1

1428

(23)

., d} there

exists a unique S; in B(R(A'2)) such that Z4S; = S;Za. By taking into account the fact that R(Al/z) is a
complex Hilbert space, then (23) implies that

g

i=1

d
Z |S |2n+|s |2n
i=1

] dZn 1

B(R(AY2))
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Moreover, by using (22) together with Lemma 3.12 (iii), we get

/d\/ danl d ~ _~—\Nn S o\
| Y5« S I ((G5) + G6EN))
— o B(R(A1/2))
_ d (,~ _\n -\
<T3535
P B(R(A!2))
dZn—l d 7
22 sy
i=1 B(R(AY/2))

Hence,

wi" [Zd: N ] dZn 1

i=1

d

Z( (ss)"+ (s5)')

A
Thus, we complete the proof. [

Remark 3.16. The bounds obtained in Theorem 3.13 and Theorem 3.15 are not comparable, in general. Note that if
§#82S = 0, then Theorem 3.13 (d = n = 1) gives, w’(S) < 1 ”(Sﬁ/‘5>2 + (SSﬁA)2 X whereas Theorem 3.15 (d =1,

n = 2) gives w4 (S) < 1|(s5) + (%)’

‘A. Hence, if S*5%S = 0, then the inequality obtained in Theorem 3.13

(d =n =1) is a refinement of that obtained in Theorem 3.15 (d =1, n = 2). On the other hand, consider S; = (8 (1))
0 2
0 0
d=2,A=1) gives w’(S1 + S2) < 5. Thus for this example, the bound obtained in Theorem 3.15 is better than that
obtained in Theorem 3.13.

and S, = ( ) Then Theorem 3.13 (n =1,d =2, A = 1) gives wi(Sl +5;) < V34, whereas Theorem 3.15 (n =1,

Finally, we obtain the following result.
Theorem 3.17. Let S; € Bo(H) forallie{1,2,...,d}. Then,

d

[ L5] < S5 Lonl(shs) +isst)),

i=1

foralln=1,2,3,....

Proof. Let x € H with ||| = 1. By using similar arguments to that used in proof of Theorem 3.15, one
observes that

d 2 dZn 1 ¢
([Z S,-Jx,x> 5= 2, (AP x) + (ISP, ).

i=1 i=1

Further, we observe that |a + b| < V2|a + ib| for alla,b € R. By using this inequality, we see that

([Zd: Si]x,x> ’ <

i=1

dZn -1

|<|s 21, x) + (IS}, x))|

dZn -1
<

S
D= i

w (ISP +ils;*).

S
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Taking the supremum over all x € H with ||x|| = 1 gives

Zd" o ia)(|sr|2" +iISTPY). (24)
1| = \/E 1 i

i=1 i=1

w2n

Now, since S; € Bo(H) € Baw2(H) for all i, then by Lemma 3.12, for eachi € {1,2, ..., d} there exists a unique

S in B(R(A/2)) such that Z4S; = 5,Z4. Due to the fact that R(A/?) is a complex Hilbert space, then an
application of (24) gives

J2n-1 d

d
LS| = T Lw(sPr i), (25)

i=1

So, by using (22) together with Lemma 3.12 (iii), we obtain

W Zd’f,- s — Zd‘w((sf/*si)fwr\f(sisff*)n).

Hence, by Lemma 3.12 (ii), we get

21 : a2t : fac\' o #a)"
W2 (Zsi\]s 7 Y o ((si S:) +i(Sish) )

i=1 i=1

as required. [

The following corollary is an easy consequence of Theorem 3.17.

Corollary 3.18. Let S € B4(H). Then
1

@} (S) < —wa (S"S+i SS™).

A \/E ( )

Remark 3.19. Following the proofs of Theorems 3.15 and 3.17, we conclude that, in general, the inequality in Theo-
01
0 of
3.15 gives, % (S) < 311S%S + SS™||4 = 1, whereas Theorem 3.17 gives w? (S) < %a}A (SﬁAS +i SSﬁA) = % This
example substantiates the fact that the inequality in Theorem 3.15 is better than that in Theorem 3.17.

rem 3.17 is weaker than that in Theorem 3.15. In particular,letn =d =1, A=1and S = ( Then, Theorem
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