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Abstract. In this paper, we introduce them-WG inverse in Minkowski space. Firstly, we show the existence
and the uniqueness of them-WG inverse. Secondly, we give representations of them-WG inverse. Thirdly,
we characterize the m-WG inverse by applying a bordered matrix. In addition, we extend the generalized
Cayley-Hamilton theorem to them-WG inverse matrix. Finally, we apply them-WG inverse to solve linear
equations in Minkowski space.

1. Introduction

The set of n × n complex matrices will be denoted by Cn,n. We use symbols A∗, R (A), and rk (A) for
the conjugate transpose, range space (or column space), and rank of A ∈ Cn,n, respectively. In addition,
k = Ind(A) denotes the index of A, which is defined as the minimal positive integer k such that rk

(
Ak+1

)
=

rk
(
Ak

)
. Denote

CCM
n =

{
A | A ∈ Cn,n, rk(A2) = rk(A)

}
.

The classical Minkowski space is a fictitious four-dimensions space-time, which is named by the german
mathematician Hermann Minkowski. Formally, it is a four dimensional real vector space equipped with
non-degenerate, symmetric bilinear form with the signature (+,−,−,−). Then it is often denoted byR1,3, in
which the metric matrix is G = Diag (1,−I3).

In order to solve Xing’s [1] study on polarization of light, Renardy needed to apply singular value
decomposition of matrix in Minkowski space. In 1996, Renardy [2] introduce singular value decomposition
in the Minkowski spaceM, and proposed the Minkowski adjoint of a matrix A ∈ Cn,n, which is defined as
A∼ = GA∗G. The Minkowski metric matrix can be written as

G =
[
1 0
0 −In−1

]
, (1.1)
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it is easily seen that G = G∗ and G2 = In. Let A,B ∈ Cn,n, it is obvious that (AB)∼ = B∼A∼ and (A∼)∼ = A.
In 2000, Meenakshi [3] studied the generalized inverse in the Minkowski spaceM, and got its existence

conditions.
The Minkowski inverse of a matrix A ∈ Cn,n inM is defined as the unique matrix X ∈ Cn,n satisfying the

followings [3]:

(1) AXA = A, (2) XAX = X, (3m) (AX)∼ = AX, (4m) (XA)∼ = XA.

The Minkowski inverse of A is denoted by Am. It is worthy to notice that the Minkowski inverse Am exists
if and only if

rk (A∼A) = rk (AA∼) = rk(A), [3].

Furthermore, Kiliçman and Al-Zhour [6, 7] studied generalized the weighed Minkowski inverse inM.
In [19], Wang, Li and Liu defined the m-core inverse inM. Let A ∈ CCM

n , the m-core inverse of A is defined
as the unique matrix X ∈ Cn,n satisfying the followings

(1) AXA = A,
(
2l
)

AX2 = X, (3m) (AX)∼ = AX,

and is denoted by AmO. By using the SVD and the Hartwig-Spindelböck decomposition, Wang et al [19]
concluded that A is m-core invertible if and only if

rk(A∼A) = rk(A).

Furthermore, let A ∈ Cn,n with rk (A) = r and the Hartwig-Spindelböck’s decomposition [8] of A be as

A = V
[
ΣK ΣL
0 0

]
V∗, (1.2)

where V ∈ Cn,n is unitary, Σ = Dia1(σ1, σ2, ..., σr) is a diagonal matrix whose diagonal elements are singular
values of A, σ1 ≥ · · · ≥ σr > 0, and K ∈ Cr,r, L ∈ Cr,n−r satisfy KK∗ + LL∗ = Ir.

Then Ĝ1 is invertible if and only if rk (A∼A) = r, where Ĝ1 ∈ Cr,r and

V∗GV =
[
Ĝ1 Ĝ2

Ĝ3 Ĝ4

]
. (1.3)

And AmO can be written as the form

AmO = V
[
(ΣK)−1Ĝ−1

1 0
0 0

]
V∗G. (1.4)

Later, Wang, Wu and Liu [20] promoted related research and introduced them-core-EP inverse. Let A ∈ Cn,n
with Ind(A) = k. Them-core-EP inverse of A inM is defined as the unique solution satisfying the following
equations

(1)XAX = X, (2k)XAk+1 = Ak, (3m) (AX)∼ = AX, (4r)R(X) ⊆ R
(
Ak

)
,

and denoted by AEO. In addition, a matrix A is m-core-EP invertible if and only if

rk((Ak)∼Ak) = rk(Ak). (1.5)

It is easy to prove that AEO and AmO are equal when the index of A is less than or equal to 1. Since the SVD and
the Hartwig-Spindelböck decomposition are not suitable for studying the m-core-EP inverse, then Wang
applied the core-EP decomposition for studying the m-core-EP inverse. Furtehermore, by applying the
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core-EP decomposition, Wang et al [20] got several sufficient and necessary conditions for the existence of
the m-core-EP inverse and considered some related issues.

The other a couple of corresponding generalized inverse is core-EP inverse. In [9], K. Manjunatha Prasad
and K.S. Mohana gave the core-EP inverse. The core-EP inverse of A is defined as(

1k
)

XAk+1 = Ak, (2)XAX = X, (3)(AX)∗ = AX, (4r)R(X) ⊆ R(Ak),

and is denoted by A †O, where Ind(A) = k.
In 2018, Wang and Chen [12] defined weak group (WG) inverse for square matrices of an arbitrary

index. The WG inverse of A ∈ Cn,n is the unique matrix X ∈ Cn,n satisfying(
2l
)

AX2 = X, (3c) AX = A †OA. (1.6)

and it denoted by AwO. The WG inverse is a new kind of generalized group inverse, which is different from
the group inverse, and it is true for square matrices of an arbitrary index.

In recent years, many scholars have drawn their interest in the WG inverse. In [13], Wang and Liu
proposed the concept of the WG matrix on the basis of the WG inverse. In [14], Ferreyra, Orquera and
Thome generalize the WG inverse to rectangular matrices and gave properties of the weighted WG inverse.
In [16], Zhou et al proposed the WG inverse in proper *-rings and gave a new equivalent characterization
of the WG inverse. In [15], Xu et al gave concept and properties of generalized WG inverse. In [17],
Mosić and Zhang studied the weighted WG inverse in Hilbert space. In [18], Mosić and Stanimirović gave
new representations and characterizations for the WG inverse, applied SMS algorithm to compute the WG
inverse and applied the WG inverse to solve linear equations.

A commonly used tool is the core-EP decomposition [10]. Let A ∈ Cn,n with rk
(
Ak

)
= r and Ind(A) = k.

Then A = A1 + A2 and

A = U
[
T S
0 N

]
U∗, (1.7)

where A1 ∈ CCM
n , Ak

2 = 0, and A∗1A2 = A2A1 = 0. Furthermore, there exists an n × n unitary matrix U such
that

A1 = U
[
T S
0 0

]
U∗ and A2 = U

[
0 0
0 N

]
U∗, (1.8)

where S ∈ Cr,n−r, T ∈ Cr,r is invertible, N ∈ Cn−r,n−r is nilpotent, and Nk = 0.
When A ∈ CCM

n , it is obvious that N = 0 and

A = U
[
T S
0 0

]
U∗. (1.9)

In [20], we see that A ∈ Cn,n with Ind(A) = k is m-core-EP invertible if and only if G1 ∈ Cr,r is invertible,
where

U∗GU =
[
G1 G2
G3 G4

]
, (1.10)

and U is as in (1.7). Furthermore,

AEO = U
[
T−1G−1

1 0
0 0

]
U∗G. (1.11)

The aim of this paper is to consider the WG inverse in Minkowski space, we also investigate the m-WG
inverse for square matrices of an arbitrary index. In addition, we give the representations, properties, and
applications of the m-WG inverse.
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2. The m-WG inverse in Minkowski space

Let A ∈ Cn,n with Ind(A) = k be of the form (1.7), and T ∈ Cr,r be invertible, then

Ak = U
[
Tk T̂
0 0

]
U∗, (2.1)

where T̂ =
∑k

i=1 Ti−1SNk−i.

Definition 2.1. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
. Them-WG inverse of A inM is defined as

solution of(
2l
)

AX2 = X, (3c) AX = AEOA, (2.2)

and is denoted by AW .

Theorem 2.2. Let A be as in Definition 2.1. The m-WG inverse of matrix A is unique.

Proof. Suppose that X and Y satisfy (2.2), then we obtain

X = AX2 = AEOAX = AEOAEOA = AEOAY = AY2 = Y,

therefore, the m-WG inverse of matrix A is unique.

Theorem 2.3. The m-WG inverse of matrix A can be expressed as

AW = U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗, (2.3)

where A is as in Definition 2.1, G, G1 and G2 are as in (1.10).

Proof. Let

X = U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗. (2.4)

By applying (1.7) and (2.4), we have

AX2 = U
[
T S
0 N

]
U∗U

[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗U

[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

= U
[
Ir T−1(S + G−1

1 G2N)
0 0

] [
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗ = X.

By applying (1.7), (1.11) and (2.4), we have

AX = U
[
T S
0 N

]
U∗U

[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

= U
[
Ir T−1(S + G−1

1 G2N)
0 0

]
U∗,
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AEOA = U
[
T−1G−1

1 0
0 0

]
U∗GU

[
T S
0 N

]
U∗

= U
[
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T S
0 N

]
U∗

= U
[
Ir T−1(S + G−1

1 G2N)
0 0

]
U∗.

Therefore, we obtain AX = AEOA. From the above, we know that X satisfies the above equations.

Remark 2.4. Let A ∈ Cn,n with Ind(A) = k. Then A is m-WG invertible if and only if

rk((Ak)∼Ak) = rk(Ak). (2.5)

Proof. By applying (2.2) and (2.3), it is easy to that if the m-core-EP inverse exists, the m-WG inverse exists.
By applying (1.7), we obtain (2.5).

As is known to all that matrix equation and matrix decomposition are important methods to describe
generalized inverses. Next, we apply the matrix equation and the matrix decomposition to give the
equivalent characterization of the m-WG inverse.

Theorem 2.5. Let A be as in Definition 2.1. Then the following statements are equivalent:

(i). AX2 = X, AX = AEOA;
(ii). (Ak)∼A2X = (Ak)∼A, R(X) ⊆ R(Ak);

(iii). XAk+1 = Ak, AX2 = X, (Ak)∼A2X = (Ak)∼A.

Proof. (i) ⇔ (ii): Let A ∈ Cn,n be of the form (1.7). Suppose that X is satisfying statement (ii), and denoted
by

X = U
[
X11 X12
X21 X22

]
U∗.

Since R(X) ⊆ R(Ak), we obtain X = AkY. Let

Y = U
[
Y11 Y12
Y21 Y22

]
U∗,

that is,

U
[
X11 X12
X21 X22

]
U∗ = U

[
Tk T̂
0 0

]
U∗U

[
Y11 Y12
Y21 Y22

]
U∗ = U

[
TkY11 + T̂Y21 TkY12 + T̂Y22

0 0

]
U∗.

Therefore, we obtain X21 = 0 and X22 = 0. By applying (Ak)∼A2X = (Ak)∼A, we have

GU
[
(Tk)∗ 0

T̂∗ 0

]
U∗GU

[
T S
0 N

]
U∗U

[
T S
0 N

]
U∗U

[
X11 X12
0 0

]
U∗

= GU
[
(Tk)∗ 0

T̂∗ 0

]
U∗GU

[
T S
0 N

]
U∗,[

(Tk)∗ 0
T̂∗ 0

] [
G1 G2
G3 G4

] [
T S
0 N

]2 [
X11 X12
0 0

]
=

[
(Tk)∗ 0

T̂∗ 0

] [
G1 G2
G3 G4

] [
T S
0 N

]
,[

(Tk)∗G1T2X11 (Tk)∗G1T2X12

T̂∗G1T2X11 T̂∗G1T2X12

]
=

[
(Tk)∗G1T (Tk)∗G1S + (Tk)∗G2N

T̂∗G1T T̂∗G1S + T̂∗G2N

]
.
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Therefore, X11 = T−1 and X12 = T−2(S + G−1
1 G2N). Then, we obtain

X = U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗. (2.6)

By applying (2.3) and (2.6), it is obvious that statement (i) and statement (ii) are the same solution. Since
the solution of the statement (i) is unique, then we obtain X is the unique solution satisfying the statement
(ii). Therefore, statement (i) and statement (ii) are equivalent.

(i)⇔ (iii): The proof is similar to the above.

From the above, we know that statements (i), (ii), and (iii) are equivalent. Therefore, statements (ii) and (iii)
can also define the m-WG inverse of A.

3. Characterizations and representations of the m-WG inverse

In this section, we mainly use matrix decomposition and matrix equation to give characterization of the
m-WG inverse.

Lemma 3.1. Let A ∈ CCM
n be as given in (1.9), then

A♯ = U
[
T−1 T−2S

0 0

]
U∗. (3.1)

Corollary 3.2. The following statements are true.

(i). If A ∈ CCM
n , then AW = A♯.

(ii). If A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
, then AW

∈ A{2}.

Proof. (i)When A ∈ CCM
n , we have N = 0. By applying (2.3) and (3.1), we have AW = A♯.

(ii) Let A ∈ Cn,n be of the form (1.7), and applying (2.3), we have

AWAAW = U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗U

[
T S
0 N

]
U∗U

[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

= U
[
Ir T−1S + T−2(S + G−1

1 G2N)N
0 0

] [
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗ = AW .

Then, we obtain AW
∈ A{2}.

Next, we take an example to illustrate that the m-WG inverse is different from the core-EP inverse, the
m-core-EP inverse and the WG inverse.

Example 3.3. Let A =


0 4

3 −
1
3

−
1
3 1 −

1
3

−
2
3 −

2
3 0

 with Ind(A) = 2. There exists a unitary matrix

U =


2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3

 ,



H. Wu et al. / Filomat 36:4 (2022), 1125–1141 1131

such that

A = U

1 1 1
0 0 1
0 0 0

 U∗.

By calculating, we obtain A †O and AEO are

A †O =


4
9

2
9 −

4
9

2
9

1
9 −

2
9

−
4
9 −

2
9

4
9

 and AEO =

−4 2 −4
−2 1 −2
4 −2 4

 .
Besides, AwO and AW are

AwO =


2
9

10
9 −

2
9

1
9

5
9 −

1
9

−
2
9 −

10
9

2
9

 and AW =

 2 −
2
3

2
3

1 −
1
3

1
3

−2 2
3 −

2
3

 .
In [12], we see that AwO = A♯1, where A1 is of the form (1.8). In the following, by applying the m-core-EP

decomposition of A, we can obtain similar results.

Lemma 3.4 ([20]). Let A be as in Definition 2.1. Then the m-core-EP Decomposition of A can be expressed as
A = Â1 + Â2, where

(i). Â1 ∈ CCM
n with rk

(
Â1

)
= rk

(
Â1
∼

Â1

)
;

(ii). Â2
k
= 0;

(iii). Â1
∼

Â2 = Â2Â1 = 0.

Furthermore, Â1 and Â2 have the forms

Â1 = U
[
T S + G−1

1 G2N
0 0

]
U∗ and Â2 = U

[
0 −G−1

1 G2N
0 N

]
U∗. (3.2)

Theorem 3.5. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
. Then

AW = Â1
♯
, (3.3)

where A ∈ Cn,n be of the form (1.8).

Proof. Let Â1 be as in (3.2), by applying Theorem 2.3 and Lemma 3.1, we derive (3.3).

Theorem 3.6. Let A be as in Definition 2.1. Then

AW = (AAEOA)♯ = (AEO)2 A =
(
A2

)EO
A. (3.4)

Proof. Let A ∈ Cn,n be of the form (1.7), and AEO be as in (1.11). Then

AAEOA = U
[
T S
0 N

] [
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T S
0 N

]
U∗ = U

[
T S + G−1

1 G2N
0 0

]
U∗,

It follows from Lemma 3.1 that,

(AAEOA)♯ =
(
U

[
T S + G−1

1 G2N
0 0

]
U∗

)♯
= U

[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗.
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And

(AEO)2 = U
[
T−1G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T−1G−1

1 0
0 0

]
U∗G = U

[
T−2G−1

1 0
0 0

]
U∗G,

(
A2

)EO
=

(
U

[
T2 TS + SN
0 N2

]
U∗

)EO

= U
[
T−2G−1

1 0
0 0

]
U∗G,

therefore,

(AEO)2A = (A2)EOA = U
[
T−2G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T S
0 N

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗.

By applying (2.3), we obtain (3.4).

Lemma 3.7 ([20]). Let A ∈ Cn,n with Ind(A) = k, rk(Ak) = rk((Ak)∼Ak) = rk(A1A∼1 ) = r. Then

AEO = A♯1A1Am
1 . (3.5)

Corollary 3.8. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= rk

(
A1A∼1

)
= r. Then

AW = A♯1Am
1 A.

Proof. By applying (3.4) and (3.5), we can obtain AW = A♯1A1Am
1 A♯1A1Am

1 A = A♯1A1Am
1 A1A♯1Am

1 A = A♯1A1A♯1Am
1 A =

A♯1Am
1 A.

Lemma 3.9 ([20]). Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
. Then (Ak)mO can be written as the form

(Ak)mO = U
[
(Tk)−1G−1

1 0
0 0

]
U∗G, (3.6)

where A be as in (1.7).

Theorem 3.10. Let A be as in Definition 2.1. Then

AW = Ak
(
Ak+2

)mO
A =

(
A2PAk

)mO
A. (3.7)

Proof. Let A ∈ Cn,n be of the form (1.7). By applying (2.1) and (3.6), we have

Ak(Ak+2)mOA = U
[
Tk T̂
0 0

] [
T−(k+2)G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T S
0 N

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗ = AW ,

PAk = Ak
(
Ak

)†
= U

[
Irk(Ak) 0

0 0

]
U∗,

(A2PAk )mOA =
(
U

[
T2 0
0 0

]
U∗

)mO

U
[
T S
0 N

]
U∗

= U
[
T−2G−1

1 0
0 0

] [
G1 G2
G3 G4

] [
T S
0 N

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗ = AW ,

where G, G1 and G2 are as in (1.10). Hence, we obtain (3.7).
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Corollary 3.11. Let A be as in Definition 2.1. Then, R(AW) = R(Ak).

Proof. Let A ∈ Cn,n be of the form (1.7), by applying (3.7), we obtian R(AW) ⊆ R(Ak).
Next, we just need to verify R(Ak) ⊆ R(AW). Let any x = Aky ∈ R(Ak), since

Ak = U
[
Tk T̂
0 0

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗U

[
Tk+1 TT̂

0 0

]
U∗

= AWU
[
Tk+1 TT̂

0 0

]
U∗.

Therefore, we obtain

x = Aky = U
[
Tk T̂
0 0

]
U∗y

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗U

[
Tk+1 TT̂

0 0

]
U∗y

= AWU
[
Tk+1 TT̂

0 0

]
U∗y.

Let

z = U
[
Tk+1 TT̂

0 0

]
U∗y.

We have x = AWz and then x ∈ R(AW), from which we have R(Ak) ⊆ R(AW). Then, R(Ak) = R(AW).

4. The m-WG inverse included in certain bordered matrix

As is known to all that if A is an invertible matrix, then X = A−1 is the unique matrix statisfy following
rank equality

rk
([

A I
I X

])
= rk(A).

In this section, we investigate the m-WG inverse AW of A and give an analogous result of the m-WG
inverse AW of A. Firstly, we give the following lemma.

Lemma 4.1 ([21]). Let A an n × n matrix and let M be a 2n × 2n matrix partitioned as M =
[

A AT
SA B

]
. Then

rk(M) = rk(A) + rk(B − SAT).

Theorem 4.2. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r. Then there exist a unique matrix X such

that

(Ak)∼A2X = 0, XAk = 0, X2 = X, rk(X) = n − r, (4.1)

a unique matrix Y such that

(Ak)∼AY = 0, YAk = 0, Y2 = Y, rk(Y) = n − r, (4.2)
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and a unique matrix Z such that

rk
([

A I − Y
I − X Z

])
= rk(A). (4.3)

The matrix Z is the m-WG inverse AW of A. Furthermore, we have

X = I − AWA, Y = I − AAW .

Proof. Let us assume that A has the form (1.7), and AW is as in (2.3). It is easy to verify that the block matrix

X = U
[
0 −T−1S − T−2(S + G−1

1 G2N)N
0 In−r

]
U∗ = I − AWA (4.4)

satisfies the condition (4.1). Next, we prove the uniqueness of X. Firstly, we assume that both X and X1
satisfy (4.1). Let X1 = UX0U∗, and X0 can be partitioned as the following form

X0 =

[
E F
K H

]
, (4.5)

where E is an r × r matrix. On the basis of X1Ak = 0, by applying (4.5) and (2.1), we obtain[
E F
K H

] [
Tk T̂
0 0

]
= 0.

As a result, E = 0 and K = 0. Furthermore, after observing X2
1 = X1 and rk(X1) = n − r, it is easily obtain

that H2 = H, F = FH and rk(H) = n − r. Therefore, H is nonsingular and H = In−r.
On the other hand, by applying (4.1), we can obtain

(Ak)∼A2X1 = GU
[
(Tk)∗ 0

T̂∗ 0

]
U∗GU

[
T S
0 N

]
U∗U

[
T S
0 N

]
U∗U

[
0 F
0 In−r

]
U∗

= GU
[
0 (Tk)∗G1T2F + (Tk)∗G1(TS + SN) + (Tk)∗G2N2

0 T̂∗G1T2F + T̂∗G1(TS + SN) + T̂∗G2N2

]
U∗ = 0.

Since T and G1 are nonsingular, it follows that (Tk)∗G1T2F + (Tk)∗G1(TS + SN) + (Tk)∗G2N2 = 0 and further
F = −T−2(TS + SN + G−1

1 G2N2).
Thus, X1 = X. By using a similar way, we can also prove property (4.2), which Y is given by

Y = U
[
0 −T−1(S + G−1

1 G2N)
0 In−r

]
U∗ = I − AAW . (4.6)

The matrices X = I − AWA and Y = I − AAW satisfy[
A I − Y

I − X Z

]
=

[
A AAW

AWA Z

]
.

By applying Lemma 4.1 and (4.3), then

Z = AWAAW = AW .

The above proof is completed.

In the following, by applying X = I−AWA and Y = I−AAW , we give another characterization of them-WG
inverse.
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Theorem 4.3. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
= r. Then

AW = (A − X)−1(I − Y) = (A + X)−1(I − Y), (4.7)

where X = I − AWA and Y = I − AAW .

Proof. Let A be of the form (1.7), by applying (4.4) and (4.6), we obtain

A − X = U
[
T S
0 N

]
U∗ −U

[
0 −T−1S − T−2(S + G−1

1 G2N)N
0 In−r

]
U∗

= U
[
T S + T−1S + T−2(S + G−1

1 G2N)N
0 N − In−r

]
U∗.

Since T and N − In−r are nonsingular, then

(A − X)−1 = U
[
T−1

−T−1[S + T−1S + T−2(S + G−1
1 G2N)N](N − In−r)−1

0 (N − In−r)−1

]
U∗,

and

(A − X)−1(I − Y) = U
[

T−1
−T−1[S+T−1S+T−2(S+G−1

1 G2N)N](N−In−r)−1

0 (N−In−r)−1

]
U∗U

[
Ir T−1(S+G−1

1 G2N)
0 0

]
U∗

= U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗ = AW .

By applying the similar method, we can also obtain the property AW = (A + X)−1(I − Y). Thus,

AW = (A − X)−1(I − Y) = (A + X)−1(I − Y),

which confirms the representations (4.7).

In the following, we give an example to verify the results of Theorem 4.2.

Example 4.4. Let

A =

 0 4 −1
−1 3 −1
−2 −2 0

 =


2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3


3 3 3
0 0 3
0 0 0




2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3


satisfying rk(A) = 2 and rk(A2) = rk(A3) = 1. Therefore, we know that k = Ind(A) = 2. The m-WG inverse of A is
given by

AW = U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

=


2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3




1
3

1
3 −1

0 0 0
0 0 0




2
3

1
3 −

2
3

1
3

2
3

2
3

−
2
3

2
3 −

1
3

 =


2
3 −

2
9

2
9

1
3 −

1
9

1
9

−
2
3

2
9 −

2
9

 .
The block matrix

B =
[

A I − Y
I − X Z

]
=

[
A AAW

AWA AW

]
=



0 4 −1 2 −
2
3

2
3

−1 3 −1 1 −
1
3

1
3

−2 −2 0 −2 2
3 −

2
3

−
2
9

14
9 −

4
9

2
3 −

2
9

2
9

−
1
9

7
9 −

2
9

1
3 −

1
9

1
9

2
9 −

14
9

4
9 −

2
3

2
9 −

2
9





H. Wu et al. / Filomat 36:4 (2022), 1125–1141 1136

satisfies rk(B) = rk(A) = 2. Furthermore, the matrix

X = I − AWA =


11
9 −

14
9

4
9

1
9

2
9

2
9

−
2
9

14
9

5
9


satisfies(4.1). In addition, one can verify that

Y = I − AAW =

−1 2
3 −

2
3

−1 4
3 −

1
3

2 −
2
3

5
3


satisfies(4.2).

5. Generalized Cayley-Hamilton theorem for the m-WG inverse matrix

In this section, generalized Cayley-Hamilton theorem will be extended to them-WG inverse matrix. By
assumption, matrix A is singular, i.e. det(A) = 0.

Lemma 5.1 (Cayley-Hamilton theorem, [23]). Let A ∈ Cn,n, the characteristic polynomial of A be

pA(s) = det(sIn − A) = sn + an−1sn−1 + ... + a1s + a0.

Then

pA(A) = An + an−1An−1 + ... + a1A + a0In,

if A is singular, then a0 = 0.

Theorem 5.2. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
, the characteristic polynomial of A be

pA(s) = det(sIn − A) = sn + an−1sn−1 + ... + a1s.

Then

AW + an−1(AW)2 + ... + a1(AW)n = 0. (5.1)

Proof. Since A ∈ Cn,n is singular, by applying Cayley-Hamilton theorem, we have

An + an−1An−1 + ... + a1A = 0. (5.2)

Postmultiplying both sides of (5.2) with (AW)n+1, one has

An(AW)n+1 + an−1An−1(AW)n+1 + ... + a1A(AW)n+1 = 0. (5.3)

By applying (1.7) and (2.3), we have AW = A(AW)2. Therefore, A(AW)n+1 = A(AW)2(AW)n−1 = AW(AW)n−1 =
(AW)n. By applying similar ways, we obtain A2(AW)n+1 = (AW)n−1, ..., An−1(AW)n+1 = (AW)2, An(AW)n+1 = AW .
Substituting above equality into (5.3), we obtain (5.1).

Next, we give an example to verify Theorem 5.2.
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Example 5.3. Let A =


0 4

3 −
1
3

−
1
3 1 −

1
3

−
2
3 −

2
3 0

 with Ind(A) = 2. By calculating, we obtain

AW =

 2 −
2
3

2
3

1 −
1
3

1
3

−2 2
3 −

2
3

 .
Then

det(sI3 − A) =

∣∣∣∣∣∣∣∣
s −

4
3

1
3

1
3 s − 1 1

3
2
3

2
3 s

∣∣∣∣∣∣∣∣ = s3
− s2.

By applying Cayley-Hamilton theorem, we have

A3
− A2 =


0 4

3 −
1
3

−
1
3 1 −

1
3

−
2
3 −

2
3 0


3

−


0 4

3 −
1
3

−
1
3 1 −

1
3

−
2
3 −

2
3 0


2

= 0.

By applying Theorem 5.2, we have

(AW)2
− (AW)3 =

 2 −
2
3

2
3

1 −
1
3

1
3

−2 2
3 −

2
3


2

−

 2 −
2
3

2
3

1 −
1
3

1
3

−2 2
3 −

2
3


3

= 0.

In the following, we extend generalized Cayley-Hamilton theorem to the m-WG inverse. Let A ∈ Cn,n with
Ind(A) = k, rk

(
Ak

)
= rk

((
Ak

)∼
Ak

)
, by applying Lemma 5.1 and Theorem 5.2, we have

det(sIn − AW) = det(sIn −U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗)

= sn−rk(Ak)det(sIrk(Ak) − T−1). (5.4)

Let the characteristic polynomial of T−1 be

pT−1 (s) = det(sIrk(Ak) − T−1)

= srk(Ak) + bn−1srk(Ak)−1 + ... + bn−rk(Ak)+1s + bn−rk(Ak). (5.5)

By applying (5.4) and (5.5), we obtain the following Theorem 5.4.

Theorem 5.4. Let A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
, the characteristic polynomial of AW be

pAW (s) = det(sIn − AW) = sn + bn−1sn−1 + ... + bn−rk(Ak)s
n−rk(Ak).

Then

pAW(AW) = (AW)n + bn−1(AW)n−1 + ... + bn−rk(Ak)(A
W)n−rk(Ak) = 0,

where bn−1, ..., bn−rk(Ak) be as in (5.5).

In the following, we give an example to verify Theorem 5.4.
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Example 5.5. Let A =



2
√

48−3
3
√

48

√
48+3

3
√

48

√
48+3

3
√

48
4
√

2−1
√

48√
48−6

√
2+3

3
√

48
2
√

48+6
√

2−3
3
√

48
−
√

48+6
√

2−3
3
√

48
2
√

2+1
√

48√
48+6

√
2+3

3
√

48
−
√

48−6
√

2−3
3
√

48
2
√

48−6
√

2−3
3
√

48
2
√

2+1
√

48
3
√

48
−

3
√

48
−

3
√

48
3
√

48


with Ind(A) = 2. There exists a unitary

matrix

U =


1
√

2
1
√

6
−

1
√

12
1
2

1
√

2
−

1
√

6
1
√

12
−

1
2

0 2
√

6
1
√

12
−

1
2

0 0 3
√

12
1
2

 ,
such that

A = U


1 0 1 0
0 1 0 1
0 0 0 1
0 0 0 0

 U∗.

By calculating, we obtain

U∗GU =


0 1

√
3

−
1
√

6
1
√

2
1
√

3
−

2
3 −

1
√

18
1
√

6
−

1
√

6
−

1
√

18
−

5
6 −

1
√

12
1
√

2
1
√

6
−

1
√

2
−

1
2

 .

where G1 =

 0 1
√

3
1
√

3
−

2
3

 , G2 =

− 1
√

6
1
√

2
−

1
√

18
1
√

6

 , T = [
1 0
0 1

]
, S =

[
1 0
0 1

]
, N =

[
0 1
0 0

]
.

Thus, we obtain

AW = U
[
T−1 T−2(S + G−1

1 G2N)
0 0

]
U∗

=


2−
√

3
3

1+
√

3
3

1+
√

3
3

2−
√

2
6√

24−3
√

2−6
3
√

24
2
√

24+3
√

2+6
3
√

24
−

√
24−3

√
2−6

3
√

24
2−
√

2
√

24√
24−3

√
2+6

3
√

24
−

√
24−3

√
2+6

3
√

24

√
24+3

√
2−6

3
√

24
2−
√

2
√

24
0 0 0 0

 .
Then

pT−1 (s) = s2
− 2s + 1, pAW (s) = s2(s2

− 2s + 1) = s4
− 2s3 + s2.

And 
2−
√

3
3

1+
√

3
3

1+
√

3
3

2−
√

2
6

√
24−3

√
2−6

3
√

24
2
√

24+3
√

2+6
3
√

24
−

√
24−3

√
2−6

3
√

24
2−
√

2
√

24
√

24−3
√

2+6
3
√

24
−

√
24−3

√
2+6

3
√

24

√
24+3

√
2−6

3
√

24
2−
√

2
√

24
0 0 0 0


4

− 2


2−
√

3
3

1+
√

3
3

1+
√

3
3

2−
√

2
6

√
24−3

√
2−6

3
√

24
2
√

24+3
√

2+6
3
√

24
−

√
24−3

√
2−6

3
√

24
2−
√

2
√

24
√

24−3
√

2+6
3
√

24
−

√
24−3

√
2+6

3
√

24

√
24+3

√
2−6

3
√

24
2−
√

2
√

24
0 0 0 0


3

+


2−
√

3
3

1+
√

3
3

1+
√

3
3

2−
√

2
6

√
24−3

√
2−6

3
√

24
2
√

24+3
√

2+6
3
√

24
−

√
24−3

√
2−6

3
√

24
2−
√

2
√

24
√

24−3
√

2+6
3
√

24
−

√
24−3

√
2+6

3
√

24

√
24+3

√
2−6

3
√

24
2−
√

2
√

24
0 0 0 0


2

= 0.

Therefore, (AW)4
− 2(AW)3 + (AW)2 = 0.
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6. Applications of the m-WG inverse

In [18], Mosić and Stanimirović applied the WG inverse to solve linear equations. The following matrix
equation

(Ak+2)∗A2x = (Ak+2)∗Ab, b ∈ Cn,1,

is consistent and its general soluytion is

x = AwOb + (I − AwOA)y,

where A ∈ Cn,n with Ind(A) = k, for arbitrary y ∈ Cn,1.
In the following, by using the m-WG inverse, we give the general solutions of the following matrix

equation in Minkowski space

(Ak)∼A2x = (Ak)∼Ab, b ∈ Cn,1,

where A ∈ Cn,n with Ind(A) = k, rk
(
Ak

)
= rk

((
Ak

)∼
Ak

)
.

Theorem 6.1. Let A be as in Definition 2.1. Then the equation

(Ak)∼A2x = (Ak)∼Ab, b ∈ Cn,1, (6.1)

is consistent and its general solutions is

x = AWb +
(
I − AWA

)
y, (6.2)

for arbitrary y ∈ Cn,1.

Proof. Let A ∈ Cn,n with Ind(A) = k be of the form (1.7), AW and U∗GU be of the form (2.3) and (1.10),
respectively. Since rk

(
Ak

)
= rk

((
Ak

)∼
Ak

)
, G1 and T are invertible. Denote

U∗x =
[
x1
x2

]
, U∗b =

[
b1
b2

]
and AWb = U

[
T−1b1 + T−2(S + G−1

1 G2N)b2
0

]
, (6.3)

where x1, b1 and T−1b1 + T−2(S + G−1
1 G2N)b2 ∈ Cr,1. By applying (1.7) and (1.10), we obtain

(Ak)∼A2x − (Ak)∼Ab

= GU
[
(Tk)∗ 0

T̂∗ 0

]
U∗GU

[
T2 TS + SN
0 N2

]
U∗x − GU

[
(Tk)∗ 0

T̂∗ 0

]
U∗GU

[
T S
0 N

]
U∗b

= GU
[
(Tk)∗ 0

T̂∗ 0

] [
G1 G2
G3 G4

] ([
T2 TS + SN
0 N2

] [
x1
x2

]
−

[
T S
0 N

] [
b1
b2

])

= GU


(Tk)∗G1T2x1 + ((Tk)∗G1TS + (Tk)∗G1SN + (Tk)∗G2N2)x2

−(Tk)∗G1Tb1 − ((Tk)∗G1S + (Tk)∗G2N)b2

T̂∗G1T2x1 + (T̂∗G1TS + T̂∗G1SN + T̂∗G2N2)x2

−T̂∗G1Tb1 − (T̂∗G1S + T̂∗G2N)b2

 . (6.4)

On account of G1 and T are nonsingular, then we have

x1 = T−1b1 + T−2(S + G−1
1 G2N)b2 − T−2(TS + SN + G−1

1 G2N2)x2
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such that

(Tk)∗G1T2x1 + ((Tk)∗G1TS + (Tk)∗G1SN + (Tk)∗G2N2)x2

− (Tk)∗G1Tb1 − ((Tk)∗G1S + (Tk)∗G2N)b2 = 0

and
T̂∗G1T2x1 + (T̂∗G1TS + T̂∗G1SN + T̂∗G2N2)x2 − T̂∗G1Tb1 − (T̂∗G1S + T̂∗G2N)b2 = 0,

that is, there exists x such that (Ak)∼A2x = (Ak)∼Ab. Hence, we obtain the equation (6.1) is consistent.
By applying (6.3) and (6.4), then we have

x = U
[
T−1b1 + T−2(S + G−1

1 G2N)b2 − T−2(TS + SN + G−1
1 G2N2)x2

x2

]
, (6.5)

for arbitrary x2 ∈ Cn−r,1. By applying (1.7) and (2.3), we can easily get

I − AWA = U
[
0 −T−2(TS + SN + G−1

1 G2N2)
0 In−r

]
U∗. (6.6)

Therefore, applying (6.3), (6.5), (6.6) and a simple computation shows

x = U
[
T−1b1 + T−2(S + G−1

1 G2N)b2
0

]
+U

[
−T−2(TS + SN + G−1

1 G2N2)x2
x2

]
= AWb + (I − AWA)y,

where x2 ∈ Cn−r,1 and y ∈ Cn,1 are arbitrary. Therefore, we get the general solutions (6.2).
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