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Abstract. In this paper using a non-negative regular summability matrix A and a non trivial admissible
ideal I of subsets of N we have introduced the notion of AI-statistical limit point as a generalization
of A-statistical limit point of sequences of real numbers. We have also studied some basic properties
of the sets of all AI-statistical limit points and AI-statistical cluster points of real sequences including
their interrelationship. Also introducing additive property of AI-density zero sets we have established
A
I-statistical analogue of some completeness theorems of R.

1. Introduction and background:

The notion of statistical convergence of real sequences was introduced by Fast [12] (also independently
by Schoenberg [33]) as a generalization of the usual notion of convergence, using the notion of natural
density of subsets ofN, the set of all natural numbers. A set B ⊂N is said to have natural density d(B) if

d(B) = lim
n→∞

|B(n)|
n
,

where B(n) = {m ≤ n : m ∈ B} and |B(n)| denotes the number of elements in B(n). Note that one can write
d(B) = lim

n→∞
(C1χB)n, where C1 = (C, 1) is the Cesaro matrix of order 1 and χB is the characteristic function of

B.
A sequence x = {xk}k∈N of real numbers is said to be statistically convergent to ξ ∈ R, if for every ϵ > 0,

d(B(ϵ)) = 0, where B(ϵ) = {k ∈ N : |xk − ξ| ≥ ϵ}. Study in this line turned out to be one of the active
research area in summability theory after the works of Salat [29] and Fridy [14]. Applying this notion of
statistical convergence, the concepts of statistical limit point and statistical cluster point of real sequences
were introduced by Fridy [15].

If {xk j } j∈N is a subsequence of a real sequence x = {xk}k∈N and Q = {k j : j ∈ N}, then we use the notation
{x}Q to denote the subsequence {xk j } j∈N. In case d(Q) = 0, {x}Q is called a thin subsequence of x. On the
other hand {x}Q is called a nonthin subsequence of x if d(Q) , 0, where d(Q) , 0 means that either d(Q) is a
positive number or Q fails to have natural density.

A real number p is called a statistical limit point of a real sequence x = {xk}k∈N, if there exists a nonthin
subsequence of x that converges to p.
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A real number q is called a statistical cluster point of a real sequence x = {xk}k∈N, if for every ϵ > 0 the
set {k ∈N :

∣∣∣xk − q
∣∣∣ < ϵ} does not have natural density zero.

More primary work on this convergence can be found in [1–3, 16, 28, 34], where many more references
are mentioned.

In 1981, Freedman and Sember [13] generalized the concept of natural density to the notion ofA-density
by replacing the Cesaro matrix C1 with an arbitrary non-negative regular summability matrixA. AnN×N
matrixA = (ank), ank ∈ R is said to be a regular summability matrix if for any convergent sequence x = {xk}k∈N

of real numbers with limit ξ, lim
n→∞

∞∑
k=1

ankxk = ξ, andA is called non-negative if ank ≥ 0,∀n, k. The well-known

Silvermann- Toepliz’s theorem asserts that anN ×N matrix A = (ank), ank ∈ R is regular if and only if the
following three conditions are satisfied:

(i) ∥A∥ = sup
n

∑
k
|ank| < ∞,

(ii) lim
n→∞

ank = 0 for each k,

(iii) lim
n→∞

∑
k

ank = 1.

Throughout the paper we takeA = (ank) as anN ×N non negative regular summability matrix.
For a non negative regular summability matrixA = (ank), a set B ⊂ N is said to haveA-density δA(B),

if
δA(B) = lim

n→∞

∑
k∈B

ank.

Using this notion of A-density, the notion of statistical convergence was extended to the notion of A-
statistical convergence by Kolk [19], which included the ideas of statistical convergence [12, 33], λ-statistical
convergence [25] or lacunary statistical convergence [17] as special cases.

A sequence x = {xk}k∈N of real numbers is said to be A-statistically convergent to ξ if for every ϵ > 0,
δA(B(ϵ)) = 0, where B(ϵ) = {k ∈N : |xk − ξ| ≥ ϵ}.

Using this notion ofA-statistical convergence, the concepts of statistical limit point and statistical cluster
point of real sequences were extended to the notions of A-statistical limit point and A-statistical cluster
point by Connor et al. [4].

If {x}Q is a subsequence of a sequence x = {xk}k∈N and δA(Q) = 0, then {x}Q is called anA-thin subsequence
of x. On the other hand {x}Q is called anA-nonthin subsequence of x if δA(Q) , 0, where δA(Q) , 0 means
that either δA(Q) is a positive number or Q fails to haveA-density.

A real number p is called an A-statistical limit point of a real sequence x = {xk}k∈N, if there exists an
A-nonthin subsequence of x that converges to p.

A real number q is called an A-statistical cluster point of a real sequence x = {xk}k∈N, if for every ϵ > 0
the set {k ∈N :

∣∣∣xk − q
∣∣∣ < ϵ} does not haveA-density zero.

If ΛAx , ΓAx and Lx denote the set of all A-statistical limit points, the set of all A-statistical cluster points
and the set of all ordinary limit points of x, then clearly ΛAx ⊂ ΓAx ⊂ Lx

More primary works on this convergence can be found in [8, 9, 18, 25], where many more references are
mentioned.

The concept of statistical convergence was generalized to I-convergence by Kostyrko et al. [20] based
on the notion of an ideal I of subsets ofN.

A non-empty family I of subsets of a non empty set S is called an ideal in S if I is hereditary ( i.e.
A ∈ I,B ⊂ A⇒ B ∈ I ) and additive ( i.e. A,B ∈ I ⇒ A ∪ B ∈ I).

An ideal I in a non-empty set S is called non-trivial if S < I and I , {∅}.
A non-trivial ideal I in S(, ∅) is called admissible if {z} ∈ I for each z ∈ S.
Throughout the paper we take I as a non-trivial admissible ideal inN unless otherwise mentioned.
A sequence x = {xk}k∈N of real numbers is said to be I-convergent to ξ if for any ϵ > 0, {k ∈N : |xk − ξ| ≥

ε} ∈ I. In this case we write I- lim
k→∞

xk = ξ.

More works in this line can be seen in [7, 21–23, 26, 27] and many others.
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Recently in 2012 using the notion of I-convergence, the concept of A-statistical convergence was
extended to AI-statistical convergence by Savas et al. [31], which included the ideas of I-statistical
convergence [5], Iλ-statistical convergence [30] or I-lacunary statistical convergence [5] as special cases.
More recent works in this line can be seen in [10, 11, 32] where many references are mentioned.

If A = (ank) is a N ×N non negative regular summability matrix, then a sequence x = {xk}k∈N of real
numbers is said to beAI-statistically convergent to ξ if for any ϵ > 0 and δ > 0, {n ∈ N :

∑
k∈B(ϵ)

ank ≥ δ} ∈ I,

where B(ϵ) = {k ∈ N : |xk − ξ| ≥ ϵ}. In this case we write I-stA- lim
k→∞

xk = ξ or simply xk
A
I-st
−−−−→ ξ. Note that

if I = I f in = {K ⊂ N : |K| < ∞}, then the notions ofAI-statistical convergence coincide with the notion of
A-statistical convergence [19].

Also in [18], the notion ofAI-statistical cluster point was introduced as a generalization ofA-statistical
cluster point, via the notion ofAI-density. A subsetM ofN is said to haveAI-density δAI (M), if

δAI (M) = I − lim
n→∞

∑
k∈M

ank.

Using the notion ofAI-density, the definition ofAI-statistical convergence can be restated as follows:
A sequence x = {xk}k∈N of real numbers is said to be AI-statistically convergent to ξ if for any ϵ > 0,
δAI (B(ϵ)) = 0, where B(ϵ) = {k ∈N : |xk − ξ| ≥ ϵ}.

A real number p is said to be an AI-statistical cluster point of a real sequence x = {xk}k∈N, if for each
ϵ > 0, δAI (B(ϵ)) , 0, where B(ϵ) = {k ∈ N : |xk − p| < ϵ}. Note that δAI (B(ϵ)) , 0 means, either δAI (B(ϵ)) > 0
orAI-density of B(ϵ) does not exist.

In this paper using the concept ofAI-density we have extended the concept ofA-statistical limit point
of sequences of real numbers to AI-statistical limit point. We have established relationship among AI-
statistical limit points, AI-statistical cluster points and A-statistical cluster points of a sequence of real
numbers. We also have studied some basic properties of the sets of all AI-statistical limit points and AI-
statistical cluster points of sequences of real numbers not done earlier. Also we have introduced additive
property of AI-density zero sets and established AI-statistical analogue of some completeness theorems
of R.

2. AI -statistical limit points andAI -statistical cluster points

In this section we introduce the notion ofAI-statistical limit point and discuss some basic properties of
the set of all AI-statistical limit points and the set of all AI-statistical cluster point of real sequences. For
this we first study some properties ofAI-density not done earlier.

Throughout the paperN,R denote the set of all natural numbers, the set of all real numbers respectively,
x denotes a real sequence {xk}k∈N and Lx denotes the set of all ordinary limit points of the sequence x. Also
I denotes a non-trivial admissible ideal in N and A = (ank) denotes an N × N non negative regular
summability matrix unless otherwise mentioned.

Following the line of Freedman et al. [13] and Kostyrko et al. [20] we first introduce the concepts of
lowerAI-density and upperAI-density associated with a lowerAI-density of a setM ⊂N.

Definition 2.1. A setM ⊂N is said to have lowerAI-density δ
AI

(M) if

δ
AI

(M) = I- lim inf
n→∞

(AχM)n = I- lim inf
n→∞

∑
m∈M

anm.

Definition 2.2. The upper AI-density δ̄AI (M) associated with a lower AI-density δ
AI

(M) of a set M ⊂ N is
defined by

δ̄AI (M) = 1 − δ
AI

(N \M).

Lemma 2.1. δ̄AI (M) = I- lim sup
n→∞

(AχM)n = I- lim sup
n→∞

∑
m∈M

anm.
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Proof. Let 1̄ = (1, 1, 1, ...) and J = (ink) be anN ×Nmatrix such that ink = 1 for n = k and 0 otherwise. Since
χ
N\M
= 1 − χ

M
and I- lim

n→∞
{(J.1̄)n − (A.1̄)n} = 0 so

δ̄AI (M) = 1 − δ
AI

(N \M) = 1 − I- lim inf
n→∞

(Aχ
N\M

)n

= 1 − I- lim inf
n→∞

( ∑
k∈N\M

ank

)
= 1 − I- lim inf

n→∞

(∑
k∈N

ank −
∑
k∈M

ank

)
= I- lim sup

n→∞

(
1 −

∑
k∈N

ank +
∑
k∈M

ank

)
= I- lim sup

n→∞
{(J.1̄)n − (A.1̄)n + (Aχ

M
)n}

= I- lim sup
n→∞

(Aχ
M

)n = I- lim sup
n→∞

∑
m∈M

anm.

Lemma 2.2. LetM1 andM2 be two subsets ofN. Then

(i) δ
AI

(∅) = 0, δ
AI

(N) = 1 and 0 ≤ δ
AI

(Mi) ≤ 1, f or i = 1, 2,
(ii) |M1∆M2| < ∞⇒ δAI (M1) = δ

AI
(M2),

(iii) M1 ∩M2 = ∅ ⇒ δAI (M1) + δ
AI

(M2) ≤ δ
AI

(M1 ∪M2),
(iv) δ

AI
(M1) + δ

AI
(M2) ≤ 1 + δ

AI
(M1 ∩M2),

(v) M1 ⊂ M2 ⇒ δAI (M1) ≤ δ
AI

(M2).

Proof. (i) It is clear that δ
AI

(∅) = 0 and δ
AI

(N) = 1. Now for i = 1, 2

0 ≤
∑
k∈Mi

ank ≤
∑
k∈N

ank ⇒ 0 ≤ lim inf
n→∞

∑
k∈Mi

ank ≤ lim inf
n→∞

∑
k∈N

ank

⇒ 0 ≤ I- lim inf
n→∞

∑
k∈Mi

ank ≤ I- lim inf
n→∞

∑
k∈N

ank

⇒ 0 ≤ I- lim inf
n→∞

∑
k∈Mi

ank ≤ 1⇒ 0 ≤ δ
AI

(Mi) ≤ 1.

(ii) Let |M1∆M2| < ∞. Then ∃ an N0 ∈N such that χ
M1

(m) = χ
M2

(m) except m = 1, 2, ...,N0. So

∣∣∣(Aχ
M1

)n − (Aχ
M2

)n

∣∣∣ = ∣∣∣∣∣∣∣∑m

anmχM1
(m) −

∑
m

anmχM2
(m)

∣∣∣∣∣∣∣
≤

N0∑
m=1

anm

∣∣∣χ
M1

(m) − χ
M2

(m)
∣∣∣ ≤ N0∑

m=1

anm −→ 0 as n→∞.

This gives lim inf
n→∞

(Aχ
M1

)n = lim inf
n→∞

(Aχ
M2

)n and sinceI is a nontrivial admissible ideal soI- lim inf
n→∞

(Aχ
M1

)n =

I- lim inf
n→∞

(Aχ
M2

)n . Therefore δ
AI

(M1) = δ
AI

(M2).

(iii) LetM1 ∩M2 = ∅. Then χ
M1∪M2

= χ
M1
+ χ

M2
and so

δ
AI

(M1 ∪M2) = I- lim inf
n→∞

(Aχ
M1∪M2

)n = I- lim inf
n→∞

(Aχ
M1
+Aχ

M2
)n

≥ I- lim inf
n→∞

(Aχ
M1

)n + I- lim inf
n→∞

(Aχ
M2

)n

= δ
AI

(M1) + δ
AI

(M2).
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(iv) Since χ
M1∪M2

= χ
M1
+ χ

M2
− χ

M1∩M2
, so

1 + δ
AI

(M1 ∩M2) = 1 + I- lim inf
n→∞

(Aχ
M1∩M2

)n

≥ 1 + I- lim inf
n→∞

(Aχ
M1

)n + I- lim inf
n→∞

(Aχ
M2

)n − I- lim sup
n→∞

(Aχ
M1∪M2

)n

= 1 + δ
AI

(M1) + δ
AI

(M2) − δ̄AI (M1 ∪M2)
= δ

AI
(M1) + δ

AI
(M2) + δ

AI
(N \ (M1 ∪M2))

≥ δ
AI

(M1) + δ
AI

(M2).

(v)

M1 ⊂ M2 ⇒

∑
m∈M1

anm ≤
∑

m∈M2

anm

⇒ lim inf
n→∞

∑
m∈M1

anm ≤ lim inf
n→∞

∑
m∈M2

anm

⇒ I- lim inf
n→∞

∑
m∈M1

anm ≤ I- lim inf
n→∞

∑
m∈M2

anm

⇒ δ
AI

(M1) ≤ δ
AI

(M2).

Lemma 2.3. LetM1 andM2 be two subsets ofN. Then

(i) δ̄AI (∅) = 0, δ̄AI (N) = 1 and 0 ≤ δ̄AI (Mi) ≤ 1, f or i = 1, 2,
(ii) |M1∆M2| < ∞⇒ δ̄AI (M1) = δ̄AI (M2),

(iii) δ̄AI (M1) + δ̄AI (M2) ≥ δ̄AI (M1 ∪M2),
(iv) M1 ⊂ M2 ⇒ δ̄AI (M1) ≤ δ̄AI (M2),
(v) δ

AI
(Mi) ≤ δ̄AI (Mi), for i = 1, 2.

Proof. Proof is similar to that of Lemma 2.2 and so is omitted.

Note 2.1. IfM ⊂N and δ
AI

(M), δ̄AI (M) both exist and equal then their common value is calledAI-density ofM
and is denoted by δAI (M) (see [18]) i.e. δAI (M) = δ

AI
(M) = δ̄AI (M). In this case we say δAI (M) exists.

If a sequence x = {xk}k∈N satisfies a property P for each k except for a set of AI-density zero, then we
say that the sequence x satisfies the property P for “almost all k(AI)” or in short “a.a.k(AI)”.

It is clear that, if δA(M) = u forM ⊂N, then δAI (M) = u.

Lemma 2.4. LetM1 andM2 be two subsets ofN such that δAI (M1) and δAI (M)2 exist. Then

(i) δAI (∅) = 1, δAI (N) = 1 and 0 ≤ δAI (Mi) ≤ 1 for i = 1, 2,
(ii) |M1∆M2| < ∞⇒ δAI (M1) = δAI (M2),

(iii) M1 ∩M2 = ∅ ⇒ δAI (M1) + δAI (M2) = δAI (M1 ∪M2),
(iv) δAI (Mc

i ) = 1 − δAI (Mi) for i = 1, 2,

(v) δAI (Mi) = 0 for i = 1, 2⇒ δAI
(

2⋃
i=1
Mi

)
= 0,

(vi) δAI (Mi) = 1 for i = 1, 2⇒ δAI (M1 ∩M2) = 1, δAI (M1 ∪M2) = 1.

Proof. (i), (ii), and (iii) directly follow from Lemma 2.2 and Lemma 2.3.

(iv) For i = 1, 2, δAI (Mi) exists implies δAI (Mc
i ) exists. Now δ̄AI (Mi) = 1 − δ

AI
(N \ Mi) ⇒ δAI (Mc

i ) =
1 − δAI (Mi).
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(v) Let δAI (Mi) = 0 for i = 1, 2. Then by Lemma 2.3 (iii), we have δ̄AI (M1 ∪M2) ≤ δ̄AI (M1) + δ̄AI (M2) =
δAI (M1) + δAI (M2) = 0. Again by Lemma 2.2 (i) and Lemma 2.3 (v) we have 0 ≤ δ

AI
(M1 ∪ M2) ≤

δ̄AI (M1 ∪M2) ≤ 0⇒ δ
AI

(M1 ∪M2) = δ̄AI (M1 ∪M2) = 0⇒ δAI (M1 ∪M2) = 0.

(vi) Let δAI (Mi) = 1 for i = 1, 2. Then by (iv) we have δAI (Mc
i ) = 0, for i = 1, 2. Now by (v) δAI (Mc

1∪M
c
2) = 0

and so δAI (M1 ∩M2) = 1.
Again using Lemma 2.2 (v), Lemma 2.3 (i) and (v) we have, 1 = δ

AI
(M1) ≤ δ

AI
(M1 ∪M2) ≤ δ̄AI (M1 ∪

M2) ≤ 1. Therefore δAI (M1 ∪M2) = 1.

Now following Fridy [15], Kostyrko et al. [20], Connor et al. [4] and Gürdal et al. [18] we introduce the
notion ofAI-statistical limit point.

If {x}M is a subsequence of a sequence x = {xk}k∈N and δAI (M) = 0, then {x}M is said to be a subsequence
ofAI density zero or anAI-thin subsequence of x. On the other hand ifM does not haveAI density zero
i.e., if either δAI (M) is a positive number orM fails to haveAI density then {x}M is called anAI-nonthin
subsequence of x.

Definition 2.3. A real number L is an AI-statistical limit point of a real sequence x = {xk}k∈N, if there exists an
A
I-nonthin subsequence of x that converges to L.

Note 2.2. IfI = I f in = {K ⊂N : |K| < ∞}, then the notions ofAI-statistical limit point andAI-statistical cluster
point [18] coincide with the notions ofA-statistical limit point [4] andA-statistical cluster point [4] respectively.

The set of all AI-statistical limit points and AI-statistical cluster points of a sequence x = {xk}k∈N are
denoted by ΛAx (I) and ΓAx (I) respectively.

Theorem 2.1. Let x = {xk}k∈N be a sequence of real numbers. Then ΛAx (I) ⊂ ΓAx (I) ⊂ ΓAx .

Proof. Let ξ ∈ ΛAx (I). So we get a subsequence {xkq }q∈N of x with lim
q→∞

xkq = ξ and δAI (M) , 0, where

M = {kq : q ∈N}. Let ε > 0 be given. Since lim
q→∞

xkq = ξ, soH = {kq :
∣∣∣xkq − ξ

∣∣∣ ≥ ε} is a finite set. Hence

{k ∈N : |xk − ξ| < ε} ⊃ {kq : q ∈N} \ H

⇒M = {kq : q ∈N} ⊂ {k ∈N : |xk − ξ| < ε} ∪ H .

Now if δAI ({k ∈ N : |xk − ξ| < ε}) = 0, then we have δAI (M) = 0, which is a contradiction. Thus ξ is an
A
I-statistical cluster point of x. Since ξ ∈ ΛAx (I) is arbitrary, ΛAx (I) ⊂ ΓAx (I).

Now let η ∈ ΓAx (I). Then for any ε > 0,

δAI ({k ∈N :
∣∣∣xk − η

∣∣∣ < ε} , 0

⇒ I- lim
n→∞

∑
|xk−η|<ε

ank , 0

⇒ lim
n→∞

∑
|xk−η|<ε

ank , 0 [since I is an admissible ideal]

⇒ δA({k ∈N :
∣∣∣xk − η

∣∣∣ < ε}) , 0

⇒ η ∈ ΓAx .

Therefore, ΛAx (I) ⊂ ΓAx (I) ⊂ ΓAx .

Theorem 2.2. If x = {xk}k∈N and y = {yk}k∈N are two sequences of real numbers such that δAI ({k ∈N : xk , yk}) = 0,
then ΛAx (I) = ΛAy (I) and ΓAx (I) = ΓAy (I).
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Proof. Let ζ ∈ ΓAx (I) and ε > 0 be given. Then {k ∈ N : |xk − ζ| < ε} does not have AI-density zero. Let
H = {k ∈ N : xk = yk}. As δAI (H) = 1 so {k ∈ N : |xk − ζ| < ε} ∩ H does not have AI-density zero. Thus
ζ ∈ ΓAy (I). Since ζ ∈ ΓAx (I) is arbitrary, so ΓAx (I) ⊂ ΓAy (I). By symmetry we have ΓAy (I) ⊂ ΓAx (I). Hence
ΓAx (I) = ΓAy (I).

Also let η ∈ ΛAx (I). Then x has anAI-nonthin subsequence {xkq }q∈N that converges to η. LetQ = {kq ∈N :
q ∈ N}. Since δAI ({kq ∈ N : xkq , ykq }) = 0, we have δAI ({kq ∈ N : xkq = ykq }) , 0. Therefore from the latter
set we have anAI-nonthin subsequence {y}Q′ of {y}Q that converges to η. Thus η ∈ ΛAy (I). As η ∈ ΛAx (I) is
arbitrary, so ΛAx (I) ⊂ ΛAy (I). By similar way we get ΛAx (I) ⊃ ΛAy (I). Hence ΛAx (I) = ΛAy (I).

We now investigate some topological properties of the set ΓAx (I) of allAI-statistical cluster points of x.

Theorem 2.3. Let C ⊂ R be a compact set and C ∩ ΓAx (I) = ∅. Then the set {k ∈N : xk ∈ C} hasAI-density zero.

Proof. Since C ∩ ΓAx (I) = ∅, so for every α ∈ C there exists a positive real number γ = γ(α) such that

δAI ({k ∈N : |xk − α| < γ(α)}) = 0.

Let B(α;γ(α)) =
{
z ∈ R : |z − α| < γ(α)

}
. Then the family of open sets

{
B(α;γ(α)) : α ∈ C

}
form an open

cover ofC. AsC is a compact subset ofR so there exists a finite subcover of the open cover {B(α;γ(α)) : α ∈ C}

for C, say {B(α j;γ(α j)) : j = 1, 2, ..., r}. Then C ⊂
r⋃

j=1
B(α j;γ(α j)) and also

δAI ({k ∈N : |xk − α j| < γ(α j)}) = 0 for j = 1, 2, ..., r.

Now since A is a non-negative regular summability matrix so there exists an N0 ∈ N such that for each
n ≥ N0, we get ∑

xk∈C

ank ≤

r∑
j=1

∑
xk∈B(α j;γ(α j))

ank,

and by the property of I-convergence,

I- lim
n→∞

∑
xk∈C

ank ≤

r∑
j=1

I- lim
n→∞

∑
xk∈B(α j;γ(α j))

ank = 0.

This gives δAI ({k ∈N : xk ∈ C}) = 0.

Theorem 2.4. Let x = {xk}k∈N be a sequence in R. If x has a boundedAI-nonthin subsequence, then the set ΓAx (I)
is a nonempty closed set.

Proof. Let
{
xkm

}
m∈N be a bounded AI-nonthin subsequence of x and C be a compact set such that xkm ∈ C

for each m ∈N. Let Q = {km : m ∈N}. Then δAI (Q) , 0. Now if ΓAx (I) = ∅, then C ∩ ΓAx (I) = ∅ and then by
Theorem 2.3 we get

δAI ({k ∈N : xk ∈ C}) = 0.

Now since A is a non-negative regular summability matrix so there exists an N0 ∈ N such that for each
n ≥ N0, we get ∑

k∈Q

ank ≤
∑
xk∈C

ank

so δAI (Q) = 0, which is a contradiction. Therefore ΓAx (I) , ∅.
Now to prove ΓAx (I) is a closed set in R, let ζ be a limit point of ΓAx (I). Then for all ε > 0, B(ζ; ε) ∩

(ΓAx (I) \ {ζ}) , ∅. Let η ∈ B(ζ; ε) ∩ (ΓAx (I) \ {ζ}). Now we can choose ε′ > 0 so that B(η; ε′) ⊂ B(ζ; ε). Since
η ∈ ΓAx (I) so

δAI ({k ∈N : |xk − η| < ε
′
}) , 0

⇒ δAI ({k ∈N : |xk − ζ| < ε}) , 0.
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Therefore ζ ∈ ΓAx (I).

Definition 2.4. (a) A sequence x = {xk}k∈N of real numbers is said to be AI-statistically bounded above if, there
exists L1 ∈ R such that δAI ({k ∈N : xk > L1}) = 0.
(b) A sequence x = {xk}k∈N of real numbers is said to be AI-statistically bounded below if, there exists L2 ∈ R such
that δAI ({k ∈N : xk < L2}) = 0.

Definition 2.5. [18] A sequence x = {xk}k∈N of real numbers is said to be AI-statistically bounded if, there exists
L > 0 such that for all β > 0, the set

{n ∈N :
∑
|xk |>L

ank ≥ β} ∈ I

i.e., δAI ({k ∈N : |xk| > L}) = 0.

Note 2.3. (i) Definition 2.5 can be restated as follows: A sequence x = {xk}k∈N is said to be AI-statistically
bounded if there exists a compact set C in R such that for all β > 0, the set {n ∈ N :

∑
xk<C

ank ≥ β} ∈ I i.e.,

δAI ({k ∈N : xk < C}) = 0.

(ii) If I = I f in = {M ⊂ N : |M| < ∞}, then the notion ofAI-statistical boundedness coincide with the notion of
A-statistical boundedness.

Corollary 2.1. If x = {xk}k∈N isAI-statistically bounded, then the set ΓAx (I) is nonempty and compact.

Proof. Let C be a compact set in R such that δAI ({k ∈ N : xk < C}) = 0. Then δAI ({k ∈ N : xk ∈ C}) = 1
and this implies that C contains a bounded AI-nonthin subsequence of x. So by Theorem 2.4, ΓAx (I) is a
nonempty closed set.

Now to show ΓAx (I) is compact, it is sufficient to prove that ΓAx (I) ⊂ C. If possible let us assume that
ζ ∈ ΓAx (I) but ζ < C. Since C is compact, so there exists ε > 0 such that B(ζ; ε) ∩ C = ∅. Now since A is a
non-negative regular summability matrix so there exists an N0 ∈N such that for each n ≥ N0, we get∑

xk∈B(ζ;ε)

ank ≤
∑
xk<C

ank.

Therefore δAI ({k ∈N : |xk − ζ| < ε}) = 0, which is a contradicts that ζ ∈ ΓAx (I). Hence ΓAx (I) ⊂ C. Therefore
the set ΓAx (I) is nonempty and compact.

Theorem 2.5. Let x = {xk}k∈N be anAI-statistically bounded sequence. Then for any ε > 0 the set{
k ∈N : d(ΓAx (I), xk) ≥ ε

}
hasAI-density zero, where d(ΓAx (I), xk) = inf

z∈ΓAx (I)
|z − xk|-the distance from xk to the set ΓAx (I).

Proof. Let C be a compact set such that δAI ({k ∈ N : xk < C}) = 0. Then by Corollary 2.1, we get ΓAx (I) is
nonempty and ΓAx (I) ⊂ C.

If possible, let δAI ({k ∈ N : d(ΓAx (I), xk) ≥ ε′}) , 0 for some ε′ > 0. We define B(ΓAx (I); ε′) = {z ∈ R :
d(ΓAx (I), z) < ε′} and let H = C \ B(ΓAx (I); ε′). Then H is a compact set which contains an AI-nonthin
subsequence of x. Then by Theorem 2.3, H ∩ ΓAx (I) , ∅, which is absurd, since ΓAx (I) ⊂ B(ΓAx (I); ε′).
Therefore, δAI ({k ∈N : d(ΓAx (I), xk) ≥ ε}) = 0 for every ε > 0.
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3. Condition APAIO

The additive property for sets of zero natural density (APO) was introduced by Freedman et al. [13]
and they further extended it for sets of zeroA-density. Here we introduce the additive property for sets of
zeroAI density (APAIO).

Definition 3.1. (Additive property forAI-density zero sets). TheAI-density δAI is said to satisfy the condition
APAIO if given any countable collection of mutually disjoint sets {Gm}m∈N inN with δAI (Gm) = 0 for all m ∈ N,

there exists a collection of sets {Hm}m∈N inN such that
∣∣∣Gm∆Hm

∣∣∣ < ∞ for each m ∈N and δAI (H =
∞⋃

m=1
Hm) = 0.

Theorem 3.1. A sequence x = {xk}k∈N of real number isAI-statistically convergent toL implies there exists a subset
W ofN with δAI (W) = 1 and lim

k∈W
k→∞

xk = L if and only if δAI has the property APAIO.

Proof. Suppose any sequence x = {xk}k∈N isAI-statistically convergent toL implies there exists a subsetW
ofNwith δAI (W) = 1 and lim

k∈W
k→∞

xk = L. We have to show δAI has the property APAIO.

Let {Gm}m∈N be a countable collection of mutually disjoint sets inNwith δAI (Gm) = 0, for every m ∈N.
Let us construct a sequence {xk}k∈N as follows

xk =


1
m if k ∈ Gm,

0 if k <
∞⋃

m=1
Gm.

Let ε > 0 be given. Then there exists j ∈N such that 1
j+1 < ε. Then we have

{k ∈N : xk ≥ ε} ⊂ G1 ∪ G2 ∪ ... ∪ G j.

Since δAI (Gm) = 0, for m = 1, 2, ..., j, we get δAI ({k ∈N : xk ≥ ε}) = 0. So {xk}k∈N isAI-statistically convergent
to 0. Then by the assumption there exists a setH ⊂N, whereH =N \W, δAI (H) = 0 such that lim

k∈N\H
k→∞

xk = 0.

Therefore for each m = 1, 2, ... we have nm ∈ N such that nm+1 > nm and xk <
1
m for all k ≥ nm, k ∈ W. Thus

if xk ≥
1
m and k ≥ nm then k ∈ H .

Set Hm = {k ∈ N : k ∈ Gm, k ≥ nm+1} ∪ {k ∈ N : k ∈ H , nm ≤ k < nm+1}, m ∈ N. Clearly for

all m ∈ N we have
∣∣∣Gm∆Hm

∣∣∣ < ∞. We now show that H =
∞⋃

m=1
Hm. Fix m ∈ N and let k ∈ Hm. If

k ∈ { j ∈ N : j ∈ H ,nm ≤ j < nm+1}, then we are done. If k ≥ nm+1 and k ∈ Gm we have xk =
1
m and so k ∈ H .

ThereforeHm ⊂ H for all m ∈N.
Again let k ∈ H . Then there exists u ∈ N such that nu ≤ k < nu+1, which implies k ∈ Hu. Therefore

H ⊂

∞⋃
m=1
Hm. ThusH =

∞⋃
m=1
Hm and δAI (H =

∞⋃
m=1
Hm) = 0. This proves that δAI has the property APAIO.

Conversely suppose that δAI has the property APAIO. Let x = {xk}k∈N be a sequence such that x is
A
I-statistically convergent to L. Then for each ε > 0, the set {k ∈ N : |xk − L| ≥ ε} has AI-density zero.

Let G1 = {k ∈ N : |xk − L| ≥ 1}, Gm = {k ∈ N : 1
m−1 > |xk − L| ≥

1
m } for m ≥ 2, m ∈ N. Then {Gm}m∈N is

a sequence of mutually disjoint sets with δAI (Gm) = 0 for every m ∈ N. Then by the assumption there

exists a sequence of sets {Hm}m∈N with
∣∣∣Gm∆Hm

∣∣∣ < ∞ and δAI (H =
∞⋃

m=1
Hm) = 0. We claim that lim

k∈N\H
k→∞

xk = L.

To establish our claim, let β > 0 be given. Then there exists a positive integer j such that 1
j+1 < β. Then

{k ∈N : |xk − L| ≥ β} ⊂
j+1⋃

m=1
Gm. Now since

∣∣∣Gm∆Hm

∣∣∣ < ∞, for each m = 1, 2, ..., j + 1, there exists n′ ∈N such

that
j+1⋃

m=1
Gm ∩ (n′,∞) =

j+1⋃
m=1
Hm ∩ (n′,∞). Now if k < H , k > n′, then k <

j+1⋃
m=1
Hm and consequently k <

j+1⋃
m=1
Gm,

which implies |xk − L| < β. This completes the proof.
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Theorem 3.2. If δAI has the property APAIO, then for any sequence x = {xk}k∈N of real numbers there exists a
sequence y = {yk}k∈N such that Ly = Γ

A
x (I) and the set {k ∈N : xk , yk} hasAI-density zero.

Proof. We first prove that ΓAx (I) ⊂ Lx. Let α ∈ ΓAx (I). So from Theorem 2.1 we have α ∈ ΓAx . ThenA-density
of the set

{k ∈N : |xk − α| < ε}

is not zero, for every ε > 0. So there exists a subsequence {x}K of x that converges to α. So, α ∈ Lx. Hence
ΓAx (I) ⊂ Lx.

If ΓAx (I) = Lx then the proof is trivial, we take y = {yk}k∈N = {xk}k∈N = x. Now suppose that ΓAx (I)
is a proper subset of Lx. Let ζ ∈ Lx \ Γ

A
x (I). Choose an open interval Jζ with center at ζ such that

δAI ({k ∈ N : xk ∈ Jζ}) = 0. Then the collection of all such Jζ’s is an open cover of Lx \ Γ
A
x (I) and by

the Lindelöf covering lemma there exists a countable subcover, say {Jζm }m∈N of {Jζ : ζ ∈ Lx \ Γ
A
x (I)} for

Lx \ Γ
A
x (I). Since each ζm is a limit point of x, consequently each Jζm contains an AI-thin subsequence of

x. Let J1 = {k ∈ N : xk ∈ Jζ1 }, Jm = {k ∈ N : xk ∈ Jζm } \ (J1 ∪ J2... ∪ Jm−1),∀m ≥ 2,m ∈ N. Then {Jm}m∈N is a
sequence of mutually disjoint sets with δAI (Jm) = 0,∀m ∈ N. Since δAI has the property APAIO, so there

exists a sequence of sets {Hm}m∈N such that |Jm∆Hm| < ∞ for each m ∈ N and δAI (H =
∞⋃

m=1
Hm) = 0. Then

Jm \ H is a finite set and so {k ∈ N : xk ∈ Jζm } \ H is a finite set for each m ∈ N. LetN \ H = {m1 < m2 < ...}
and we define a sequence y = {yk}k∈N as follows

yk =

{
xmk if k ∈ H ,
xk if k ∈N \ H .

Obviously the set {k ∈N : xk , yk}(⊂ H) hasAI-density zero and by Theorem 2.2 we have ΓAx (I) = ΓAy (I).
Now we show that Ly = Γ

A
y (I). If possible, let ΓAy (I) & Ly and η ∈ Ly \ Γ

A
y (I). Then there exists an

A
I-thin subsequence of y converging to η.

Now we claim that {y}H has no limit point which is not anAI-statistical cluster point of y.
Since {yk : k ∈ H} ⊂ {yk : k ∈N\H} ⇒ {xmk : k ∈ H} ⊂ {xk : k ∈N\H}. Now there does not exist any limit

point of {x}N\H which is not anAI-statistical cluster point of x. For this let γ be a limit point of {x}N\H which
is not anAI-statistical cluster point of x. So there is anAI-thin subsequence {x}K of {x}N\H converging to
γ. Now {Jζm }m∈N covers Lx \ Γ

A
x (I) so it covers L{x}N\H \ Γ

A
x (I). Then K \M ⊂ {k ∈ N : xk ∈ Jζq } \ H , where

M is a finite subset ofN, for some ζq ∈ Lx \ Γ
A
x (I), a contradiction.

So there does not exist any limit point of {x}N\H which is not an AI-statistical cluster point of x and
so there does not exist any limit point of {y}N\H which is not an AI-statistical cluster point of y and this
gives {y}H has no limit point which is not anAI-statistical cluster point of y. Therefore no such η can exist.
Hence Ly = Γ

A
y (I). Consequently Ly = Γ

A
x (I).

Theorem 3.3. Suppose x = {xk}k∈N is a sequence of real numbers and δAI satisfies the property APAIO. Then

xk
A
I-st
−−−−→ L if and only if there exists a sequence {1k}k∈N so that xk = 1k for a.a.k(AI) and 1k → L.

Proof. Let xk
A
I-st
−−−−→ L. So by Theorem 3.1, there is a set W = {q1 < q2 < ... < qn < ...} ⊂ N such that

δAI (W) = 1 and lim
n→∞

xqn = L.

Now we define a sequence {1k}k∈N as follows:

1k =

{
xk, if k ∈ W
L, if k <W.

Then clearly, 1k → L and also δAI ({k ∈N : xk , 1k}) = 0 i.e., xk = 1k for a.a.k(AI).
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Conversely, let there exist a sequence {1k}k∈N such that xk = 1k for a.a.k(AI) and 1k → L. Let ε > 0 be
given. Since A is non-negative regular summability matrix so there exists an N0 ∈ N such that for each
n ≥ N0, we have ∑

|xk−L|≥ε

ank ≤
∑
xk,1k

ank +
∑
|1k−L|≥ε

ank.

As {1k}k∈N is convergent toL, so the set {k ∈N :
∣∣∣1k − L

∣∣∣ ≥ ε} is finite and hence δAI ({k ∈N :
∣∣∣1k − L

∣∣∣ ≥ ε}) =
0.
Thus,

δAI ({k ∈N : |xk − L| ≥ ε})
≤ δAI ({k ∈N : xk , 1k}) + δAI ({k ∈N :

∣∣∣1k − L
∣∣∣ ≥ ε}) = 0.

Therefore, δAI ({k ∈N : |xk − L| ≥ ε}) = 0. Hence the sequence x isAI-statistically convergent to L.

Theorem 3.4. Suppose x = {xk}k∈N is a sequence of real numbers and δAI satisfies the property APAIO. If
I-stA- lim

k→∞
xk = ζ, then ΛAx (I) = ΓAx (I) = {ζ}.

Proof. Let I-stA- lim
k→∞

xk = ζ. So for every ε > 0, δAI ({k ∈ N : |xk − ζ| < ε}) = 1. Therefore, ζ ∈ ΓAx (I). If

possible, let there exist η ∈ ΓAx (I) such that ζ , η. Let
∣∣∣ζ − η∣∣∣ = σ. Then σ > 0. Since ζ, η ∈ ΓAx (I), so

δAI (G) , 0 and δAI (H) , 0, where G = {k ∈ N : |xk − ζ| <
σ
2 } and H = {k ∈ N :

∣∣∣xk − η
∣∣∣ < σ

2 }. Since ζ , η,
so G ∩H = ∅ and so H ⊂ Gc. Since I-stA- lim

k→∞
xk = ζ, so δAI (Gc) = 0. Hence δAI (H) = 0, a contradiction.

Therefore, ΓAx (I) = {ζ}.
As I-stA- lim

k→∞
xk = ζ, so by Theorem 3.3, we have ζ ∈ ΛAx (I). Then by Theorem 2.1, we get ΛAx (I) =

ΓAx (I) = {ζ}.

4. AI -statistical analogous of Completeness Theorems

In this section, following Fridy [15] and Malik et al. [24] we formulate AI-statistical analogue of the
theorems concerning sequences that are equivalent to the completeness of R.

We first consider a sequential version of the least upper bound axiom (inR), namely, Monotone sequence
Theorem: every monotone increasing sequence of real numbers which is bounded above, is convergent.
The following result is anAI-statistical analogue of that Theorem.

Theorem 4.1. Let x = {xk}k∈N be a sequence of real numbers and Q = {k ∈ N : xk ≤ xk+1}. If δAI (Q) = 1 and x is
bounded above on Q, then x isAI-statistically convergent.

Proof. Since x is bounded above on Q, so let L be the least upper bound of the range of {xk}k∈Q. Then we
have
(i) xk ≤ L, ∀k ∈ Q
(ii) for a pre-assigned ε > 0, there exists a natural number k0 ∈ Q such that xk0 > L − ε.
Now let k ∈ Q and k > k0. Then L − ε < xk0 ≤ xk < L + ε. Thus Q ∩ {k ∈ N : k > k0} ⊂ {k ∈ N :
L − ε < xk < L + ε}. Since the set on the left hand side of the inclusion is of AI-density 1, we have
δAI ({k ∈ N : L − ε < xk < L + ε}) = 1 i.e., δAI ({k ∈ N : |xk − L| ≥ ε}) = 0. Hence x is AI-statistically
convergent to L.

Theorem 4.2. Let x = {xk}k∈N be a sequence of real numbers and Q = {k ∈ N : xk ≥ xk+1}. If δAI (Q) = 1 and x is
bounded below on Q, then x isAI-statistically convergent.

Proof. The proof is similar to that of Theorem 4.1 and so is omitted.
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Note 4.1. (a) In the Theorem 4.1 if we replace the criteria that ‘x is bounded above on Q’ by ‘x is AI-statistically
bounded above on Q’ then the result still holds. Indeed if x isAI-statistically bounded above on Q, then there exists
L ∈ R such that δAI ({k ∈ Q : xk > L}) = 0 i.e., δAI ({k ∈ Q : xk ≤ L}) = 1. Let S = {k ∈ Q : xk ≤ L} and
L′ = sup{xk : k ∈ S}. Then

(i) xk ≤ L′ for all k ∈ S
(ii) for any ε > 0, there exists a natural number k0 ∈ S such that xk0 > L′ − ε. Then proceeding in a similar way

as in Theorem 4.1 we get the result.
(b) Similarly, In the Theorem 4.2 if we replace the criteria that ‘x is bounded below on Q’ by ‘x isAI-statistically

bounded below on Q’ then the result still holds.

Another completeness result for R is the Bolzano-Weierstrass Theorem, which tells us that, every
bounded sequence of real numbers has a cluster point. The following result is an AI-statistical analogue
of that result.

Theorem 4.3. Suppose x = {xk}k∈N is a sequence of real numbers and δAI has the property APAIO. If x has a
boundedAI-nonthin subsequence, then x has anAI-statistical cluster point.

Proof. Using Theorem 3.2, we have a sequence y = {yk}k∈N such that Ly = Γ
A
x (I) and δAI ({k ∈ N : xk =

yk}) = 1. Let {x}Q be the bounded AI-nonthin subsequence of x. Then δAI ({k ∈ N : xk = yk} ∩ Q) , 0.
Thus y has a boundedAI-nonthin subsequence and hence by Bolzano-Weierstrass Theorem, Ly , ∅. Thus
ΓAx (I) , ∅.

Corollary 4.1. Suppose δAI has the property APAIO. If x is a bounded sequence of real numbers, then x has an
A
I-statistical cluster point.

The next result is anAI-statistical analogue of the Heine-Börel Covering Theorem.

Theorem 4.4. Suppose δAI has the property APAIO. If x = {xk}k∈N is a bounded sequence of real numbers, then it
has anAI-thin subsequence {x}Q such that {xk : k ∈N \ Q} ∪ ΓAx (I) is a compact set.

Proof. Using Theorem 3.2, we have a sequence y = {yk}k∈N such that Ly = Γ
A
x (I) and δAI ({k ∈ N : xk =

yk}) = 1. Let Q = {k ∈ N : xk , yk}. Then δAI (Q) = 0. Therefore {x}Q is an AI-thin subsequence of x and
{xk : k ∈N \ Q} ∪ ΓAx (I) = {yk : k ∈N} ∪ Ly. Since the set on the right hand side is compact, so the set on the
left hand side is also compact. This completes the proof.
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[18] M. Gürdal, H. Sari, Extremal A-statistical limit points via ideals, Journal of the Egyptian Mathematical Society 22(1) (2014) 55–58.
[19] E. Kolk, The statistical convergence in Banach spaces, Acta et Commentationes Universitatis Tartuensis 928 (1991) 41–52.
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