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Abstract. We introduce here a modification of the Ismail-May operators, preserving affine function and
estimate the order of approximation with the help of classical approach viz. the second order modulus of
continuity, and the Peetre’s K-functional. Further, we provide the convergence estimates for the differences

of Ismail-May operators and its Kantorovich variants. In the end, the convergence of the operators have
been depicted through illustrative graphics.

1. Introduction

We know that the discrete operators are not suitable for approximating integrable functions. Hence
they were appropriately generalised to integral type operators and one of the technique used, is due to
Kantorovich who proposed the integral modification of well known Bernstein polynomials. In the past few
decades, many researchers have worked upon the approximation properties of Kantorovich modifications
of different linear positive operators. For more insight into this area, one may refer to [1], [4], [8] and [20] etc.
Very recently Kajla in [22], estimated convergence results of some Kantorovich type operators in terms of
the modulus of continuity and Lipscitz function. Also, Bohman—Korovkin type approximation properties
and order of approximation is investigated by Dogru and Gupta in [9], also the rate of convergence of
certain linear positive operators was studied by Srivastava and Gupta in [25] and [26]. Generally, the

integral operators reproduce constant but fail to reproduce affine functions. For x € (0, 00), the Ismail-May
operators are defined by

Rif)x) = ) rn,j<x>f(£) (1)

j=0

where

. ,
o () = et 1)) ( x )J .
’ /! 1+x
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These operators are exponential type operators as they satisfy the differential equation:

POIRN = Y (= nx)r (0 f (%)
i=0

]

with
p(x) = x(1 + x)*.

These operators were proposed in [18, (3.14)] while the authors constructed several exponential type op-
erators. The approximation properties of these operators considering different basis functions have been
studied by the authors in [13] and [14].

The Kantorovich version of Ismail-May operators has the following form:

s (j+1)/n
RoH@ =1 1) f/ Fbt, x € (0,0 @
jin

j=0

These operators have no direct link with the Ismail-May operators R,, like other exponential type operators
viz. Berstein polynomials, Baskakov operators and Szasz-Mirakyan operators, which are directly connected
with their Kantorovich variants. There are technical problems in finding the connection due to non-
availability of proper differential equations of these basis. This may be treated as open problem for
researchers.

We observe that the Ismail-May-Kantorovich operators Rf preserve only constant function and fail to
preserve affine functions, so this motivated us to define the modified form of these operators and study its
approximation properties. For a function f belonging to the class of continuous functions defined on the
positive real axis, we define the following modified Kantorovich form of the classical Ismail-May operators
R, as:

© (j+1)/2n

RI*F)) = oo fO) + 1Y 1) fiodt, x €3, )

=) @j-1)/2n

It is seen that these modification is defined in the compact interval, rather than the positive real axis as in

Q).

2. Set of Lemmas

In the sequel, we use the following basic lemmas:

) o1
Lemma 2.1. (See[13],[14]) If Ry (e, x) = Z 7n,j(X) (%) ,i =0,1,2,... denotes the ith-moment, with e;(t) = t,i =
=0
0,1,2, ..., then we have the following recurrence relation:

p(x)

(Rueir1)(x) = — = [(Rue)@)]" + x(Ruei)(x),

and by simple computation, using the above recurrence relation, some of the moments are computed as follows:

Re)®) = 1, Ree)®) =1, Roea)w) =2+ 22,
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3xp(x) p(x)(x + 1)(1 + 3x)
n

(Rn€3)(X) = x3 + n2

and

6x%p(x) xp(x)(x +1)(7 + 15x) p(x)(x + 1)3(1 + 10x + 15x2)

_ 4
(Rne4)(x) = x + n n2 n3

Lemma 2.2. For each x > 0, the moments of the operators (RX f)(x) are given by the following:

1
Rreo)(®) = 1, (Rien)() =2+ -,
x(x*+2x+2) 1
(R]:l€2)(X) = x2 + 7 + %,
. , 32(22 +4x+3) x(6xt+20°+27% +18v+7) g
(Rne3)(x) = X+ 21’1 + 21/[2 + M,
. , 2332 +6x+4)  22(15x* +52¢° + 7227 + 48x + 15)
(Re@) = '+ . + 7
x (1526 + 7005 + 137x* + 144x° + 8727 +30x +6) 1
+ 3 + 5?
Proof. Using Lemma 2.1, we have
= (41)/n
®e) = nYni0 [ ar=1,
=0 j/n
0 (j+1)/n 0 2i+1 1
(R’,‘,el)(x) = n Z rn,j(x)f tdt = Z rn,]-(x)( ) =x+ o
[ jin =0
0 (j+1)/n 1 1 o . e 2
k _ . 200 4 . l . l
Rie)(x) = n;rn,,(x) » Pt = 2+ ;rn,](x)(n) + ;rn,](x)(n)

2x +2
+x(x+x )

3n2 !

n
s (j+1)/n
Ree®) = nY i) f Pat
j=0

=) . =) .\ 2 =) \3

11 PNATE ol ol

=13 + = Z 7, () (;) + o Z Tn,j(X) (E) + Z 7, () (E)
7=0 7=0 7=0

, 3P (22 +4x+3) x(6xt+20°+272% +18x+7) g

=x + + + —
2n 2n? 4n3’

(Réen)(x) = %+%Zm,-(x)(%%%Zrn,j(x)(ﬁ) +§Zrn,j(x).( ) +Zrn]<x>( )

=0 =0 =0 =0

203 (3x% + 6 +4)  x? (15x* + 52x° + 7237 + 48 + 15)
=x*+ + 5
n n
x (1526 + 7005 + 137x* + 144x° + 8727 +30x +6) 1
+ + —.
nd 5n#
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Lemma 2.3. The moments of Kantorovich operators R, preserving affine function are given below:

Ri*ep)(x) = 1, (Ri¥er)(x) =x,
x(x + 1)? 1
Rife)@) = x*+=——+—,
3 +1)2 x(4Gx+)(x+1)7° +1)
Rfe)@) = x*+ =+t o :
. 4 6+ 1% (v +1)3(15x + 7)x? x((n +2)x+2 (15x2 +10x + 1) (x+1)° +x%+ 1)
(Reg)(x) = x*+ + 5 +
n n 2n3
N
16014
L . 10+ 124 5 (60x+5)(x +1)° +1) 2> 5(x+1)2(6(72 + 6x + 1) (x + 1)2 + 1) 22
(Rfes)(x) = x°+ " + o + o
48 (105x° + 105x2 + 25x + 1) (x + 1)° + 40x(3x + 1)(x + 1)° + 3x
- 48n*
and
15+ 120 5(4QLr+13)(x + 1P + 1)t 15(x +1)% (4 (1422 + 142+ 3) (x + 1) + 1) °
(R"eg)(x) = x°+ + +
n 4n? 213
(16 (9455 + 115542 + 385x + 31) (x + 1)° + 20(15x + 7)(x + 1)° + 3) 2
+
16n*
(x +1)2 (20 (1552 + 10x + 1) (x + 1) + 16 (945x* + 1260x° + 490x2 + 56x + 1) (x + 1)* + 3) x
+
16n°
P
44876

Proof. Clearly, we have
(Rie)(x) = 1.

Also, by simple computation and applying Lemma 2.1, we have

o @j+1)/2n " 2j+1\2 (2j-1)°
(R"™e)(x) = nYy r,i(x) tdt ==Y 1,i(x) [( ) —( )
" ; v (2j-1)/2n 2 ]:ZO vl 2n 2n
= Z Tn,j(X) (i) =X,
j=0
o @j+1)/2n 0 2j+1\ (2j-1\
RFe)x) = 1Y i) Pt =2 Y 1 (x) ( ) —( )
" ; v (2j-1)/2n 3 ; " 2n 2n
o \2
_ L) 4L e e 1
B ;rn,](x)(n) T TN T T T
00 (2j+1)/2n o0 2i4+1 4 2i-1 4
mk _ . 394 E . J+ _ ]
Ry e3)(x) = ”g’”w(x) 2i-/om rdt = 4§”n,1(x) ( o ) ( o )
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1 o ] 2 o ] 3
= ngn](x)(a) +;1’n,j(x)(a)

o, B x(4Bx + 1)(x +1)° +1)

n 4n2
I~ @j+1)/2n n & 2j+1 5 2j-1 5
(Rifes)) = 1) 1ujx) tdt = — ) 1i(x) ( ) _( )
;)' " Jejn 5 ;; ! 2n 2n

1 1 + ' . '
= —160n4 + ﬁ;rn](x)( ) Zrn](x)(n)

=0

p, B+ @15 4D x((n+2)x + 21502 +10x + 1) (x + 1) + 22 + 1)
n n? 2n3

o
160n%"

Proceeding similarly, we obtain the values of (R"es5)(x) and (R eg)(x). O
From above estimate, it is clear that our modified form (R f)(x) preserve the affine function.

Lemma 2.4. If we denote the i-th central moments by
1 (x) = (RIK(E = x))(x), i € N U{O), then

@ = 1, =0, @ @)= et 1f 121?,
[J?mk(x) _ox(x+ 12132(39( + 1)’
- 32(x+ 1)t X(30x% +110x* + 15253 + 9627 + 26x + 3) (x + 1)? 1
Hy' )= 2 e " Toont’
- 52 (x + 1)t (—150° — da? + 7x + 2)
ts" (x) = 3
x(2(48 (1052 + 105x2 + 25x + 1) (x + 1)° + 40(3x + 1)(x + 1)° + 3) - 3)
* 96n*
and
- 15¢% (152% + 1122 + 3x + 1) (x + 1)’
He' () = 3
. x? (10080x® + 6720027 + 192320x5 + 307200x° + 297720x* + 177760 + 63120x? + 120001 + 917)
32nt
x(x + 1) (151202° + 8064047 + 179200 + 2136962° + 146700x* + 57760x° + 12240x? + 1200x + 39)
* 165
—
44816

In general, yf}yk (x) = O(n ) where [B] denotes the integral part of .

Proof. The proof of the above lemma follows by using linearity property of the operators and Lemma
23. O
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Lemma 2.5. Forx € [%, 0), we have

(RNt = x)(x) < \/max (2, (1+x)?2+ %) \/g

Proof. For x € [}, ), we may observe that

= 3000 < R0 = 0 e

For x € (0, %), we have

o0 @j+1)/2n
RIFE= X)) = To()x+71 ) 7 i(x) Ju = xldu
= @j-1)/2n

= ro(®)x + (Ryen) (x) — x (R} ¥e0) (x) = rn0(x))
<2x < \/g .
n

Lemma 2.6. Let f be a bounded function on [0, c0), with ||f|| = sup |f(x)|, then

x€[0,00)

Thus the result. [

IR £ < NIl

3. Ordinary Approximation

Let Cy[0, o) be the space of all uniformly continuous and bounded functions defined on [0, o) and
C7[0,00) = {g € C7[0,0) : ¢, 9" € Cy[0, ©0)}. Then, we have the following theorems:

Theorem 3.1. Let f € Cp[0, 00), then for any x € [0, 00), we have

1 1)?
(RIH() = f0)] < Cas (f, NE ] -

where C is an absolute constant.

Proof. Let g € C7[0, 0) and x, t € [0, o). By Taylor’s expansion, we have

t
RI*g)(x) — g(x) = g’ ()Rt — 2))(x) + (R™( f (t = uw)g"” (u)du))(x).
We observe that

f (t - )" (u)du] < (¢ — 2219”1

Hence

t
(R 9)) 90| = ‘(RZ“‘( f (- w)g” ()W) < 3" (Wl
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From Lemma 2.4, we have

1 + 1)?
— 4 M)”g"”.

12n2 n

R 9)x) - 90| < (

Making use of Lemma 2.6, we obtain

A

(REFF)(x) = f)] < IRI(F = 9)(x) = (f = )] + IR g)(x) — ()]

1 x(x+1?%\, ,
2lf —gll + (@ + T) llg”1l.

IA

Now, for g € Ci[O, o0) and f € Cp[0, o), there exists a positive constant C such that

Ka(f, 8) < Can(f, Vo), (4)

where w,(f, .) denotes the usual second order modulus of continuity and the Peetre’s K-functional is defined
as

Ky(f,0) = inf{ll f =gl +6 11 9" Il

For more insight, one may refer [7, pp. 177, Theorem 2.4]. So, taking infimum on the right hand side over
allge Ci[O, o) and using the relation (4), we get the desired result.
0

Next, we use weighted modulus wg(f; k) introduced by Paltanea in [24] defined by
x+y
wo(f;h) = sup{lf(x) W x20,y20,x—yl < hG(T)};h >0

where 0(x) = x2(1 + ™)L, x € [0,00),m = 2,3,4, ....
Let Wpg[0, o) be the subspace of all real functions defined on [0, ), for which the following conditions hold:
i) %irré wg(f; h) = 0 whenever the function f o e, is uniformly continuous on [0, o).

ii) Fori =

52—, f o e; is uniformly continuous on [1, ).

Let E be a subspace of C[0, o) such that C;[0, o0) C E with s = max{m +r +1,2r + 2,2m},

Cs[0,00) = {f € C[0,00) : |f(x)| < M(1 +x°),s € N, forall x>0,M > 0}

Theorem 3.2. If f € C5[0, 00) and f” € Wyl0, 00), the for x € (0, 00), we have:

(x(x +1)2 . L)
n

‘(Rmk )0 - ) - 3£ =

Rmk

2
—x(le) 1212 + \/_\/R’”k 1+ x+| le) ]}(x)]we 1 [yéx(X)] ,

mk
where ylg” (x) is the 6th central moment as indicated in Lemma 2.4.

1
-2
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Theorem 3.3. If f € C[0, 00) and f” € Wyl0, o), the for x € (0, 00), we have:

<3 [uz (x) + \/guiz’%x)cn,m(x)] wol f";

R F)(x) = f(x) - f WU ()] <

where

e Muges(x)
Com() =1+ ns(x)E() =,

M, x(x) are the absolute moments of order k and for the operators R’ Mik (4 < k < m) is a bounded ratio for fixed

n 7 My

k and m, when n — oco. Also, tuI;ZXk(x) and yf‘nk (x) are the 2nd and 4th central moments respectively as indicated in
Lemma 2.4.

The proofs of the above two theorems follow along the lines of [17], we omit the details.

4. Difference of Operators

The differences of operators have been investigated by many researchers for the past few years and
the recent work may be studied in [3], [10] and [15] etc. Here, in this section, we provide the quantitative
estimate for the differences of Ismail-May operators (R, f)(x) with its Kantorovich version (Rk f)(x), Ismail-
May-Kantorovich operators (R¥ f)(x) with Szdsz-Mirakyan-Kantorovich operators (S¥ f)(x) and Ismail-May-
Kantorovich operators (R f)(x) with Baskakov- Kantorovich operators (VX f)(x). We consider the weighted

modulus of continuity Q(g, 0) see ([2]), defined as ((g,0) = sup w
m<sxz0 (1 +h2)(1 +x2)

If we have two positive linear operators, say

(U f)) = Z JOFui(f)

and
(V@) = Y ()G j(f),

=0

then the result on difference of operators (with same basis) in weighted space is given below (as provided
by Aral et al. [5], also see Gupta et al. [15]):

Theorem A. For f € C,[0, o0), then we have

(U = Vi) ) < %IIf"IIA(X) +8Q(f”, a1)(1 + A(x)) + 16€X(f, a2)(B(x) + 1),
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where
Alx) = Z‘ un,j(x)[(l + (bF,z,j)Z)‘ugn,j +(1+ (bG’Z'f)2)pS"’f],
=0
B(x) = Z Mn,j(x)[(l + (b(FG)“rf)z)],
j=0
af = ) @[+ O+ @+ g,
=0
ai = Zun,j(x)(l T (BECRIRY (B — i)t
=0
with
pEGn; = mii’l(bF"//, bG”’j)/ pHui = Hn,j(el)/
and

Hy (T i i
Uy h= ZO (l)(_l) Hn,j(er—i)[Hn,j(el)] .
Also, for the difference of two linear positive operators with different basis, we apply the following
result as provided by Gupta [10] and Gupta-Acu [11].
Theorem B. For the two operators S, := Z]f’io Sn,j(X)Ly,j(f) and T, := Z}'O:O tn,j(x)M,j(f), we have

C(x)

(Sa=TAE] < Z2f71+20(f, 7 + 2(f, y2),m €N,

0 Ly, 0 M.,
where C(x) = Z]-:O Sn,j(X) 1y + Z]-ZO tn,j )y ",

(9]

2
V3= Y s j(0) [Lujen) - 2]
=0
and -
2
V3= ) () [Ma(er) - 2]
=0
with f@ € Cy[0,0),i € {0,1,2}, x € [0,00) and ||| = sup |f(x)| < oo,

x€[0,00)

4.1. Error Estimation: Ismail-May operators and Ismail-May-Kantorovich operators

Here, we obtain the quantitative estimate for the difference between the operators (R, f)(x) and (R¥ f)(x).
As the application of Theorem A, we have the following;:

Theorem 4.1. Let f € Cp[0, 00). Then for Ismail-May operators defined by

(Ruf)x) = X520 T j(X)Fo (), where Fuj(f) = £(£)

and Ismail-May-Kantorovich operators defined by

(j+1)/n

RN = Y@ where i) = [ fiont, ®)

]:O ]/Vl
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we immediately have
1
(Ru =R < SIF7IAC) +8Q(f7, a1) (1 + A() +16Q(f, a2) (1 + B(x)),

where the values of A(x), B(x), a1 and a, are provided in the proof below.

Proof. We have
2j ] +1

b]”l ]n](el) -
Also,

W= Juier) = 20 )l + U jen)?

R I

and
Hé’” = Jnj(es) = 6]nj(es)]nje1) + 15]u,j(€s)[Jn j(e)]* = 207, j(e3) ] j(€1)® + 15, j(€2) ] j(e1)]*
1
T 14815

Next, we have )
bt = Fyj(er) = % w" =0,reN.
From Lemma 2.1 and the values obtained above, we get
= - 2j+1 1
. . : ]m /
AR = ]Z(; n (L " + (L O ]Z; g J(x)[(l * ( 2 ) ] o

1+ 4nx(2 +2x + x2) + 4n(1 + xz)
48n4
Further, using Lemma 2.1, we have

B(x) = i rn,j(x)[(l + (b(FD"J)Z i r,,,(x)[( 2 )] _n+ nx® + x(x + 1)2'

n
=0 j=0

Next proceeding in the same manner, we get

o : S 2j+1V) 1
0(% _ Z Tn] x)[(l + bFﬂ])z)[J j + (1 + (b]n/)Z J / Z rn] X)I:(l + ( mn ) ] 4487’[6]
70 =
B 1+4nx(2+2x+x)+n2(2+4x2)
- 896mn8

o : ,
Now b = L hence on applying Lemma 2.1, we obtain

4 = (FDiN2 F . T iV4 - j2 ] 2j+14
a3 Y O+ PP bF = by = Y () (1 + ;)(— - )

2
pry = n n

n(1 + x)% + x(x + 1)?
1615

Hence the result follows.
O

1644

=5[] j(en)]°
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4.2. Error Estimation: Ismail-May-Kantorovich operators and Szdsz-Mirakyan-Kantorovich operators

The Szész-Mirakyan operators are defined as (S, f)(x) = Z;’ZO Sn,j(X)Fn,j(f),

where s, j(x) = e™™ (”].Y)] and F,, ;(f) = F(L).

Their generalization was introduced by Jain in [21] but the Durrmeyer type modification of the generalized
Szédsz-Mirakyan operators has not been discussed much in the last four decades due to complications in
finding moments. However, this difficulty was overcome by Gupta and Greubel in [16].

e8]

o\

Lemma 4.2. [12] If (Spe)(x) = Z S, (%) (%) , 1 € N U {0} denotes the ith-moment, then we have the following
=0

recurrence relation:

(Sueir)() = S[(Sne) @] + X(Sue) ).

and the few moments are:

)@ = 1, S =% (S =+
and
3x?  x
(Sne3)(x) = .X + 7 + ﬁ

The Szasz-Mirakyan-Kantorovich operators are defined as

]+1)/n

(SENE) = L2 50,j(xX)]n,j(f), where [, ;(f) = f(Hdt

Here, we obtain the quantitative estimate for the difference between the operators (R f)(x) and (S¥ f)(x).
As the application of Theorem B, we have the following:

Theorem 4.3. Let f € Cy[0, 00). Then for Ismail-May-Kantorovich operators defined by

f)(X) Orn](x)]n](f)

and for Szdsz-Mirakyan-Kantorovich operators defined by

(ShN) = X320 5n,j(0)]n,i(f), we have

R L e P P ]

n n?  n
Proof. Here )’ = T
Thus
Cw = Y i +an](x)uf"f =
=0

Now, by simple analysis, using Lemma 2.1 and Lemma 4.2, we obtain

x(x + 1)?
n

=Y i) [t = = o5+

=0
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and
2 ZDO ' 2 1 x
"5 sus@ Jnste = = g7+

Hence, we have the required result. 0O

4.3. Error Estimation: Ismail-May-Kantorovich operators and Baskakov-Kantorovich operators

The Baskakov operators are defined as (V. f)(x) = ):]20 On,j(X)Fy,j(f),

where v, j(x) = ("+;_1)(1+§]‘),,+,‘ and Fy;(f) = F(%)

(o) N1
Lemma 4.4. [15] If (V,e;)(x) = Z Un,j(x) (%) , i € N U {0} denotes the ith-moment, then we have the following
=0
recurrence relation:
n(Vyein)(x) = x(x + DI(Vae:) ()] + nx(Vyei)(x).

and the few moments are:

x*n+1)+x

(Vneo)(x) n

L (Vier)(n) = x, (Vue2)(x) =

and

¥}n+1)n+2)+3%2n+1) +x

(Vne?a)(x) n2

The Baskakov-Kantorovich operators are defined as

(o]

(VEAE) = Y 00 (i),

=0

where [, i(f) is given in (5). Here, we obtain the quantitative estimate for the difference between the opera-
tors (RK f)(x) and (VX f)(x). As the application of Theorem B, we have the following:

Theorem 4.5. Let f € Cp[0, 00). Then for Ismail-May-Kantorovich operators defined by
RENE) = LiZo 7, i) (f),

and Baskakov-Kantorovich operators defined by

(VERY®) = X2 0 () (), we e

1 1 1)2 1 1
(R~ VHAI < Wllf”llﬂw(f, o+ ))+2w(f, o )],

n

here ], (f) is given in (5).
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Proof. Here

C) = Zrn,](xw +Zvn,](x>uf"’——

j=0
Now, using Lemma 2.1 and Lemma 4.4, we are led to
(o] 00 . 2 2
1= < ; g | H 1 1 x(x+1)
yl - ; rn,j(x) []n,](el) - x] = ]:ZO rn/](x) [7 —x| = R + .
and
o o ) )
2 _ , , 2 _ PNEER 1 x(x+1)
V2 = ]Z:(; U, j(x) []n,](el) - x] = ]Z:(;Un’](x) [T x| =g

Combining the above estimates, we have the required result. [

5. Graphical Representation

The convergence of modified operators R f to the function f, where f(x) = x> —x +1 for different values
of n is represented in the following graph:

: — n=10
1.3F
1.2F

E _—n=30
11 n=100
1.0 — n=200

C f(x)
0.9F
0.8F

[ 1.0

Figure 1: Convergence of (Rzlk f)(x) to the function f(x) = ¥2 —x+1forn=10,n=230n1n=100and n = 200.

It may be concluded that the operators R converge to the function more rapidly as the value of n
increases.
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