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AL -Statistical Limit Points and A’ -Statistical Cluster Points

Prasanta Malik?®, Samiran Das?
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Abstract. In this paper using a non-negative regular summability matrix A and a non trivial admissible
ideal I of subsets of N we have introduced the notion of A -statistical limit point as a generalization
of A-statistical limit point of sequences of real numbers. We have also studied some basic properties
of the sets of all A -statistical limit points and AL -statistical cluster points of real sequences including

their interrelationship. Also introducing additive property of A’ -density zero sets we have established
Al -statistical analogue of some completeness theorems of R.

1. Introduction and background:

The notion of statistical convergence of real sequences was introduced by Fast [12] (also independently
by Schoenberg [33]) as a generalization of the usual notion of convergence, using the notion of natural
density of subsets of IN, the set of all natural numbers. A set 8 C IN is said to have natural density d(8) if

1B(n)|

7

=1
where B(n) = {m < n: m € B} and |B(n)| denotes the number of elements in B(n). Note that one can write

d(B) = lim (C1xg),, where C; = (C, 1) is the Cesaro matrix of order 1 and xg is the characteristic function of
n—oo
B.

A sequence x = {xi}ren Of real numbers is said to be statistically convergent to £ € R, if for every € > 0,
d(B(e)) = 0, where B(e) = {k € N : |xx — &| > €}. Study in this line turned out to be one of the active
research area in summability theory after the works of Salat [29] and Fridy [14]. Applying this notion of
statistical convergence, the concepts of statistical limit point and statistical cluster point of real sequences
were introduced by Fridy [15].

If {xy;}jenv is a subsequence of a real sequence x = {xi}ren and Q = {k; : j € N}, then we use the notation
{x]q to denote the subsequence {x; }jen. In case d(Q) = 0, {x]q is called a thin subsequence of x. On the
other hand {x}q is called a nonthin subsequence of x if d(Q) # 0, where d(Q) # 0 means that either d(Q) is a
positive number or Q fails to have natural density.

A real number p is called a statistical limit point of a real sequence x = {x;}xen, if there exists a nonthin
subsequence of x that converges to p.

2020 Mathematics Subject Classification. Primary 40C05; Secondary 40A35

Keywords. A-statistical convergence, A-density, A’ -statistical convergence, A -statistical limit point, A’ -statistical cluster point,
AL -density, A’ -statistical boundedness.

Received: 17 May 2021; Revised: 11 October 2021; Accepted: 29 November 2021
Communicated by Pratulananda Das

Corresponding author: Prasanta Malik
Email addresses: pmjupm@yahoo.co.in (Prasanta Malik), das91samiran@gmail . com (Samiran Das)



P. Malik, S. Das / Filomat 36:5 (2022), 1573-1585 1574

A real number g is called a statistical cluster point of a real sequence x = {x}ren, if for every € > 0 the
set{ke N : |xk - q| < €} does not have natural density zero.

More primary work on this convergence can be found in [1-3, 16, 28, 34], where many more references
are mentioned.

In 1981, Freedman and Sember [13] generalized the concept of natural density to the notion of A-density
by replacing the Cesaro matrix C; with an arbitrary non-negative regular summability matrix A. An INxIN
matrix A = (a,x), 4, € Ris said to be a regular summability matrix if for any convergent sequence x = {Xy}xen

of real numbers with limit &, lim Zankxk = ¢, and Ais called non-negative if a,x > 0, ¥n, k. The well-known

k=1
Silvermann- Toepliz’s theorem asserts that an IN X IN matrix A = (a,x), 4« € R is regular if and only if the

following three conditions are satisfied:
(i) IlAIl = SuP§|ﬂnk| <,
(ii) lim a,; = O for each k,
n—oo
(iii) lim Y a, = 1.
n—oo k

Throughout the paper we take A = (a,) as an IN X IN non negative regular summability matrix.

For a non negative regular summability matrix A = (a,x), a set B C N is said to have A-density 6.4(B),
if

6a(B) = lim ) au.
keB
Using this notion of A-density, the notion of statistical convergence was extended to the notion of A-
statistical convergence by Kolk [19], which included the ideas of statistical convergence [12, 33], A-statistical
convergence [25] or lacunary statistical convergence [17] as special cases.

A sequence x = {xi}ren Of real numbers is said to be A-statistically convergent to ¢ if for every € > 0,
0a(B(€)) =0, where B(e) = {k € N : |x; — &| > €.

Using this notion of A-statistical convergence, the concepts of statistical limit point and statistical cluster
point of real sequences were extended to the notions of A-statistical limit point and A-statistical cluster
point by Connor et al. [4].

If {x}q is a subsequence of a sequence x = {xi}ren and 04(Q) = 0, then {x}q is called an A-thin subsequence
of x. On the other hand {x}q is called an A-nonthin subsequence of x if 6#(Q) # 0, where 64#(Q) # 0 means
that either 64(Q) is a positive number or Q fails to have A-density.

A real number p is called an A-statistical limit point of a real sequence x = {xi}en, if there exists an
A-nonthin subsequence of x that converges to p.

A real number g is called an A-statistical cluster point of a real sequence x = {xi}ren;, if for every e > 0
the set {k e IN : )xk - q| < €} does not have A-density zero.

If AJ', T{' and L, denote the set of all A-statistical limit points, the set of all A-statistical cluster points
and the set of all ordinary limit points of x, then clearly A c I'Y' c L,

More primary works on this convergence can be found in [8, 9, 18, 25], where many more references are
mentioned.

The concept of statistical convergence was generalized to 7-convergence by Kostyrko et al. [20] based
on the notion of an ideal 7 of subsets of IN.

A non-empty family 7 of subsets of a non empty set S is called an ideal in S if 7 is hereditary ( i.e.
Ae€el,BCA= Bell)andadditive (i.e. A, Bel = AUBelT).

Anideal 7 in a non-empty set S is called non-trivial if S ¢ 7 and 7 # {0}.

A non-trivial ideal I in S(# 0) is called admissible if {z} € T for each z € S.

Throughout the paper we take 1 as a non-trivial admissible ideal in IN unless otherwise mentioned.

A sequence x = {xi}ren Of real numbers is said to be 7-convergent to £ if forany € > 0, {k € N : |x; — &| >
e} € I.In this case we write 7- ]}im xp =&

More works in this line can be seen in [7, 21-23, 26, 27] and many others.
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Recently in 2012 using the notion of J-convergence, the concept of A-statistical convergence was
extended to A’ -statistical convergence by Savas et al. [31], which included the ideas of I-statistical
convergence [5], 7 5-statistical convergence [30] or 7-lacunary statistical convergence [5] as special cases.
More recent works in this line can be seen in [10, 11, 32] where many references are mentioned.

If A = (a,x) is a N X IN non negative regular summability matrix, then a sequence x = {xy}xen Of real

numbers is said to be AL -statistically convergent to ¢ if forany e > 0and 6 > 0, {n € N : Z Ay >0} e T,
keB(e)

.
where B(e) = {k € IN : [x;x — &] > €}. In this case we write J-st#- ]}im X = & or simply xx A &. Note that

if I = Iy ={K cIN:|K]| < oo}, then the notions of AL -statistical convergence coincide with the notion of
A-statistical convergence [19].

Also in [18], the notion of A’ -statistical cluster point was introduced as a generalization of A-statistical
cluster point, via the notion of A?-density. A subset M of IN is said to have A’ -density 6.4 (M), if

S4:(M) = T — lim Zank.
71—>Ook€M

Using the notion of A?-density, the definition of A’ -statistical convergence can be restated as follows:
A sequence x = {x}xen Of real numbers is said to be A’ -statistically convergent to & if for any € > 0,
041 (B(€)) =0, where B(e) = {k € N : |x, — &| > €}.

A real number p is said to be an AL -statistical cluster point of a real sequence x = {x}ren, if for each
€ >0, 67:(B(€)) # 0, where B(e) = {k € IN : |xx — p| < €}. Note that 6 #:(B(€)) # 0 means, either 6 4:(B(€)) > 0
or A’ -density of B(e) does not exist.

In this paper using the concept of A -density we have extended the concept of A-statistical limit point
of sequences of real numbers to A’ -statistical limit point. We have established relationship among A’ -
statistical limit points, A’ -statistical cluster points and A-statistical cluster points of a sequence of real
numbers. We also have studied some basic properties of the sets of all A’ -statistical limit points and A”-
statistical cluster points of sequences of real numbers not done earlier. Also we have introduced additive
property of A’ -density zero sets and established A7 -statistical analogue of some completeness theorems
of R.

2. Al -statistical limit points and A7 -statistical cluster points

In this section we introduce the notion of A’ -statistical limit point and discuss some basic properties of
the set of all A7 -statistical limit points and the set of all A’ -statistical cluster point of real sequences. For
this we first study some properties of A -density not done earlier.

Throughout the paper IN, R denote the set of all natural numbers, the set of all real numbers respectively,
x denotes a real sequence {x;}ren and L, denotes the set of all ordinary limit points of the sequence x. Also
I denotes a non-trivial admissible ideal in IN and A = (a,x) denotes an IN X IN non negative regular
summability matrix unless otherwise mentioned.

Following the line of Freedman et al. [13] and Kostyrko et al. [20] we first introduce the concepts of
lower A’ -density and upper A’ -density associated with a lower A’ -density of a set M c IN.

Definition 2.1. A set M C N is said to have lower A’ -density 6 (M) if

8.r (M) = I-lim inf(Ax 0, = I-liminf Y 4y,
meM

Definition 2.2. The upper A’ -density & 4:(M) associated with a lower A’ -density § ,,(M) of a set M C N is

defined by
dar(M) =1 =0,,(IN\ M).

Lemma 2.1. 64:(M) = Z-limsup(Axp)n = Z-limsup Y, ayp.

n—oo0 n—oo meM
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Proof. Let1=(1,1,1,..) and | = (i,x) be an IN x IN matrix such that i,x = 1 for n = k and 0 otherwise. Since

Xam = 1= X, and I- im {(J1), = (A1)} = 050

SarM) = 1-8,(N\M) =1-I-lminf(Axy,)»

1~ I-lim glf( y ank) —1-1- 1152%5&(2 — ank)

keN\M keN keM

= 1I- hmsup(l - Z Ak + Z ﬂnk)

n—00 keN keM
= I-limsup{(J1), — (A.D)n + (Ax,)n}

n—oo

= I-limsup(Ax,), = I-limsup Z Ay -

—00 —00
n n mem

O

Lemma 2.2. Let My and M be two subsets of IN. Then

(i) ,00) = 0,0, (N) =1and 0 < 6,, (M) < 1, fori=1,2,
(ii) IMiAM| < 00 = 64, (M) = 6 4, (M),

(i) MiN Mo =0 = 64, (M) + 04 (Ma) < 64, (M1 U M),
(iv) éy{I(Ml) + QﬂI(MZ) <1+ éy{](Ml N M),

(V) Mi C My = 04:(Mi) <6 4:(Mp).

Proof. (i) It is clear that 6 4,(0) = 0 and 6 4, (IN) = 1. Now fori =1,2

0< Z < Zank = 0<liminf Y a, <lminf}  a,

n—oo n—00
ke M; keIN keM; keIN
= 0<7-liminf A < T-liminf Y ay
n—o0 n—o0o0
ke M; kelN

= 0< 7-liminf Ak < 1= 0<0,, (M) <1

ke M;

(i) Let IM41AM;| < 0. Then 3 an Ny € IN such that X, (m) = Xy, (m) exceptm =1,2,...,Ny. So

|(ﬂXM1 ),, - (ﬂXMZ ),,| = Z AnmX p, (m) - Z Anm X p, (m)

m m
N(] NO
< Z A |XM1 (m) = X, (m)| < Z Ay —> 0asn — oo,
m=1 m=1

This givesliminf(Ay,, ), = lim inf(Ayx,, ), and since 1 is anontrivial admissible ideal so 7-lim inf(Ax,, ), =
n—oo 1 n—oo0 n—oo 1

I- lirrlr_1>g1f(ﬂ)(M2)”. Therefore 6 ,;(M1) = 0,:(My).
(iii) Let My N Mz = 0. Then x,,, ., = X, + X, and so
dqrMiUMy) = I-iminf(Ax,, ), = I-liminf(Ay,, +Ax,,),
I-liminf(Ay,, ), + I-liminf(Ay,, ),
Or (M) + 6 4 (Ma).

v
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(10) Since Xy up, = Xagy + Xaty ~ Xagyant, 7 SO

1+ QﬂI(Ml NMy)=1+1- liﬂglf(ﬂXMlan ).

> 1+ I-liminf(Ay,, ), + I-Uminf(Ayx,, ), — 7-Hmsup(Ax,, ).
= 14084 (M)+ 04 (Mp) = 501(My U My)
= O0ar(M1) + 04 (Mp) + 04, (IN \ (My U My))
2 Oqr(Mi) + 0 4r(Mo).
(v)
Mic M, = Z Ay < Z Anm
meMy meMy

= liminf A < liminf A

e meMy e memM,
= J-liminf A < I-liminf 7 -

e meM e meMs,
= 0 (M) <04, (My).
[

Lemma 2.3. Let My and M, be two subsets of IN. Then
(1) 5;,1(1(0) =0, 5ﬂI(N) =1land0 < 5ﬂ1(M,’) <1, fori=1,2,
(ii) IMiAMy| < 00 = 5qr (M) = dar(Mp),

(iii) 53{1(/\/(1) + SﬂI(Mz) > SﬂJ(Ml U My),

(iv) My c M, ﬁ_ Sﬂz(Ml) < SﬂI(MZ),
(V) S (M) < b (M), fori=1,2.

Proof. Proof is similar to that of Lemma 2.2 and so is omitted. O

Note 2.1. If M C Nand 6 4,(M), §4:(M) both exist and equal then their common value is called A -density of M
and is denoted by 6 71(M) (see [18]) i.e. 671 (M) = 8,:(M) = 6.1 (M). In this case we say 6 z: (M) exists.

If a sequence x = {x}re satisfies a property B for each k except for a set of AL -density zero, then we
say that the sequence x satisfies the property B for “almost all k(A?)” or in short “a.a.k(AL)”.

It is clear that, if 04(M) = u for M c IN, then 6 4r(M) = u.
Lemma 2.4. Let My and M, be two subsets of IN such that 6 z: (M) and 647 (M), exist. Then

(1) 0ar(@) =1, 04 (IN)=1and 0 <64 (M) <1fori=1,2,
(ii) IMlAle <0 = 6ﬂI(M1) = 6g{I(M2),
(iii) MiN My =0= 04:(Mi) + 64: (M) = 65: (M1 U M),
(iv) Sr(ME) = 1= §qr (M) for i = 1,2,

2
(v) 5;11(/\/(,-) = Ofor i=12= 6ﬂ1 (U Mi) =0,
i=1
(vi) bqar(Mi) =1fori=1,2= 6z (Mi N M) =1,04:(Mi UM;) = 1.

Proof. (i), (ii), and (iii) directly follow from Lemma 2.2 and Lemma 2.3.

(iv) For i = 1,2, 64r(M;) exists implies 6z (M) exists. Now dar(Mi) = 1 =0, (IN\ M;) = 647 (M) =
1 =671 (M)).
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(v) Let 6 4:1(M;) = 0 for i = 1,2. Then by Lemma 2.3 (iii), we have 6 4 (M1 U My) < 64:(My) + Sar(Mp) =
Oar(My) + 641 (Mz) = 0. Again by Lemma 2.2 (i) and Lemma 2.3 (v) we have 0 < 0,,(M; U M) <
SﬂI(Ml U Mz) <0= Qﬂ[(Ml U Mz) = Sﬂ](Ml U Mz) =0= 6_51(I(M1 U Mz) =0.

(vi) Let 647 (M;) = 1fori = 1,2. Thenby (iv) we have 6 zr (M) = 0, fori = 1,2. Now by (v) § 41 (M;UMS) =0
and so 0 zr(Mi N Mp) = 1.

Again using Lemma 2.2 (v), Lemma 2.3 (i) and (v) we have, 1 = 0 4, (M) < 0 4-(M1 UMp) < Sar(My U
Mj) < 1. Therefore 6 zr(Mi U M) =1. O

Now following Fridy [15], Kostyrko et al. [20], Connor et al. [4] and Giirdal et al. [18] we introduce the
notion of A’ -statistical limit point.

If {x} A1 is a subsequence of a sequence x = {Xi}ren and 047 (M) = 0, then {x} o is said to be a subsequence
of A density zero or an A’ -thin subsequence of x. On the other hand if M does not have A’ density zero
i.e., if either §.4:(M) is a positive number or M fails to have A’ density then {x} is called an A -nonthin
subsequence of x.

Definition 2.3. A real number L is an AL -statistical limit point of a real sequence x = {X}ken, if there exists an
AL -nonthin subsequence of x that converges to L.

Note 2.2. IfI = I, = {K C IN : |K]| < oo}, then the notions of AL -statistical limit point and AL -statistical cluster
point [18] coincide with the notions of A-statistical limit point [4] and A-statistical cluster point [4] respectively.

The set of all A’ -statistical limit points and A’ -statistical cluster points of a sequence x = {x;}ren are
denoted by AJ(7) and T/(Z) respectively.

Theorem 2.1. Let x = {x;}xen be a sequence of real numbers. Then AJ(T) c T{N(T) c T

Proof. Let & € AX(Z). So we get a subsequence {xk,}gen of x with lim x;, = & and Oar(M) # 0, where

q—)OO

M= {k; : g € N}. Let € > 0 be given. Since lim x;, = &, so H = {k; : |xkq - £| > ¢} is a finite set. Hence
q—o0

(keN:|g-E&l<elolk:qe NJ\H

> M=1k:geN}ClkeN:|x-& <efUH.

Now if 64:({k € IN : |xx — &| < €}) = 0, then we have 64 (M) = 0, which is a contradiction. Thus £ is an
Al -statistical cluster point of x. Since & € AJ(Z) is arbitrary, AX(Z) c TA(Z).
Now let ) € TY(Z). Then for any ¢ > 0,

6ﬂz({ke]N:|xk—n|<e}¢0

= JI-lim age # 0
T e
= 7}1_1)210 a,c # 0 [since J is an admissible ideal]
Jve—nl<e
= OalkeN:|xg-nl<eh)#0
= nelfl

Therefore, A7) cTI) cTd. O

Theorem 2.2. Ifx = {xi}ren and y = {yi) ke are two sequences of real numbers such that 5 z: ({k € IN : xx # yi}) =0,
then AQNT) = AJNT) and TL(T) = D).
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Proof. Let C € T{{(Z) and ¢ > 0 be given. Then {k € N : |x; — {| < ¢} does not have A’-density zero. Let
H=1{keN:x =y AsOgqr(H) =1s0{keIN:|x -l <e}nH does not have &Zlf—density zero. Thus
Ce Ff([). Since C € TY(Z) is arbitrary, so ['Y'(7) F*f(f). By symmetry we have F?(I) c T{(7). Hence
I I“yﬂ(I).

Alsoletn € AJ{(Z). Then x has an A’ -nonthin subsequence {xi, }sen that converges ton. Let Q=1{k;eN:
q € N}. Since 647({k; € N @ x, # yx,}) = 0, we have d4:(tk; € N : xi, = yi,}) # 0. Therefore from the latter

set we have an A’ -nonthin subsequence {y}q of {y}q that converges to n. Thus 1 € Af‘(] ). Asn e AJ(T)is
arbitrary, so A7) c A“yﬂ([ ). By similar way we get AJ/(7) D A“yﬂ(f ). Hence AM(T) = Af,q ). O

We now investigate some topological properties of the set T(7) of all A’ -statistical cluster points of x.
Theorem 2.3. Let C C R be a compact set and C NT{N(T) = 0. Then the set {k € N : x € C} has AL -density zero.
Proof. Since CNTY(T) = 0, so for every a € C there exists a positive real number y = y(a) such that

Oar(fk € N : xx — a < y(a)}) = 0.

Let B(a; y(a)) = {z€ R:|z—al < y(a)}. Then the family of open sets {B(«; y(«)) : @ € C} form an open
cover of C. AsC is a compact subset of IR so there exists a finite subcover of the open cover {B(a; y(a)) : a € C}

for C, say {B(aj;y(aj) : j=1,2,..,7}. ThenC C LrJ B(aj; y(a)) and also
j=1

Oar(fke N : |xx —ajl <y(ap)}) =0forj=1,2,..,r

Now since A is a non-negative regular summability matrix so there exists an Ny € IN such that for each

n > Ny, we get
.
Yos), ),

xeC j=1 xxeB(aj;y(aj))

and by the property of 7-convergence,

I—Ai_r)x;ZankS I-lim Z i = 0.

r
xxeC j=1 xx€B(aj;y(aj))
This gives 04:((ke N:x, € C}) =0. O

Theorem 2.4. Let x = {xi}ren be a sequence in R. If x has a bounded AX -nonthin subsequence, then the set T'(I)
is a nonempty closed set.

Proof. Let {xk,},.cn be @ bounded A’ -nonthin subsequence of x and C be a compact set such that x, € C
for each m € N. Let Q = {ky, : m € N}. Then 6 4:(Q) # 0. Now if T(T) = 0, then C N TH(7) = 0 and then by
Theorem 2.3 we get

6ﬂ1({k eN:x € C}) =0.

Now since A is a non-negative regular summability matrix so there exists an Ny € IN such that for each

n > Ny, we get
2 s ) o

ke@ x€C

50 047(Q) = 0, which is a contradiction. Therefore I'/'(1) # (.

Now to prove I'Y'(7) is a closed set in R, let  be a limit point of TY(Z). Then for all ¢ > 0, B(C;€) N
TAI)\{TH) # 0. Let n € B(C;¢) N (TX(T) \ {C}). Now we can choose ¢’ > 0 so that B(n; ¢’) C B(C; ). Since
nel{{(T)so

Oar(fk e N:|xy—nl<e'}) #0
= Ogr(fkeN:|x—Cl <e})#0.
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Therefore ¢ € TA(Z). O

Definition 2.4. (a) A sequence x = {x}yen 0f real numbers is said to be AL -statistically bounded above if, there
exists Ly € R such that o zr({k € IN : x, > L1}) = 0.

(b) A sequence x = {xi}ren Of real numbers is said to be AL -statistically bounded below if, there exists L, € R such
that 5:7(.7({1( eN:x < Lz}) =0.

Definition 2.5. [18] A sequence x = {Xlyen 0f real numbers is said to be A -statistically bounded if, there exists
L > 0 such that for all > 0, the set

neN: Y au>plel
x> L
ie., 6ﬂ]({k €N : |xi| > L}) =0.

Note 2.3. (i) Definition 2.5 can be restated as follows: A sequence x = {Xilken Is said to be AL -statistically
bounded if there exists a compact set C in R such that for all B > 0, the set {n € N : Y, a, = B} € 7 ie,

xx¢C
631{]({]( eIN:x; ¢ C}) =0.

(i) If I = I = {M CIN: |M]| < oo}, then the notion of AL -statistical boundedness coincide with the notion of
A-statistical boundedness.

Corollary 2.1. If x = {x}ie is AL -statistically bounded, then the set T/(T) is nonempty and compact.

Proof. Let C be a compact set in R such that 047(fk € IN : x, ¢ C}) = 0. Then 64:(fk e N: x, € C}) =1
and this implies that C contains a bounded A’ -nonthin subsequence of x. So by Theorem 2.4, T(7) is a
nonempty closed set.

Now to show T'//(7) is compact, it is sufficient to prove that I'Y/(Z) c C. If possible let us assume that
CeTY{(Z) but C ¢ C. Since C is compact, so there exists ¢ > 0 such that B(;¢) N C = 0. Now since A is a
non-negative regular summability matrix so there exists an Ny € N such that for each n > Ny, we get

Y, as Yo

xk€B(;¢) xgC

Therefore 6 47 ({k € N : |xx — (| < €}) = 0, which is a contradicts that C € T#(7). Hence I'(7) c C. Therefore
the set I'7(7) is nonempty and compact. [J

Theorem 2.5. Let x = {x}yen be an AL -statistically bounded sequence. Then for any & > 0 the set
{ee N a@A(I), %) 2 €

has AL -density zero, where d(T{N(T), xi) = irﬂlf |z — x¢|-the distance from xy. to the set TA(T).
zeTA(T)

Proof. Let C be a compact set such that §.4:(fk € N : x; ¢ C}) = 0. Then by Corollary 2.1, we get I'/(7) is
nonempty and I'{(7) c C.

If possible, let 6 47 ({k € IN : d(T{N(T), xx) > €'}) # 0 for some ¢’ > 0. We define BT{'(Z);¢') = {z € R :
dT(T),z) < ¢’} and let H = C\ B(TZ(I);¢’). Then H is a compact set which contains an A’ -nonthin
subsequence of x. Then by Theorem 2.3, H N T(Z) # 0, which is absurd, since I'Y'(Z) c B(I'A(2); ¢).
Therefore, 64 ({k € N : d([{(T), x) > €}) = 0 for every ¢ > 0. [
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3. Condition APAIO

The additive property for sets of zero natural density (APO) was introduced by Freedman et al. [13]
and they further extended it for sets of zero A-density. Here we introduce the additive property for sets of
zero A’ density (APALO).

Definition 3.1. (Additive property for AL -density zero sets). The AL -density 5 r is said to satisfy the condition
APALO if given any countable collection of mutually disjoint sets {Gp}men in N with §.4:(Gm) = 0 for all m € N,

there exists a collection of sets {Hy}men in IN such that )QmAV‘(m| < oo foreach m € N and 6 7:(H = \J Hy) = 0.
m=1
Theorem 3.1. A sequence x = {xi}ken of real number is A -statistically convergent to L implies there exists a subset
W of N with 6 z:(W) = 1 and limx, = L if and only if 541 has the property APALO.
keWw

k—oo

Proof. Suppose any sequence x = {Xy}en is AL -statistically convergent to L implies there exists a subset W
of N with 6 4:(W) = 1 and lim x; = £. We have to show 6 4: has the property APAZO.
keW

k—oo

Let {Gn}men be a countable collection of mutually disjoint sets in IN with 6 4z (G) = 0, for every m € IN.
Let us construct a sequence {xi}ren as follows

1 ifke G,
%“=Y0  ifk¢ U G
m=1

Let € > 0 be given. Then there exists j € IN such that L < ¢. Then we have
{kENIXkZS}Cgl UQQU...UQj.

Since 047(Gm) =0,form =1,2, ..., j, weget S 4r({k € IN : x; > €}) = 0. So {x¢}ren is ﬂf—statistically convergent
to 0. Then by the assumption there exists a set H C IN, where H = IN\ ‘W, 6 4 (H) = 0 such that lim x; = 0.

keN\H

k—co

Therefore for each m = 1,2, ... we have n,, € IN such that n,,.1 > n,, and x; < % forall k > n,,, k € W. Thus
if xp > % and k > n,, thenk € H.
Set H, =ltke N:ke Gy k=>nunUfke N:keH, Tt < k < #ims1}, m € N. Clearly for

all m € N we have |QmA7{,,,| < 00. We now show that H = U H,,. Fix m € N and let k € H,,. If

m=1
ke{je N:jeH,ny < j<nya), then we are done. If k > 1,1 and k € G, we have x, = L and so k € H.
Therefore H,,, c H for all m € IN.
Again letk € H. Then there exists u € IN such that n, < k < n,41, which implies k € H,,. Therefore

H c U H,,. Thus H = U H,y and 6 71 (H = U H,u) = 0. This proves that 6 4 has the property APALO.

m=1
Conversely suppose that 04: has the property APALO. Let x = {xJkenw be a sequence such that x is
AL -statistically convergent to £. Then for each ¢ > 0, the set {k € IN : |xx — L] > ¢} has AL- -density zero.
LetGi ={keN:|x—-L>1},G, ={keN: Ll > | — L] > %} form > 2, m € N. Then {Gu}men is
a sequence of mutually disjoint sets with 0 47(G,) = 0 for every m e IN. Then by the assumption there
exists a sequence of sets {H}men with |QmA7-(m( < ooand 47 (H = U H,,) = 0. We claim that lim x; = L.
=1

keN\H

k—oo

To establish our claim, let § > 0 be given. Then there exists a positive integer j such that ].+—1 < B. Then

j+1
ke N:|x—-L2plC U Gw. Now since |gmA7-(m| < oo, foreachm =1,2,..., j+1, there exists n” € N such

that U G N (', 00) = U H,, N (n’,00). Now if k ¢ H, k> n’, thenk ¢ U ‘H,, and consequently k ¢ U G,

m=1

Wthh 1mphes lxx — L] < ﬁ This completes the proof. [
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Theorem 3.2. If 6 41 has the property APALO, then for any sequence x = {Xlken Of real numbers there exists a
sequence Y = {Yxlren such that L, = TA(T) and the set {k € N : x; # Yk} has AL -density zero.

Proof. We first prove that T/(Z) C L,. Let a € T{(Z). So from Theorem 2.1 we have a € T'Y!. Then A-density
of the set

(ke IN:|xx—a| < ¢}

is not zero, for every € > 0. So there exists a subsequence {x}4 of x that converges to a. So, a € L. Hence
A7) c L.

If TA(Z) = L, then the proof is trivial, we take y = {yilten = {Xk}kenw = x. Now suppose that A7)
is a proper subset of L,. Let C € L, \ Ff([ ). Choose an open interval J; with center at C such that
dar(fk € N : x¢ € Jc}) = 0. Then the collection of all such J:’s is an open cover of L, \ T(7) and by
the Lindeldf covering lemma there exists a countable subcover, say {Jc, bmen Of {Jc : C € Ly \ T{(Z)} for
Ly \ TA(Z). Since each (,, is a limit point of x, consequently each J;, contains an A”-thin subsequence of
x. Let J; = (ke N:x € ]Cl}r]m ={kelN:x€ ]Cm} \ (]1 U ..U ]m,l),\v’m > 2,m € N. Then {]m}me]N isa
sequence of mutually disjoint sets with 047 (J,) = 0, Ym € IN. Since 64 has the property APALQ, so there
exists a sequence of sets {H,,}uen such that |J,,AH,,| < co for each m € N and 64:(H = U H,) = 0. Then

m=1
Jm \ H is a finite set and so {k € N : x; € J;,,} \ H is a finite set for each m € IN. Let N\ H = {m; < my < ...}
and we define a sequence y = {yi}ken as follows

| o, ifkeH,
Ye=3 x ifke N\ H.

Obviously the set {k € N : x; # y;}(C H) has A’ -density zero and by Theorem 2.2 we have I'Y'(7) = Ff{(f ).

Now we show that L, = TJY(Z). If possible, let T}(Z) & Ly and 1 € L, \ Ty'(Z). Then there exists an
AL -thin subsequence of y converging to 7.

Now we claim that {y}4 has no limit point which is not an A’ -statistical cluster point of y.

Since {y : k € H} C {yx : k € N\H} = {x, : k € H} C {xx : k € N\H}. Now there does not exist any limit
point of {x}n4 which is not an A’ -statistical cluster point of x. For this let y be a limit point of {x}n¢s which
is not an \A” -statistical cluster point of x. So there is an AL -thin subsequence {x}g of {x}n\¢ converging to
7. Now {J¢, Jmen covers Ly \ T{(Z) so it covers Ly, \T7(1). Then K\ M C {k € N : x; € J } \ H, where
M is a finite subset of N, for some (; € Ly \ I'2/(T), a contradiction.

So there does not exist any limit point of {x}ny¢ which is not an A’ -statistical cluster point of x and
so there does not exist any limit point of {y}n# which is not an A7 -statistical cluster point of y and this
gives {y}y has no limit point which is not an A’ -statistical cluster point of y. Therefore no such 7 can exist.
Hence L, = [J(7). Consequently L, = I{(Z). O

Theorem 3.3. Suppose x = {Xi}kew is a sequence of real numbers and 641 satisfies the property APALO. Then

Xk ENy if and only if there exists a sequence {gi}xen 50 that xi = gy for a.ak(A") and g — L.

Proof. Let x At L. So by Theorem 3.1, there is a set W = {g1 < q» < ... < gy < ..} C N such that
O0qa7(W)=1and lim x,, = L.

Now we define a sequence {gi}xen as follows:

_ Xk, ifkeW
=\ £, ifkegW.

Then clearly, g — £ and also 647 (fk € N : xi # gi}) = 0 i.e., x, = gy for a.a.k(AL).
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Conversely, let there exist a sequence {gi}xen such that x; = g for a.a.k(A') and g = L. Lete > 0be
given. Since A is non-negative regular summability matrix so there exists an Ny € IN such that for each

n > Ny, we have
Y, kS Y awt Y o

[xx—=Ll>e Xk# Gk Igr L|Zé-

As {gi}ken is convergent to L, so the set {k € N : (gk - £| > ¢} is finite and hence 6 47 ({k € IN : |gk - £| >e)) =
0.
Thus,

Sar(tk € Nl — £ > ¢})
<Sar(fk e N:x # ged) + 0 ar(fk € N : g — L] > €}) = 0.

Therefore, 6 47 ({k € IN : |xx — L] > €}) = 0. Hence the sequence x is AL -statistically convergentto L. O

Theorem 3.4. Suppose x = {xlkew is a sequence of real numbers and 64r satisfies the property APALO. If
I—stﬂ—%im xp = C, then AJN(T) =TH(T) = {C}.

Proof. Let I-sty{-]}im x¢ = C. So for every € > 0, 4:(fk € N : |xx — (| < €}) = 1. Therefore, C € T(1). If

possible, let there exist € TY/(Z) such that C # n. Let |C - 17| = 0. Then ¢ > 0. Since (,n € TY/(Z), so

6ar(@) # 0and 641 (H) # 0, where G = (k€ N : |x; - (| < §} and H = {k € N : |xx — 5| < §}. Since C # 1,
so GNH =0 and so ‘H C G°. Since I-sty- %im X = C, 50 04:(G°) = 0. Hence 64:(H) = 0, a contradiction.

Therefore, I'7(7) = {C}.
As T-stg- ]}im xx = (, so by Theorem 3.3, we have C € AJ/(Z). Then by Theorem 2.1, we get A7) =

A7) =1{C. O

4. A’ -statistical analogous of Completeness Theorems

In this section, following Fridy [15] and Malik et al. [24] we formulate A -statistical analogue of the
theorems concerning sequences that are equivalent to the completeness of RR.

We first consider a sequential version of the least upper bound axiom (in IR), namely, Monotone sequence
Theorem: every monotone increasing sequence of real numbers which is bounded above, is convergent.
The following result is an A’ -statistical analogue of that Theorem.

Theorem 4.1. Let x = {xy}xew be a sequence of real numbers and Q = {k € N : xx < Xgq1). If 047(Q) = 1 and x is
bounded above on Q, then x is A -statistically convergent.

Proof. Since x is bounded above on @, so let L be the least upper bound of the range of {x}req- Then we
have

D) <L Vke@

(ii) for a pre-assigned ¢ > 0, there exists a natural number ky € Q such that x;, > L —e.

Now letk € Qand k > kyp. Then L—-¢ < x, <x < L+e¢e. ThusQnike N :k >k} clkeN:
L —¢ < xp < L+ ¢). Since the set on the left hand side of the inclusion is of AL -density 1, we have
oarfke N: L—e<x, < L+¢}))=1ie, g (fk € N : |xx— L] = ¢}) = 0. Hence x is ﬂj—statistically
convergent to L. [J

Theorem 4.2. Let x = {x}kew be a sequence of real numbers and Q = {k € N : xx 2 X1} If 047(Q) = 1 and x is
bounded below on Q, then x is AL -statistically convergent.

Proof. The proof is similar to that of Theorem 4.1 and so is omitted. [J
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Note 4.1. (a) In the Theorem 4.1 if we replace the criteria that ‘x is bounded above on Q by ‘x is A -statistically
bounded above on Q' then the result still holds. Indeed if x is A’ -statistically bounded above on Q, then there exists
L € Rsuch that 4r((k € Q : xx > L) =0ie, dqz(fk € Q:xx <L) =1 Let S=1{keQ:xx <L}and
L' = suplx; : k € S}. Then

(i) xy <L forallke S

(ii) for any & > 0, there exists a natural number ko € S such that xx, > L — . Then proceeding in a similar way
as in Theorem 4.1 we get the result.

(b) Similarly, In the Theorem 4.2 if we replace the criteria that ‘x is bounded below on Q' by ‘x is A’ -statistically
bounded below on Q' then the result still holds.

Another completeness result for R is the Bolzano-Weierstrass Theorem, which tells us that, every
bounded sequence of real numbers has a cluster point. The following result is an A’ -statistical analogue
of that result.

Theorem 4.3. Suppose x = {xilkeN is a sequence of real numbers and §5: has the property APALO. If x has a
bounded A’ -nonthin subsequence, then x has an AL -statistical cluster point.

Proof. Using Theorem 3.2, we have a sequence y = {yi}ren such that L, = T (7) and 6 4:(k € N : x, =
y}) = 1. Let {x}q be the bounded AL -nonthin subsequence of x. Then §4r(fk € N : xx = y) N Q) # 0.
Thus y has a bounded A’ -nonthin subsequence and hence by Bolzano-Weierstrass Theorem, L, # 0. Thus
) +0. O

Corollary 4.1. Suppose 641 has the property APALO. If x is a bounded sequence of real numbers, then x has an
AL -statistical cluster point.

The next result is an A7 -statistical analogue of the Heine-Birel Covering Theorem.

Theorem 4.4. Suppose 6 41 has the property APAL O. If x = {xylke is a bounded sequence of real numbers, then it
has an AL -thin subsequence {x}q such that {x; : k € N\ Q U T(T) is a compact set.

Proof. Using Theorem 3.2, we have a sequence y = {yxhen such that L, = A7) and 647 (fk € N @ x =
y) = 1. Let Q = {k € N : x¢ # yi}. Then 54:(Q) = 0. Therefore {x}q is an A”-thin subsequence of x and
(ke N\QUT(T) = {yx : ke N}U L. Since the set on the right hand side is compact, so the set on the
left hand side is also compact. This completes the proof. [
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