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Abstract. We introduce the notion of warped-twisted product semi-slant submanifolds of the form f2 MT
× f1

Mθ with warping function f2 on Mθ and twisting function f1, where MT is a holomorphic and Mθ is a slant
submanifold of a globally conformal Kaehler manifold. We prove that a warped-twisted product semi-
slant submanifold of a globally conformal Kaehler manifold is a locally doubly warped product. Then we
establish a general inequality for doubly warped product semi-slant submanifolds and get some results for
such submanifolds by using the equality sign of the general inequality.

1. Introduction

Şahin [15] proved the non-existence of non-trivial warped product semi-slant submanifolds in Kaehle-
rian manifolds. More precisely, there do not exist warped product semi-slant submanifolds in Kaehlerian
manifolds of the forms Mθ

× f MT and MT
× f Mθ, where MT is a holomorphic and Mθ is a slant submanifold

of a Kaehlerian manifold (see, Theorems 3.1 and 3.2 of [15]). Also, Şahin [16] showed that there exists no
non-trivial warped product hemi-slant submanifolds in Kaehlerian manifolds of the form M⊥

× f Mθ, where
M⊥ is a totally real submanifold of a Kaehlerian manifold (see, Theorem 4.2 of [16]). We are inspired by
the results of Şahin [15, 16] and deduce that Kaehlerian structures do not admit non-trivial doubly warped
product semi-slant or hemi-slant submanifolds. Recently, Matsumoto studied warped product semi-slant
submanifolds in locally conformal Kaehler manifolds of the forms Mθ

× f MT and MT
× f Mθ in [9, 10].

In [18], we defined two classes of doubly twisted products under the names of nearly doubly twisted
products of type 1 and type 2. In this article, we rename the nearly doubly twisted products of type 1 as
warped-twisted products.

Motivated by the above papers, we consider and study warped-twisted product semi-slant submanifolds
in globally conformal Kaehler manifolds in this paper.

2. Preliminaries

In this section, we recall the fundamental definitions and notions needed for the further study. Actually,
in subsection 2.1, we will recall the definition of the warped-twisted product manifolds. The definitions of
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locally and globally conformal Kaehler manifolds will be presented in subsection 2.2. In subsection 2.3, we
will give the basic background for submanifolds of Riemannian manifolds.

2.1. Warped-twisted products

Let M1 and M2 be Riemannian manifolds endowed with metric tensors 11 and 12, respectively and let
f1 and f2 are positive smooth functions defined on M1 ×M2. Then the doubly twisted product manifold [14]
f2 M1 × f1 M2 is the product manifold M̄ =M1 ×M2 equipped with metric 1 given by

1 = f22π∗111 + f12π∗212,

where πi : M1×M2 →Mi is the canonical projections for i = 1, 2. Each function fi is called a twisting function
of the doubly twisted product f2 M1 × f1 M2. If the twisting functions f1 and f2 depend only on the points of
M1 and M2 respectively, then f2 M1 × f1 M2 becomes a doubly warped product manifold [7] and each function fi
is called a warping function of the doubly warped product manifold. In this case, if f1 ≡ 1 or f2 ≡ 1, then we
get a warped product [1].

Let f2 M1 × f1 M2 be doubly twisted product manifold. If f1 ≡ 1 or f2 ≡ 1, then we get a twisted product
[4] with the twisting function f1 or a twisted product with the twisting function f2. In a warped or twisted
product case, the notation f2 M1 × f1 M2 is simplified to f2 M1 ×M2 or M1 × f1 M2. In addition, if both f1 and f2
are constant, then we get a usual or direct product manifold [3].

Let us recall the definition of a warped-twisted product manifold. Let (M1, 11) and (M2, 12) be Rieman-
nian manifolds and let f2 : M2 → (0,∞) and f1 : M1 ×M2 → (0,∞) be smooth functions. The warped-twisted
product f2 M1 × f1 M2 [18] is the product manifold M1 ×M2 equipped with the metric tensor 1 defined by

1 = ( f2 ◦ π2)2π∗1(11) + f 2
1π
∗

2(12). (1)

The function f2 ∈ C∞(M2) is called a warping function and the function f1 ∈ C∞(M1 ×M2) is called a twisting
function of f2 M1 × f1 M2. In this case, if the function f1 depends only on the points of M2, then the warped-
twisted product f2 M1 × f1 M2 becomes a base conformal warped product [5]. We say that a warped-twisted
product is non-trivial if it is neither doubly warped product nor warped product or base conformal warped
product.

Let f2 M1 × f1 M2 be a warped-twisted product manifold with the Levi-Civita connection ∇̄ of 1, given in
(1). Also we denote by ∇i the Levi-Civita connection of 1i for i ∈ {1, 2}, respectively. By usual convenience,
we denote the set of lifts of vector fields on Mi byL(Mi) and we use the same notation for a vector field and
for its lift. On the other hand, each πi is a positive homothety, so it preserves the Levi-Civita connection.
Thus, there is no confusion using the same notation for a connection ∇i on Mi and for its pullback via
πi. Then, the covariant derivative formulas of the warped-twisted product manifold f2 M1 × f1 M2 with the
warping function f2 ∈ C∞(M2) and twisting function f1 are given by

∇̄XY = ∇1
XY − 1(X,Y)∇̄ ln( f2 ◦ π2), (2)

∇̄VX = ∇̄XV = V(ln( f2 ◦ π2))X + X(ln f1)V, (3)

∇̄UV = ∇2
UV +U(ln f1)V + V(ln f1)U − 1(U,V)∇̄ ln f1, (4)

for any X,Y ∈ L(M1) and U,V ∈ L(M2). These formulas immediately come from Lemma 2.1 of [8] with
X(ln( f2 ◦ π2)) = Y(ln( f2 ◦ π2)) = 0.

Remark 2.1. Until the section 5, we will use the same symbol for the warping function f2 and its pullback f2 ◦ π2,
i.e., we will put f2 = f2 ◦ π2.



H. M. Taştan, S. Gerdan Aydın / Filomat 36:5 (2022), 1587–1602 1589

2.2. Locally and globally conformal Kaehler manifolds
Let (M̄, J, 1) be a Hermitian manifold of dimension 2m. Then it is called a locally conformal Kaehler

manifold (briefly l.c.K. manifold) [6], if each point of p ∈ M̄ has an open neighborhood U with smooth
function σ : U → R such that 1̃ = e−σ1|U is a Kaehler metric on U. If one choose U = M̄, then (M̄, J, 1) is
called a globally conformal Kaehler manifold (briefly g.c.K. manifold).

Theorem 2.2. [6] Let (M̄, J, 1) be a Hermitian manifold and letΩ be a 2− form defined byΩ(X̄, Ȳ) = 1(X̄, JȲ) for all
vector fields in M̄. Then (M̄, J, 1) is a l.c.K. manifold if and only if there exists a globally defined 1− form ω such that

dΩ = ω ∧Ω and dω = 0. (5)

The closed 1− form ω is called the Lee form of the l.c.K. manifold (M̄, J, 1). In addition, the manifold (M̄, J, 1)
is g.c.K., if its Lee form ω is also exact. In this case, we have ω = dσ [20]. The Lee vector field B is defined by

ω(X̄) = 1(B, X̄), (6)

for any vector fields X̄ on M̄. One can see that, the globally conformal Kaehler case is a special case of the
locally conformal Kaehler case. We denote by ∇̃ (resp. ∇̄) the Levi-Civita connection on M̄ with respect to
1̃ = e−σ1 (resp. 1). Then we have [6]

∇̃X̄Ȳ = ∇̄X̄Ȳ − 1
2

{
ω(X̄)Ȳ + ω(Ȳ)X̄ − 1(X̄, Ȳ)B

}
, (7)

for any vector fields X̄ and Ȳ on M̄. The connection ∇̃ is a torsionless linear connection on M̄ which is called
the Weyl connection of 1. It is easy to see that the Weyl connection ∇̃ satisfies the condition

∇̃J = 0. (8)

Remark 2.3. Throughout this paper, we denote by (M̄, J, ω, 1) the g.c.K. manifold with the Lee form ω.

2.3. Submanifolds of Riemannian manifolds
Let M be an isometrically immersed submanifold in a Riemannian manifold (M̄, 1). Let ∇̄ is the Levi-

Civita connection on M̄ with respect to the metric 1 and let ∇ and ∇⊥ be the induced, and induced normal
connection on M, respectively. Then, for all X,Y ∈ TM and Z ∈ T⊥M, the Gauss and Weingarten formulas
are given respectively by

∇̄XY = ∇XY + h(X,Y), (9)

∇̄XZ = −AZX + ∇⊥XZ, (10)

where TM is the tangent bundle and T⊥M is the normal bundle of M in M̄. Additionally, h is the second
fundamental form of M and AZ is the Weingarten endomorphism associated with Z. The second fundamental
form h and the shape operator A are related by

1(h(X,Y),Z) = 1(AZX,Y). (11)

The mean curvature vector field H of M is given by H = 1
m (trace h), where dim(M) = m. We say that the

submanifold M is totally geodesic in M̄ if h = 0, and minimal if H = 0. The submanifold M is called totally
umbilical if h(X,Y) = 1(X,Y)H for all X,Y ∈ TM.

Let M be any submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then the Gauss and Weingarten formulas
with respect to ∇̃ are given by

∇̃XY = ∇̂XY + h̃(X,Y), (12)
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∇̃XZ = −ÃZX + ∇̃⊥XZ, (13)

for X,Y ∈ TM and Z ∈ T⊥M. Thus, using (9), (10) and (13), we have

∇̂XY = ∇XY −
1
2

{
ω(X)Y + ω(Y)X − 1(X,Y)BM

}
, (14)

ÃZX = AZX +
1
2
ω(Z)X, (15)

h̃(X,Y) = h(X,Y) +
1
2
1(X,Y)BN, (16)

from (7), where BM and BN are respectively the tangential and the normal part of B.

3. Semi-slant submanifolds of a g.c.K. manifold

In this section, we recall the definition of a semi-slant submanifold and give some auxiliary results
related to the semi-slant submanifolds of a g.c.K. manifold to prove our main theorems.

Let (M̄, J, 1) be an almost Hermitian manifold and let M be a Riemannian manifold isometrically im-
mersed in M̄. A distributionD on M is called a slant distribution if for U ∈ Dp, the angle θ between JU and
Dp is constant, i.e., independent of p ∈ M and U ∈ Dp. The constant angle θ is called the slant angle of the
slant distributionD.We know that holomorphic and totally real distributions on M are slant distributions
with θ = 0 and θ = π

2 , respectively. A slant distribution is called proper if it is neither holomorphic nor
totally real. A submanifold M of M̄ is said to be a slant submanifold [2] if the tangent bundle TM of M is
slant. For examples and more details, see [2].

A semi-slant submanifold M [13] of a g.c.K. manifold (M̄, J, 1) is a submanifold such that its tangent bundle
TM admits two orthogonal complementary holomorphic distributionDT and slant distributionDθ, i.e., we
have

TM = DT
⊕D

θ. (17)

We say that the semi-slant submanifold M is proper if dim(DT) , 0 and θ , 0, π2 .
For any Y ∈ TM we write

JY = PY + FY, (18)

where PY is the tangential part of JY, and FY is the normal part of JY. Then the normal bundle T⊥M of M is
decomposed as

T⊥M = FDθ ⊕D, (19)

whereD is the orthogonal complementary distribution of FDθ in T⊥M and it is an invariant subbundle of
T⊥M with respect to J. For a semi-slant submanifold, we have [15]

P2U = − cos2θU, (20)

1(PU,PV) = cos2θ1(U,V) and 1(FU,FV) = sin2θ1(U,V) (21)

for U,V ∈ Γ(Dθ).
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Lemma 3.1. Let M be a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then we have

1(∇XY,U) = csc2θ
{
1

(
AFU JY − AFPUY,X

)
+ 1

2ω(FU)1(JY,X)

−
1
2ω(FPU)1(X,Y)

}
−

1
2ω(U)1(X,Y),

(22)

for X,Y ∈ Γ(DT) and U ∈ Γ(Dθ).

Proof. Let X,Y ∈ Γ(DT) and U ∈ Γ(Dθ). Since (M̄, J, ω, 1̃ = e−σ1) is a Kaehler manifold, by using (8), (13), (18)
and (20), we have

1̃(∇̂XY,U) = 1̃(∇̃XY,U) = 1̃(∇̃X JY, JU)
= 1̃(∇̃X JY,PU) + 1̃(∇̃X JY,FU)
= −1̃(∇̃XY, JPU) + 1̃(ÃFUX, JY)
= −1̃(∇̃XY,P2U) − 1̃(∇̃XY,FPU) + 1̃(ÃFUX, JY)
= cos2θ1̃(∇̂XY,U) + 1̃(ÃFU JY,X) − 1̃(ÃFPUY,X).

Hence, it follows that

1̃(∇̂XY,U) = csc2θ1̃(ÃFU JY,X) − 1̃(ÃFPUY,X).

Now, by using (6), (14) and (15), we derive the conclusion.

Theorem 3.2. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then the holomorphic
distributionDT is integrable if and only if

1(AFU JY,X) − 1(AFU JX,Y) = ω(FU)1(JX,Y), (23)

for X,Y ∈ Γ(DT) and U ∈ Γ(Dθ).

Proof. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then the holomorphic
distribution DT is integrable if and only if 1([X,Y],U) = 0 for all X,Y ∈ Γ(DT) and U ∈ Γ(Dθ). Thus, the
assertion (23) comes from (22).

Lemma 3.3. Let M be a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then we have

1(∇UV,X) = − csc2θ1
(
AFV JX − AFPVX, U

)
−

1
2ω(X)1(U,V), (24)

for X ∈ Γ(DT) and U,V ∈ Γ(Dθ).

Proof. Let X ∈ Γ(DT) and U,V ∈ Γ(Dθ). Since (M̄, J, ω, 1̃ = e−σ1) is a Kaehler manifold, using (8), (13), (18)
and (20), we have

1̃(∇̂UV,X) = 1̃(∇̃UV,X) = 1̃(∇̃U JV, JX)
= 1̃(∇̃UPV, JX) + 1̃(∇̃UFV, JX)
= −1̃(∇̃U JPV,X) − 1̃(ÃFV JX,U)
= −1̃(∇̃UP2V,X) − 1̃(∇̃UFPV,X) − 1̃(ÃFV JX,U)
= cos2θ1̃(∇̂UV,X) + 1̃(ÃFPVX,U) − 1̃(ÃFV JX,U).

Hence, it follows that

1̃(∇̂UV,X) = − csc2θ
{
1̃(ÃFV JX − ÃFPVX,U)

}
.

Now, by using (6), (14) and (15), we derive the conclusion.
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Theorem 3.4. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then the slant distribution
D
θ is integrable if and only if

1(AFV JX − AFPVX,U) = 1(AFU JX − AFPUX,V), (25)

for X ∈ Γ(DT) and U,V ∈ Γ(Dθ).

Proof. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Then the slant distribution
Dθ is integrable if and only if 1([U,V],X) = 0 for all X ∈ Γ(DT) and U,V ∈ Γ(Dθ). Thus, the assertion (25)
follows from (24).

Remark 3.5. Throughout this paper, for a semi-slant submanifold M of a g.c.K. manifold (M̄, J, ω, 1), we write
BM = BT + Bθ, where BT(resp. Bθ) is tangential part of BM toDT(resp. Dθ).

For some properties of semi-slant submanifolds of a g.c.K. manifold, we refer to the paper [17].

4. Warped-twisted product semi-slant submanifolds of a g.c.K. manifold

In this section, we consider warped-twisted product semi-slant submanifolds in the form f2 MT
× f1 Mθ,

where MT is a holomorphic and Mθ is a slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). We give necessary
and sufficient conditions for such manifolds to be twisted product, base-conformal warped product and
direct product. Then we give a characterization for these kind of submanifolds in a main theorem. We first
give an (non-trivial) example of such a submanifold.

Example 4.1. Let (z1, ..., z6) be natural coordinates of the six-dimensional Euclidean space R6 and let R̄6 = {(z1, ..., z6) ∈
R6 : z1 , 0 and z3 + z4 , 0}. Then (R̄6, J, 10) is a Kaehler manifold with usual Kaehler structure (J, 10). Now, we

consider the Riemannian metric 1 = eσ10 conformal to Kaehler metric 10 on R̄6, where eσ = z2
1

(z3 + z4)2

4
. Then

(R̄6, J, 1) is clearly a g.c.K. manifold. Let M be a submanifold given by

z1 = x , z2 = y , z3 = u + v , z4 = −u + v , z5 = u , z6 = 0 ,

where x, y,u, v , 0. Then, the local frame field of the tangent bundle TM of M is given by

X = ∂1 , Y = ∂2 , U =
1
√

3

{
∂3 − ∂4 + ∂5

}
, V =

1
√

2

{
∂3 + ∂4

}
,

where ∂i =
∂
∂zi

for i ∈ {1, 2, ..., 6}. Then DT = span{X,Y} is a holomorphic and Dθ = span{U,V} is a (proper) slant
distribution with the slant angle θ = cos−1( 2

√
6
). Thus, M is a proper semi-slant submanifold of (R̄6, J, 1). One can

see that both DT and Dθ are integrable. Let us denote the integral submanifolds of DT and Dθ by MT and Mθ,
respectively. Let 1T and 1θ be the induced metrics from the Kaehler metric 10 on MT and Mθ, respectively. We choose

the conformal Riemann metric 1̄T = x21T on MT. Since x = z1 and v =
z3 + z4

2
on M, the induced metric of M from

the conformal Kaehler metric 1 is

ds2 = x2v2(dx2 + dy2) + x2v2(du2 + dv2)
= v2x21T + x2v21θ
= v21̄T + (xv)21θ .

Thus, M is a warped-twisted product of (MT, 1̄T) and (Mθ, 1θ). So, f2 MT
× f1 Mθ is a (non-trivial) warped-twisted

product proper semi-slant submanifold of the g.c.K. manifold (R̄6, J, 1) with warping function f2 = v and twisting
function f1 = xv. Moreover, the Lee form (R̄6, J, 1) is

ω = 2
(1

x
dx +

1
v

dv
)
.
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Consequently, the Lee vector field is

B =
2

x2v2

(1
x
∂
∂x
+

1
v
∂
∂v

)
which is tangent to M.

Lemma 4.2. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). Then, for all X ∈ L(MT), we have

ω(X) = 2
3 X(ln f1). (26)

Proof. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1). For U,V ∈ L(Mθ) and X ∈ L(MT), using the exterior differentiation formula (see, [21], p.17), we
have

3dΩ(X,U,V) = XΩ(U,V) +UΩ(V,X) + VΩ(X,U)
−Ω([X,U],V) −Ω([U,V],X) −Ω([V,X],U)

= X1(U,PV),

since [X,V] = [X,U] = 0 and [U,V] ∈ L(Mθ). Hence,

3dΩ(X,U,V) = X1(U,PV)
= 1(∇XU,PV) + 1(U,∇XPV).

Using (3), we obtain

3dΩ(X,U,V) = 2X(ln f1)1(U,PV). (27)

On the other hand, using (5) and (18), we have

dΩ(X,U,V) = ω ∧Ω(X,U,V)
= ω(X)Ω(U,V) + ω(U)Ω(V,X) + ω(V)Ω(X,U)
= ω(X)1(U,PV)

from (5). Namely,

dΩ(X,U,V) = ω(X)1(U,PV). (28)

Thus, the assertion comes from (27) and (28).

By Lemma 4.2, we immediately have the following result.

Theorem 4.3. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). Then M is a base conformal warped product
submanifold in the form f2 MT

× f1 Mθ if and only if the Lee vector field B is normal to MT.

Proof. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). If M is a base conformal warped
product submanifold in the form f2 M⊥

× f1 Mθ, then for any X ∈ L(MT), X(ln f1)=0, since f1 depends only
on the points of Mθ. From (26), we find 1(B,X) = 0. So, the Lee vector field B is normal to MT.

Conversely, if the Lee vector field B is normal to MT, we have 1(B,X) = 0. Then, we get X(ln f1) = 0 for
any X ∈ L(MT) from (26). So f1 depends only on the points of Mθ. Then the induced metric tensor 1M of M
has the form 1M = f22

1T ⊕ 1̃θ, where f2 is warping function and 1̃θ = f12
1θ. Thus, M = f2 MT

× f1 Mθ is a base
conformal warped product.
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Lemma 4.4. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). Then, for all V ∈ L(Mθ), we have

ω(V) = 2
3 V(ln f2). (29)

Proof. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1). Then using the exterior differentiation formula, we have

3dΩ(V,X,Y) = VΩ(X,Y) + XΩ(Y,V) + YΩ(V,X)
−Ω([V,X],Y) −Ω([X,Y],V) −Ω([Y,V],X)
= V1(X, JY) − X1(JY,V) + Y1(V, JX)
−1([V,X], JY) + 1(J[X,Y],V) − 1([Y,V], JX).

Here, we know 1(JY,V) = 1(V, JX) = 0, since M is a semi-slant submanifold. Also, by (3), we have
[V,X] = [Y,V] = 0 and by (2), we have [X,Y] = ∇1

XY − ∇1
YX. So J[X,Y] ∈ Γ(TMT). Thus, we obtain

3dΩ(V,X,Y) = V1(X, JY)
= 1(∇VX, JY) + 1(X,∇V JY).

Again, using (3), we find

3dΩ(V,X,Y) = 1(X(ln f1)V + V(ln f2)X, JY) + 1(X, JY(ln f1)V + V(ln f2)JY).

So, we obtain

3dΩ(V,X,Y) = 2V(ln f2)1(X, JY). (30)

On the other hand, using (5) and (18), we have

dΩ(V,X,Y) = ω ∧Ω(V,X,Y)
= ω(V)Ω(X,Y) + ω(X)Ω(Y,V) + ω(Y)Ω(V,X)
= ω(V)1(X, JY) .

(31)

Thus, the assertion comes from (30) and (31).

By Lemma 4.4, we immediately have the following result.

Theorem 4.5. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). Then M is a twisted product submanifold in
the form MT

× f1 Mθ if and only if the Lee vector field B is normal to Mθ.

Proof. Let M is a twisted product submanifold in the form MT
× f1 Mθ, where f1 is a twisting function. Then,

for any V ∈ L(Mθ), V(ln f2)=0, since f2 is a constant. From (29), we find 1(B,V) = 0, for any V ∈ L(Mθ). So,
the Lee vector field B is normal to Mθ.

Conversely, if the Lee vector field B is normal to Mθ, we have 1(B,V) = 0, for any V ∈ L(Mθ). Then,
we get V(ln f2) = 0 from (29). So, f2 is a constant, say f2 = c. Then the induced metric tensor 1M of M has
the form 1M = c21T ⊕ f12

1θ, where c is constant and f1 is the twisting function. Thus, M = MT
× f1 Mθ is a

twisted product.

We conclude from Theorems 4.3 and 4.5 that:

Theorem 4.6. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). Then M is a locally direct product manifold if
and only if the Lee vector field B is normal to M.
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Proof. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold with warping function

f2 ∈ C∞(Mθ) and twisting function f1 of a g.c.K. manifold (M̄, J, ω, 1). If M is a locally direct product,
then the functions f1 and f2 are constants. In that case, for any X ∈ L(MT) and V ∈ L(Mθ), we have
1(B,X) = 1(B,V) = 0 from (26) and (29), respectively. It follows that B is normal to M.

Conversely, let B is normal to M. Then, for any X ∈ L(MT) and V ∈ L(Mθ), we have X(ln f1) = V(ln f2) =
0. It follows that f2 is a constant, say f2 = c and f1 depends only on the points of Mθ. Then the induced
metric tensor 1M of M has the form 1M = c21T ⊕ f12

1θ. Hence, we conclude that M is a locally direct product
of (M⊥, 1̃T) and (Mθ, 1̃θ), where 1̃T = c21T and 1̃θ = f12

1θ.

By using (22) and (26), we deduce the following result.

Lemma 4.7. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1). Then we have

1(AFU JX − AFPUX,Y) =
1
2

(
ω(FPU)1(X,Y) − ω(FU)1(JX,Y)

)
− sin2θω(U)1(X,Y) (32)

for X,Y ∈ L(MT) and U ∈ L(Mθ).

By using (24) and (29), we deduce the following result.

Lemma 4.8. Let M = f2 MT
× f1 Mθ be a warped-twisted product semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1). Then we have

1(AFV JX − AFPVX,U) = sin2θω(X)1(V,U) (33)

for X ∈ L(MT) and U,V ∈ L(Mθ).

Now, we recall the following two facts to prove the main theorem.

Lemma 4.9. (Proposition 3-a [14]) Let 1 be a pseudo-Riemannian metric on the manifold M =M1×M2 and (D1,D2)
the canonical foliations. Suppose that D1 and D2 intersect perpendicularly everywhere. Then (M, 1) is a doubly
twisted product f2 M1 × f1 M2 if and only ifD1 andD2 are totally umbilic foliations.

Lemma 4.10. (Lemma 3.1.1 [11]) Let f2 M1 × f1 M2 be a doubly twisted product. It is a doubly warped product if and
only if the mean curvature vector fields of canonical foliations are closed.

Motivated by Lemma 4.9 and Lemma 4.10, we can obtain the following result.

Lemma 4.11. Let f2 M1 × f1 M2 be a doubly twisted product. It is a warped-twisted product with warping function
f2 ∈ C∞(M2) and twisting function f1 if and only if the mean curvature vector field of canonical foliationD1 is closed.

Proof. The proof is very similar to the proof of Lemma 2.3 [8], so we omit it.

We now are ready to prove the main theorem.

Theorem 4.12. Let M be a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1).Then M is a locally warped-twisted
product submanifold if and only if its shape operator A satisfies the following equation

AFU JX − AFPUX =
1
2

{
ω(FPU)X − ω(FU)JX

}
+ sin2θ

{
ω(X)U − ω(U)X

}
(34)

for X ∈ Γ(DT) and U ∈ Γ(Dθ). Moreover, M is also a locally doubly warped product submanifold.
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Proof. Let M be a warped-twisted product submanifold of a g.c.K. manifold (M̄, J, ω, 1) of type f2 MT
× f1 Mθ.

For any X ∈ L(MT) and V ∈ L(Mθ), we write

AFU JX − AFPUX =
(
AFU JX − AFPUX

)T
+
(
AFU JX − AFPUX

)θ
, (35)

where
(
AFU JX −AFPUX

)T
is the tangent part of AFU JX −AFPUX to MT and

(
AFU JX −AFPUX

)θ
is the tangent

part of AFU JX − AFPUX to Mθ. Hence, for any Y ∈ L(MT), using (32), we have

1(AFU JX − AFPUX, Y) = 1
(1

2
ω(FPU)X −

1
2
ω(FU)JX − sin2θω(U)X, Y

)
.

Since Y ∈ L(MT) is arbitrary and the metric 1 is Riemannian, it follows that(
AFU JX − AFPUX

)T
= 1

2ω(FPU)X − 1
2ω(FU)JX − sin2θω(U)X. (36)

Similarly, for any V ∈ L(Mθ), using (33), we have

1(AFU JX − AFPUX, V) = 1
(

sin2θω(X)U, V
)
.

Since V ∈ L(Mθ) is arbitrary and the metric 1 is Riemannian, it follows that(
AFU JX − AFPUX

)θ
= sin2θω(X)U. (37)

Thus, by (35)∼(37), we get (34).

Conversely, suppose that M is a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1) such that (34)
holds. Then, for any X ∈ Γ(DT) and U,V ∈ Γ(Dθ), using (34), we deduce (23). Thus, by Theorem 3.2, the
holomorphic distribution DT is integrable. On the other hand, again using (34), we obtain (25). Thus, by
Theorem 3.4, the slant distributionDθ is integrable. Let MT and Mθ be the integral manifolds ofDT andDθ,
respectively and let denote by hT and hθ the second fundamental forms of MT and Mθ in M, respectively.
Then, for any X,Y ∈ Γ(DT) and U ∈ Γ(Dθ), using (9), we have

1(hT(X,Y),U) = 1(∇XY,U).

Here, if we use (22) and (34), we find

1(hT(X,Y),V) = − 3
2ω(U)1(X,Y).

After some calculation, we obtain

1(hT(X,Y),U) = 1(−1(X,Y) 3
2 Bθ,U).

Hence, we conclude that

hT(X,Y) = −1(X,Y) 3
2 Bθ.

This equation says that MT is totally umbilic with the mean curvature vector field − 3
2 Bθ. On the other hand,

for any X ∈ Γ(DT) and U,V ∈ Γ(Dθ), using (9), we have

1(hθ(U,V),X) = 1(∇UV,X).



H. M. Taştan, S. Gerdan Aydın / Filomat 36:5 (2022), 1587–1602 1597

Here, if we use (24) and (34), we find

1(hθ(U,V),X) = − 3
2ω(X)1(U,V).

After some calculation, we obtain

1(hθ(U,V),X) = 1(−1(U,V) 3
2 BT,X).

Hence, we conclude that

hθ(U,V) = −1(U,V) 3
2 BT.

It means that Mθ is totally umbilic in M with the mean curvature vector field − 3
2 BT.

Next, we prove BT and Bθ are closed. Let denote by ωT (resp. ωθ) the dual 1-form of BT (resp. Bθ). For
any X ∈ Γ(DT), we have ωT(X) = ω(X). Thus, for X,Y ∈ Γ(DT), we obtain

dωT(X,Y) = XωT(Y) − YωT(X) − ωT([X,Y]) = Xω(Y) − Yω(X) − ω([X,Y]) = dω(X,Y).

It follows that dωT = 0, since dω = 0. Namely, ωT is closed. Hence, BT is closed, since its dual 1-form is
closed. Thus, by Lemma 4.11, M is a locally warped-twisted product submanifold. Moreover, we can prove
that Bθ is closed in a similar way. Thereby, by Lemma 4.10, M is also a locally doubly warped product
submanifold.

Remark 4.13. We have just proved that a warped-twisted product semi-slant submanifold of a g.c.K. manifold
(M̄, J, ω, 1) is also a doubly warped product submanifold in Theorem 4.12. Therefore, from now on we will focus on
doubly warped product submanifolds of a g.c.K. manifold.

5. An inequality for doubly warped product proper semi-slant submanifolds

In this section, we shall establish an inequality for the squared norm of the second fundamental form of a
doubly warped product proper semi-slant submanifold in the form f2 MT

× f1 Mθ, where MT is a holomorphic
and Mθ is a slant submanifold of a g.c.K. manifold (M̄, J, ω, 1). Note that a general inequality for any doubly
warped product submanifold in arbitrary Riemannian manifolds was established in Theorem 3 of [12].

Let f2 M1 × f1 M2 be a doubly warped product manifold equipped with the metric 1 defined by

1 = ( f2 ◦ π2)2π∗1(11) + ( f1 ◦ π1)2π∗2(12). (38)

Then the covariant derivative formulas (2)∼(5) become

∇̄XY = ∇1
XY − 1(X,Y)∇̄(ln f2 ◦ π2), (39)

∇̄VX = ∇̄XV = V(ln f2 ◦ π2)X + X(ln f1 ◦ π1)V, (40)

∇̄UV = ∇2
UV − 1(U,V)∇̄(ln f1 ◦ π1), (41)

for X,Y ∈ L(M1) and U,V ∈ L(M2). It follows that M1×{p2} and {p1}×M2 are totally umbilical submanifolds
with closed mean curvature vector fields in f2 M1 × f1 M2 [11], where p1 ∈ M1 and p2 ∈ M2. We say that a
doubly warped product is non-trivial if it is neither warped nor a direct product.

Remark 5.1. [7] For a doubly warped product manifold f2 M1 × f1 M2, we have

∇̄(ln f1 ◦ π1) =
1

( f2 ◦ π2)2∇
1(ln f1 ◦ π1)

∇̄(ln f2 ◦ π2) =
1

( f1 ◦ π1)2∇
2(ln f2 ◦ π2).

(42)
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In view of the above convenience together with (38) and (42), the covariant derivative formulas (39) and
(41) become

∇̄XY = ∇1
XY −

( f2 ◦ π2)2

( f1 ◦ π1)2 11(X,Y)∇2(ln f2 ◦ π2), (43)

∇̄UV = ∇2
UV −

( f1 ◦ π1)2

( f2 ◦ π2)2 12(U,V)∇1(ln f1 ◦ π1), (44)

for X,Y ∈ L(M1) and U,V ∈ L(M2).
For more details on doubly warped products, we refer to the papers [7], [8], [11] and [19].

Remark 5.2. From now on, we will use the same symbol for a warping function fi and its pullback fi ◦πi for i = 1, 2.,
i.e. we will put fi = fi ◦ πi.

Lemma 5.3. Let M = f2 MT
× f1 Mθ be a doubly warped product semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, 1)

and h be the second fundamental form of M in M̄. Then we have

1(h(X,Y),FU) = −
(

1
2ω(FU) − ω(PU)

)
1(X,Y) + ω(U)1(X, JY), (45)

1(h(X,U),FV) = −ω(JX)1(U,V) − ω(X)1(U,PV), (46)

where X,Y ∈ L(MT) and U,V ∈ L(Mθ).

Proof. Let M = f2 MT
× f1 Mθ be a doubly warped product semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1) and let X,Y ∈ L(MT) and U ∈ L(Mθ). Since (M̄, J, ω, 1̃ = e−σ1) is a Kaehler manifold, using (12),
(18) and (8), we have

1̃(h̃(X,Y),FU) = 1̃(∇̃XY,FU)
= 1̃(∇̃XY, JU) − 1̃(∇̃XY,PU)
= −1̃(∇̃X JY,U) − 1̃(∇̂XY,PU)
= −1̃(∇̂X JY,U) − 1̃(∇̂XY,PU) .

Now, using (2), (14), (15) and (29), we get (45). Next, let X,Y ∈ L(MT) and V ∈ L(Mθ), since (M̄, J, ω, 1̃ = e−σ1)
is a Kaehler manifold, using (12), (18) and (8), we have

1̃(h̃(X,U),FV) = 1̃(∇̃UX,FV)
= 1̃(∇̃UX, JV) − 1̃(∇̃UX,PV)
= −1̃(∇̃U JX,V) − 1̃(∇̃UX,PV)
= −1̃(∇̂U JX,V) − 1̃(∇̂UX,PV) .

Now, using (3), (14), (15) and (26), we get (46).

Remark 5.4. We say that a semi-slant submanifold M is mixed geodesic, if h(X,U) = 0 for X ∈ Γ(DT) and
U ∈ Γ(Dθ).

Theorem 5.5. Let M = f2 MT
× f1 Mθ be a doubly warped product proper semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1). If M is mixed geodesic, then M is a warped product of the form f2 MT
×Mθ.

Proof. Let M = f2 MT
× f1 Mθ be a doubly warped product proper semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1). If M is mixed geodesic, then we have

ω(JX)1(U,V) = −ω(X)1(U,PV) (47)



H. M. Taştan, S. Gerdan Aydın / Filomat 36:5 (2022), 1587–1602 1599

from (46), where X ∈ L(MT) and U,V ∈ L(Mθ). Replacing X by JX in (47), we obtain

ω(X)1(U,V) = ω(JX)1(U,PV). (48)

Now, replacing V by PV in (48), we get

ω(X)1(U,PV) = ω(JX)1(U,P2V). (49)

By using (20) in (49), we arrive to

− cos2θω(JX)1(U,V) = ω(X)1(U,PV). (50)

By summing (47) and (50), we find

sin2θω(JX)1(U,V) = 0.

Since sin2θ , 0 in proper case and 1 is non-degenerate, it follows that

ω(JX) = 0.

But, (26) implies JX(ln f1) = 0. Which says us that the warping function f1 is constant. Thus, M is a warped
product of the form M = f2 MT

×Mθ.

By using (19), (26) and (46), we can prove the following result.

Theorem 5.6. Let M = f2 MT
× f1 Mθ be a doubly warped product proper semi-slant submanifold of a g.c.K. manifold

(M̄, J, ω, 1) such that the invariant subnormal bundleD = {0}. Then M is mixed geodesic if and only if it is a warped
product of the form M = f2 MT

×Mθ.

Let M = f2 MT
× f1 Mθ be a (m1 + m2)-dimensional doubly warped product proper semi-slant submanifold

of a g.c.K. manifold (M̄, J, ω, 1). We choose a canonical orthonormal basis {e1, ..., en1 , en1+1 = Je1, ...e2n1 =
Jen1 , ē1, ..., ē2n2 , e∗1, ..., e

∗

2n2
, ê1, ..., êl} of M̄ such that {e1, ..., en1 , en1+1 = Je1, ..., e2n1 = Jen1 } is an orthonormal basis

ofDT, {ē1, ..., ē2n2 } is an orthonormal basis ofDθ, {e∗1, ..., e
∗

2n2
} is an orthonormal basis of FDθ and {ê1, ..., êl} is

an orthonormal basis ofD. Here, 2n1 = dim(DT), 2n2 = dim(Dθ) and l = dim(D).

Remark 5.7. SinceDT is a holomorphic distribution, {Je1, ..., Jem1 } is also an orthonormal basis ofDT, where m1 =
2n1 = dim(MT). Moreover, by (21), we observe that {ā1 = secθPē2 , ā2 = − secθPē1, ..., ā2n2−1 = secθPē2n2 , ā2n2 =
− secθPē2n2−1} is also an orthonormal basis of Dθ and {cscθFē1, ..., cscθFēm2 } is also an orthonormal basis of FDθ,
where θ is the slant angle ofDθ and m2 = 2n2 = dim(Mθ).

Theorem 5.8. Let M = f2 MT
× f1 Mθ be a doubly warped product proper semi-slant submanifold a g.c.K. manifold

(M̄, J, ω, 1) such that the Lee vector field B is tangent to M. Then
(i) the squared norm of the second fundamental form h of M satisfies

∥h∥2 ≥ m1

(
csc2θ + cot2θ

)
∥Bθ∥2 +m2

(
csc2θ + (m2 − 1) cot2θ

)
∥BT
∥

2, (51)

where m1 = 2n1 = dim(MT), m2 = 2n2 = dim(Mθ).
(ii) If the equality sign of (51) holds identically, then Mθ is also totally umbilical in the ambient manifold M̄.

Proof. The squared norm of the second fundamental form h can be written as

∥h∥2 = ∥h(DT,DT)∥2 + ∥h(DT,Dθ)∥2 + ∥h(Dθ,Dθ)∥2.
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In view of decomposition (17), which can be explicitly written as follows:

∥h∥2 =
m1∑

r,s=1

m2∑
i=1

1(h(er, es), e∗i )
2 +

m2∑
i, j=1

m1∑
r=1

1(h(er, ēi), e∗j)
2 +

m1∑
r,s=1

l∑
t=1

1(h(er, es), êt)2

+

m1∑
r=1

m2∑
i=1

l∑
t=1

1(h(er, ēi), êt)2 + ∥h(Dθ,Dθ)∥2,

(52)

where l = dim(D). Hence, we have

∥h∥2 ≥
m1∑

r,s=1

m2∑
i=1

1(h(er, es), e∗i )
2 +

m2∑
i, j=1

m1∑
r=1

1(h(ēi, er), e∗j)
2.

By Remark 5.7, we write

∥h∥2 ≥
m1∑

r,s=1

m2∑
i=1

1(h(er, es), cscθFē j)2 +

m2∑
i, j=1

m1∑
r=1

1(h(ēi, er), cscθFē j)2.

Using (45) and (46), we obtain

∥h∥2 ≥ csc2θ
∑m1

r,s=1

m2∑
i=1

(
ω(Pēi)1(er, es) + ω(ēi)1(er, Jes)

)2
+ csc2θ

m2∑
i, j=1

m1∑
r=1

(
ω(Jer)1(ēi, ē j) + ω(er)1(ēi,Pē j)

)2
,

since ω(Fēi) = 0 in the case of the Lee vector field B is tangent to M. By a direct calculation, we get

∥h∥2 ≥ csc2θ
∑m1

r,s=1

m2∑
i=1

{
ω2(Pēi)12(er, es) + ω2(ēi)12(er, Jes) + 2ω(Pēi)ω(ēi)1(er, es)1(er, Jes)

}
+ csc2θ

m2∑
i, j=1

m1∑
r=1

{
ω2(Jer)12(ēi, ē j) + ω2(er)12(ēi,Pē j) + 2ω(Jer)ω(er)1(ēi, ē j)1(ēi,Pē j)

}
.

Here, by using (6)

m2∑
i, j=1

m1∑
r=1

ω(Jer)ω(er)1(ēi, ē j)1(ēi,Pē j)

=

m2∑
i, j=1

m1∑
r=1

1(B, Jer)1(ēi, ē j)1(B, er)1(ēi,Pē j)

=

m2∑
i, j=1

m1∑
r=1

1(B, Jer)1(B, er)1(ēi, ē j)1(ēi,Pē j)

= −

m2∑
i, j=1

m1∑
r=1

1(JB, er)1(B, er)1(ēi, ē j)1(ēi,Pē j)

= −1(JBT,BT)
m2∑

i, j=1

1(ēi, ē j)1(ēi,Pē j) = 0 .

In a similar way, we can conclude that

m1∑
r,s=1

m2∑
i=1

ω(Pēi)ω(ēi)1(er, es)1(er, Jes) = 0 .
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Thus, we arrive at

∥h∥2 ≥ csc2θ
∑m1

r,s=1

m2∑
i=1

{
ω2(Pēi)12(er, es) + ω2(ēi)12(er, Jes)

}
+ csc2θ

m2∑
i, j=1

m1∑
r=1

{
ω2(Jer)12(ēi, ē j) + ω2(er)12(ēi,Pē j)

}
.

Again by Remark 5.7, we find

∥h∥2 ≥ csc2θ
{

cos2θ
∑m1

r,s=1

m2∑
k=1

ω2(āk)12(er, es) +
m1∑

r,s=1

m2∑
i=1

ω2(ēi)12(er, Jes)
}

+ csc2θ
{ m2∑

i, j=1

m1∑
r=1

ω2(Jer)12(ēi, ē j) +
m2∑

i, j=1

m1∑
r=1

ω2(er)12(ēi,Pē j)
}
.

On the other hand, for i, j ∈ {1, 2, ...,m2},we have

1(ēi,Pē j) =
{ cosθ , i f i , j,

0 , i f i = j,

sinceDθ is a slant distribution with slant angle θ.

Consequently,
m2∑

i, j=1

12(ēi,Pē j) = m2(m2−1) cos2θ. Upon a straightforward calculation, we obtain the following

inequality:

∥h∥2 ≥ m1 cot2θ∥Bθ∥2 +m1 csc2θ∥Bθ∥2 +m2 csc2θ∥BT
∥

2 +m2(m2 − 1) cot2θ∥BT
∥

2.

Rearranging the last inequality, we get the inequality (51). If the equality sign of (51) holds identically, then
we have h(Dθ,Dθ) = 0 from (52). Namely, h vanishes onDθ. SinceDθ is a totally umbilical distribution on
M, it follows that Mθ is totally umbilical in M̄.

Remark 5.9. Whether the Lee form ω is exact or not does not change all the results in this paper. Thus, these results
also hold for locally conformal Kaehler case.
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