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Abstract. Malaria and Tuberculosis are both the severe and causing death diseases in the world. The
occurrence of TB and malaria as a coinfection is also an alarming threat to the human. Therefore, we
consider a mathematical model of the dynamics of malaria and tuberculosis coinfection and explore its
theoretical results. We formulate the model and obtain their basic properties. We show that at the disease
free case each model is locally asymptotically stable, when the basic reproduction number less than unity.
Further, we analyze the phenomenon of backward bifurcation for coinfection model. For the sub models,
we present the local stability for the disease free case whenever the basic reproduction number less than 1.
Further, an optimal control problem is presented to investigate the dynamics of malaria and tuberculosis
coinfection. The numerical results with different scenarios are presented. The mathematical model with
and without control problem are solved numerically using the Runge-Kutta backward and forward scheme
of order four.

1. Introduction

Infectious diseases are modeled effectively through mathematics are considerately effective to address
their disease mechanism well. Mathematical models can best describes the disease status, whether, it can
be controlled or not. The micro-organisms, pathogens such as viruses, bacteria, fungi or parasites are the
causes of infectious diseases. It may cause by a direct mode or an indirect mode or person to person,
with different route transmission. Malaria and tuberculosis (TB) are considered the major public health
problems throughout the world. An estimate shows the approximately 1200 children die each day due to
malaria while 3800 children die due to TB each day, throughout the world [14, 15]. The recent advancement
in medical sciences, these diseases are still an alarming for the public health. The most prevalent bacterial
disease in the humans is the TB which is caused by the Mycobacterium tuberculosis. A report shows that
this disease places the second position amongst the common infectious diseases in the world [22]. Mostly
the TB, infects the lungs. Besides this, it can affects the circulatory, urinary and central nervous system,
and also the skin, bones and joints. The transmission of this disease among human is occurred by droplets,
those having infections in throat and lungs of active respiratory disease [15]. A people with active TB,
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the transmission takes place. The symptoms include, chest pains, coughing, weight loss, weakness and
fever etc. [15]. This disease is treated with the available antibiotics, a course of six to nine months. The
TB can be minimized by the isolation of patients who have the TB disease and an immediate start of the
anti-tuberculosis therapy. A source shows that globally, the new cases of TB decreases whereas the cases
increases in Sub-Saharan Africa [15].

Malaria is one of the vector borne disease that caused by the bites of mosquito. The plasmodium which
is a parasite is the source of causing malaria. The parasites increases in the human liver and results to infect
the red blood cells [14]. Vomiting, headache, and fever are the common symptoms of malaria. Delay in
treatment can cause severe life threating, by disrupting the blood supply to the vital organs [14]. In human
population the exposure of pathogens is rare and in Africa, the infections with more than one shows a
wide public health threat [9]. Malaria and TB, HIV-AIDS, are considered the three major global health
problem, which causes, mortality, morbidity, human suffering and negative socio-economic impact [22].
The above mentioned diseases are endemic in populations. Literature show on the dynamics of malaria TB
and related topics have been considered and discussed [8, 16, 19, 24, 25]. For example, in [16], an author
investigates the presence of malaria infection with TB person. In [18], the author investigated and obtained
the results. He observed that in adults the malaria increase significantly the incidence of reactivating latent
TB. Mathematical modeling of coinfection is the interning research area now-a-days to the researchers and
biologists. For example, in [20], a mathematical model on the dynamics of HIV and TB is formulated
and discussed. In [10], HIV-malaria coinfection model is formulated and the results are investigated and
discussed. In [13], the HIV-AIDS and cryptosporidiosis coinfection model is formulated with different
control strategies.

Motivated by the above studies, we formulate a mathematical model on TB and malaria coinfection.
The literature on each disease and on their coinfection has been discussed in detailed above. The rest of
the work present in this paper is categorized is as follows: Model formulation of TB and malaria and their
codynamics is presented in section 2. The only TB model is formulated in section 3 while in section 4
the dynamics of the only malaria model is presented. The TB malaria coinfection model is discussed in
section 5. In section 6, the optimal control model of the coinfection is formulated and presented the results
associated. Numerical results with brief discussion is presented in section 7 and in section 8, we finalized
the work by conclusion.

2. Model Formulation of TB and Malaria Coinfection

The total human population, N(t), subdivided into, susceptible individuals S(t), individuals exposed to
malaria only Em(t), individuals infected with malaria only Im(t), individuals recovered from TB and malaria
both are R, individuals exposed to TB only Etb(t), individuals infected from TB only Itb(t), individuals
infected from TB only treated Ttb and the individuals dually infected from TB and Malaria Imt. So, the total
population of humans individuals is,

N = S + Em + Im + R + Etb + Itb + Ttb + Imt.

The population of vector Nv(t) is subdivided into three mutually exclusive classes, Sv(t)-susceptible, Ev-
exposed and Iv(t)-infected vector. So,

Nv = Sv + Ev + Iv.
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The above discussions leads to the following system of nonlinear differential equations:
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d
dt S = Λ − λtbS − λmS − dS,

d
dt Em = λmS − (τm + d)Em,

d
dt Im = τmEm − (d + dm + γm)Im − λtbIm,

d
dt R = γmIm + αtbTtb + ψmtImt − dR,

d
dt Sv = Λv − λvSV − dvSv,

d
dt Ev = λvSv − (dv + τv)Ev,

d
dt Iv = τvEv − dvIv,

d
dt Etb = λtbS − (d + ǫtb)Etb + (1 − ηtb)δtbTtb,

d
dt Itb = ǫtbE + ηtbδtbTtb − (d + γtb + σtb)Itb − λmItb,

d
dt Ttb = γtbItb − (d + δtb + σtbt + αtb)Ttb,

d
dt Imt = λtbIm + λmItb − (ε + d + ψmt)Imt,

(1)

where λtb =
βtbσtbItb

Ntb
, λm =

βmσmIv

N and λv =
βvσmIm

N . The population of susceptible individuals is recruited by

the rate Λ. The natural death rate of human and vector is respectively shown by d and dv. The humans
individuals exposed to malaria are infected at a rate of τm, dm is the death rate of infected individuals due
to malaria and the rate of recovery from malaria is shown by γm. The population of vector is recruited by
Λv. The exposed vector becomes infected at a rate of τv. The parameters βm shows the contact with malaria
in humans while βv with contacts of malaria in mosquitoes. The force of infections λm and λv respectively
represent human contact with infected mosquito and mosquito contact with infected individuals. The per
rate biting of mosquitos (females) is given by σm. The rate of progression of infected individuals due to TB
to the infected class is shown by ǫtb, the death rate due to TB is given by σtbt. At a rate of γtb the infected
individuals are treated. The individuals due to TB are recovered at a rate αtb. The treated individuals enter
to either latent class due to the remainder of Mycobacterium tuberculosis or infective class Itb due to the
failure of treatment at the rate δtb. The parameter ηtb measures the treatment failure. The parameter λtb

represents force of infection with active TB individuals while the infection is transmitted at a rate σtb that
shows its probability. The dually infected individuals dies from the coinfection is given by ǫ. The parameter
βtb shows the contact rate for TB while the recovery rate is ψmt for dual infected people. In Table 1, we
shown the variables and the definitions of the parameters.

Solution positivity

Lemma 2.1. Consider the data initial be {(S, Sv)(0) > 0, (Em, Im,R,Ev, Iv,Etb, Itb,Ttb, Imt)(0) ≥ 0} ∈
∏

. Then, the
solution set {(S,Em, Im,R, Sv,Ev, Iv,Etb, Itb,Ttb, Imt)(t)} of the coinfection model (1) will remain positive for every t > 0.

Proof. It follows from the first equation of the coinfection model (1), we have

d
dt S = Λ − λtbS − λmS − dS,

≥ −(λtb + λm + d)S
(2)

Taking integration of the equation (2) with respect to t, we obtain

S(t) ≥ S(0)e−
∫

(λtb+λm+d)dt ≥ 0, as λtb + λm + d > 0.

for the initial data, S(0) > 0, then we have S(t) > 0, for the rest of the variables of the coinfection model (1),
are positive for all the initial data positive remains positive for all time t > 0.



A. K. Alzahrani, M. A. Khan / Filomat 36:6 (2022), 1789–1818 1792

Variable Description
S Population of susceptible individuals
Em Individuals exposed to malaria
Im Infection of people with malaria only
R Recovery from malaria, TB and its dual infection
Sv Susceptible vector
Ev Exposed vector
Iv Infected vector
Etb Individuals exposed to TB only
Itb Individuals infected from TB only
Ttb Treatment of infected Individuals with TB only
Imt Individuals infected with both TB and malaria

Parameter Description
Λ Recruited rate of susceptible individuals
d, dv Natural death rate of human and vector
τm Humans individuals exposed to malaria infection rate
dm, σtbt, ε Disease death rate of humans due to malaria, due to TB, dual infection
γm, αtb, ψmt Rate of recovery from malaria infected only, TB infected only and dual infection
Λv Recruitment rate of vector population
τv Rate of flow from exposed vector to infected vector
ǫtb Rate of flow from exposed TB to infected TB
βtb, βm, βv Contacts rate
γtb Treatment rate of TB infected individuals
δtb, ηtb Rate of flow of TB, treatment failure
λtb, λm , λv Force of infection
σm, σtb Modification parameters for

Table 1: Definitions of the model variables and parameters.

2.1. Invariant regions

It is obvious that the coinfection model (1) consists of humans and vector populations so all the variables
are positive and non-negative for every time t > 0.

Lemma 2.2. The region Ω = Ωh ×Ωv, contains the solutions of the coinfection model (1).

Proof. First, we show that all the feasible solutions are uniformly bounded in the set Ω. The coin-
fection model (1) has two parts, the human population N and the vector population Nv. Consider
{(S,Em, Im,R,Etb, Itb,Ttb, Imt) ∈ R8

+} be any solution of the coinfection model with nonnegative initial con-
dition, then, N′ < Λ − dN, and we have the solution 0 ≤ N ≤ Λd when t → ∞. So, it can be seen that all the
feasible solutions of the coinfection model (1) remains in the region

Ωh = {(S,Em, Im,R,Etb, Itb,Ttb, Imt) : N ≤
Λ

d
}. (3)

Similar result can be show for vector population,

Ωv = {(Sv,Ev, Iv) : Nv ≤
Λv

dv
}. (4)

Thus, it follows from equations (3) and (4), that all the feasible solutions of the coinfection model (1) will
remains in

Ω = Ωh ×Ωv. (5)

Thus, Ω is the feasible region for the coinfection model (1), and is positively invariant, bounded and the
existence and uniqueness and the continuations results hold. Further, it is well-posed epidemiologically
and mathematically and is sufficient to study the dynamics of the coinfection model (1) under the region
Ω.

Next, we study each submodel in detail.
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3. Only TB model

The aims of this section is to investigate the dynamics of the Only TB model. The only TB model given
by (6), can be obtained easily by setting Em = Im = Sv = Ev = Iv = Imt = 0. So, we have

d
dt S = Λ − λtbS − dS,

d
dt Etb = λtbS − (d + ǫtb)Etb + (1 − ηtb)δtbTtb,

d
dt Itb = ǫtbEtb + ηtbδtbTtb − (d + γtb + σtb)Itb,

d
dt Ttb = γtbI − (d + δtb + σtbt + αtb)Ttb,

d
dt R = αtbTtb − dR,

(6)

where λtb =
βtbItb

N , and N = S + Etb + Itb + Ttb + R. The biological feasible region for the only TB model is

ΩT = {(S,Etb, Itb,Ttb,R) ∈ R5
+ : (S,Etb, Itb,Ttb,R) ≤ Λd }which is positively invariant and is sufficient to consider

the dynamics of the only Tb model (6) in the region ΩT.

3.1. Local stability analysis disease free equilibrium (DFE) of the only TB model

The DFE of the only TB model is

P0
tb =
(

S,Etb, Itb,Ttb,R
)

=
(Λ

d
, 0, 0, 0, 0

)

,

and their basic reproduction number RTB
0 is obtained by using the method [21].
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and the required basic reproduction number for only TB model is

RTB
0 =

βtbσtbǫtb

(d + ǫtb)
(

d + γtb + σtb
) +

γtbδtbηtb
(

d + γtb + σtb
)

(d + αtb + δtb + σtbt)

+
γtbδtb

(

1 − ηtb
)

ǫtb

(d + ǫ1)
(

d + γtb + σtb
)

(d + αtb + δtb + σtbt)
,

= RTB
1 + R

TB
2 + R

TB
3 .

Further, we have the local asymptotical stability result for the only TB model (6) in the following theorem.

Theorem 3.1. The only TB model (6) at the DFE P0
tb

is locally asymptotically stable if RTB
0
< 1.

3.2. Endemic equilibria of the only TB model

The endemic equilibrium of the only TB model (6) denoted by ETB
1

and is given below,
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S∗ = Λ
d+λ∗

tb

,

E∗
tb
=

λ∗
tb

S∗+T∗
tb
δtb(1−ηtb)

d+ǫtb

T∗
tb
=

I∗
tb
γtb

d+αtb+δtb+σtbt

R∗ =
T∗

tb
αtb

d ,

(7)
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Plugging the expression (7) in the second equation of the only TB model (6), we obtain

Φ1I∗tb + Φ2 = 0,

where

Φ1 = ǫtb
((

1 − βtb
)

σtb (d + αtb + δtb + σtbt) + γtbσtbt
) (

γtb
(

dδtb
(

1 − ηtb
)

+ (d + ǫtb) (d + σtbt)
))

+ǫtb
((

1 − βtb
)

σtb (d + αtb + δtb + σtbt) + γtbσtbt
)

(

αtb (d + ǫtb)
(

d + γtb + σtb
)

+ (d + σtb) (d + ǫtb) (d + δtb + σtbt)
)

,

Φ2 = (Λǫtb (d + ǫtb)
(

d + γtb + σtb
)

(d + αtb + δtb + σtbt)
2)(1 − RTB

0 ).

The coefficients Φi for i = 1, 2 are positive and therefore the endemic equilibrium of the only TB model
exists for RTB

0
> 1.

4. Malaria model

The only malaria model (8) given by the following can be obtained by setting Etb = Itb = Ttb = Imt = 0,
we have

d
dt S = Λ − λmS − dS,

d
dt Em = λmS − (τm + d)Em,

d
dt Im = τmEm − (d + dm + γm)Im,

d
dt R = γmIm − dR,

d
dt Sv = Λv − λvSV − dvSv,

d
dt Ev = λvSv − (dv + τv)Ev,

d
dt Iv = τvEv − dvIv,

(8)

where λm =
βmσmIv

N , λv =
βvσmIm

N , N = S + Em + Im + R and Nv = Sv + Ev + Iv.
The feasible region for the only malaria model (8) is

Ω =
{

(S,Em, Im,R, Sv,Ev, Iv) : N ≤
Λ

d
, Nv ≤

Λv

dv

}

.

We show further thatΩ is positive invariant and will be sufficient to consider the dynamics of Ω:

N′ = S′ + E′m + I′m + R′,

= Λ − dN − dmIm, (9)

and

N′v = S′v + E′v + I′v,

= Λv − dvNv. (10)

The right hand sides of both the equations (9) and (10)are bounded by Λ − dN and Λv − dvNv respectively.
It follows that N′(t) < 0 if N(t) > Λ/d and N′v(t) < 0 if Nv(t) > Λv/dv. Further, we have by using the standard
comparison theorem [6],

N(t) ≤
Λ

d
+
(

N(0) −
Λ

d

)

e−dt,
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Nv(t) ≤
Λv

dv
+
(

Nv(0) −
Λv

dv

)

e−dvt.

In particular if

N(t) ≤
Λ

d
, i f N(0) ≤

Λ

d

and

Nv(t) ≤
Λv

dv
, i f Nv(0) ≤

Λv

dv
,

which shows thatΩ is positive invariant. It is attracting also because N(0) ≥ Λd and Nv(0) ≥ Λv

dv
and then the

solution enters Ω in finite time or Nv(t) −→ Λv

dv
and Nv(t) −→ Λv

dv
asymptotically and the rest of the infected

variables Em, Im, Ev and Iv tend to zero.

4.1. Only malaria model basic properties

The disease free equilibrium of the only malaria model (8) denoted by EM
0

and is given by

EM
0 = (S0, 0, 0, 0, S0

v, 0, 0) =
(Λ

d
, 0, 0, 0,

Λv

dv
, 0, 0
)

.

The basic reproduction in epidemic models plays a vital role and useful for the model to shows the nature of
the disease spread and control. For the only malaria model (8), we compute the basic reproduction number
in the following by using the next generation matrix method [21],
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and we have the basic reproduction number RM
0

, given by

RM
0 =

√

dβmσ2
mτmβvΛvτv

Λd2
v

(

dm + d + γm
)

(d + τm) (dv + τv)
.

Theorem 4.1. The only malaria model (8) at the disease free case EM
0

is locally asymptotically stable if RM
0
< 1.

5. TB-Malaria coinfection model analysis

The present section describes the dynamics of the TB and malaria coinfection model (1). Initially, we
present first the basic properties of the model.
The disease free equilibrium of the coinfection model (1), denoted by Ec

0 and is given by

Ec
0 =
(

S0, 0, 0, 0, S0
v, 0, 0, 0, 0, 0, 0

)

=
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.
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and
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The required basic reproduction of the coinfection model (1) is given by

R0 = max{RM
0 ,R

TB
0 } =

{

√

dβmσ2
mτmβvΛvτv

ΛQ1Q2Q3d2
v

,
Q6βtbσtbǫtb +Q4γtbδtbηtb + γtbδtb

(

1 − ηtb
)

ǫtb

Q4Q5Q6

}

.

Next, we show that the TB-malaria coinfection model is locally asymptotically stable if R0 < 1. The
following result is established.

Theorem 5.1. The TB-malaria coinfection model (1) is locally asymptotically stable when R0 < 1.

Proof. At the disease free case Ec
0
, we have the Jacobian matrix in the following:
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

−d 0 0 0 0 0 −βmσm 0 −βtbσtb 0 0
0 −Q1 0 0 0 0 βmσm 0 0 0 0
0 τm −Q2 0 0 0 0 0 0 0 0
0 0 γm −d 0 0 0 0 0 αtb ψmt

0 0 −
dβvΛvσm

Λdv
0 −dv 0 0 0 0 0 0

0 0
dβvΛvσm

Λdv
0 0 −Q3 0 0 0 0 0

0 0 0 0 0 τv −dv 0 0 0 0
0 0 0 0 0 0 0 −Q4 βtbσtb δtb

(

1 − ηtb
)

0
0 0 0 0 0 0 0 ǫtb −Q5 δtbηtb 0
0 0 0 0 0 0 0 0 γtb −Q6 0
0 0 0 0 0 0 0 0 0 0 −Q7
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
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

where Q1 = d + τm, Q2 = dm + d + γm, Q3 = dv + τv, Q4 = d + ǫtb, Q5 = d + γtb + σtb, Q6 = d + αtb + δtb + σtbt

and Q7 = d + ψmt + ε. The eigenvalues −d,−d,−dv,−Q7 are negative for the remaining we have:

λ7 + Φ1λ
6 + Φ2λ

5 + Φ3λ
4 + Φ4λ

3 + Φ5λ
2 + Φ6λΦ7 = 0, (11)

where

Φ1 = dv +Q1 +Q2 +Q3 +Q4 +Q5 +Q6,

Φ2 = Q2Q3 +Q2Q4 +Q3Q4 +Q2Q5 +Q3Q5 + (Q2 +Q3 +Q4) Q6

+Q1 (Q2 +Q3 +Q4 +Q5 +Q6) + (Q1 +Q2 +Q3 +Q4 +Q5 +Q6) dv

+Q4Q5(1 − RTB
1 ) +Q5Q6(1 − RTB

2 ),

Φ3 = (Q3 (Q4 +Q5) + (Q3 +Q4) Q6 +Q2 (Q3 +Q4 +Q5 +Q6))dv

+Q1 (Q2 +Q3 +Q4 +Q5 +Q6) dv

+Q2Q3 (Q4 +Q5) + (Q3Q4 +Q2 (Q3 +Q4)) Q6



A. K. Alzahrani, M. A. Khan / Filomat 36:6 (2022), 1789–1818 1797

+Q1 (Q4Q6 +Q3 (Q4 +Q5 +Q6) +Q2 (Q3 +Q4 +Q5 +Q6))

+
(

Q4Q5(1 − RTB
1 ) +Q6Q5(1 − RTB

2 )
)

(dv +Q1 +Q2 +Q3)

+Q4Q5Q6(1 − RTB
0 ),

Φ4 = Q4Q5Q6[dv +Q1 + (Q2 +Q3)](1 − RTB
0 ) +Q1Q2Q3dv(1 − (RM

0 )2)

(Q4 +Q5 +Q6) ((Q2Q3 +Q1 (Q2 +Q3)) dv +Q1Q2Q3)

+
(

(1 − RTB
1 )Q4Q5 + (1 − RTB

2 )Q6Q5 +Q4Q6

)

×

((Q1 +Q2 +Q3) dv +Q2Q3 +Q1 (Q2 +Q3)) ,

Φ5 = ((Q2Q3 +Q1 (Q2 +Q3)) dv +Q1Q3)
(

Q4Q5(1 − RTB
1 ) +Q5Q6(1 − RTB

2 ) +Q4Q6

)

+Q1Q2Q3 (Q4 +Q5 +Q6) dv(1 − (RM
0 )2)

+Q1Q2
4Q2

5Q2
6dv [Q2 (dv +Q1) +Q3 (dv +Q1 +Q2)] (1 − RTB

0 ),

Φ6 = Q4Q5Q6[[Q2Q3 +Q1 (Q2 +Q3)] dv +Q1Q2Q3](1 − RTB
0 )

+
[

Q4Q5(1 − RTB
1 ) +Q5Q6(1 − RTB

2 ) +Q4Φ6

]

(1 − (RM
0 )2),

c7 = Q1Q2Q3Q4Q5Q6dv(1 − (RM
0 )2)(1 − RTB

0 ).

The coefficientsΦi for i = 1, 2...7 given in equation (11) are positive whenever the basic reproduction number
less than unity. The positivity of the coefficientsΦi for i = 1, 2...7 ensures that the conditions given in [17] for
the model (1) could be satisfy easily and it will have all the eigenvalues with negative real parts. Therefore,
it is to be concluded that the model (1) is locally asymptotically stable if R0 < 1.

Further, we discuss the phenomenon of backward bifurcation for the TB and Malaria coinfection model. To
show this results we use the central manifold theory [2]. We the result:

5.1. Backward bifurcation for TB malaria coinfection model

We show the existence of backward bifurcation for the TB and malaria coinfection model (1). Apply the
centre manifold theory to the model (1) and taking RTB

0
= 1 and RM

0
= 1 if and only if

βm = β
∗
m =

ΛQ1Q2Q3d2
v

dσ2
mτmβvΛvτv

,

and

βtb = β
∗
tb =

Q4
(

Q5Q6 − γtbδtbηtb
)

− γtbδtb
(

1 − ηtb
)

ǫtb

Q6σtbǫtb
.

Further, we change the variables and the model (1) and replace with the new set of variables, y1 = S,
y2 = Em, y3 = Im, y4 = R, y5 = Sv, y6 = Ev, y7 = Iv, y8 = Etb, y9 = Itb, Y10 = Ttb and y11 = Imt with
N = y1 + y2 + y3 + y4 + y8 + y9 + y10 + y11 and Nv = y5 + y6 + y7. Using the vector notation −→y = (y1, ....y11)
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and express the model (1) in the form y′ = F−→y , where F = f1, ..., F11, shown in the following:


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
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


















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








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














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
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






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
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
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























d
dt y1 = Λ − λtby1 − λmy1 − dy1,

d
dt y2 = λmy1 − (τm + d)y2,

d
dt y3 = τmy2 − (d + dm + γm)y3 − λtb y3,

d
dt y4 = γmy3 + αtby10 + ψmty11 − dy4,

d
dt y5 = Λv − λvy5 − dvy5,

d
dt y6 = λvy5 − (dv + τv)y6,

d
dt y7 = τvy6 − dvy7,

d
dt y8 = λtby1 − (d + ǫtb)y8 + (1 − ηtb)δtby10,

d
dt y9 = ǫtby8 + ηtbδtby10 − (d + γtb + σtb)y9 − λmy9,

d
dt y10 = γtbytb − (d + δtb + σtbt + αtb)y10,

d
dt y11 = λtby3 + λmy9 − (ε + d + ψmt)y11,

(12)

where λtb =
βtbσtb y9

N , λm =
βmσm y7

N and λv =
βvσm y3

N .
Computing the Jacobian matrix of the model (12) at Ec

0
, we have

G =


































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

















































−d 0 0 0 0 0 −J1 0 −J3 0 0
0 −Q1 0 0 0 0 J1 0 0 0 0
0 τm −Q2 0 0 0 0 0 0 0 0
0 0 γm −d 0 0 0 0 0 αtb ψmt

0 0 −J2 0 −dv 0 0 0 0 0 0
0 0 J2 0 0 −Q3 0 0 0 0 0
0 0 0 0 0 τv −dv 0 0 0 0
0 0 0 0 0 0 0 −Q4 J3 0
0 0 0 0 0 0 0 ǫtb −Q5 δtbηtb 0
0 0 0 0 0 0 0 0 γtb −Q6 0
0 0 0 0 0 0 0 0 0 0 −Q7


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


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
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

where J1 =
Λd2

vQ1Q2Q3

dβvΛvσmτmτv
, J2 =

dβvΛvσm

Λdv
, J3 =

Q4(Q5Q6−γtbδtbηtb)−γtbδtbǫtb(1−ηtb)
Q6ǫtb

.

It can bee see that the Jacobian matrix G has the simple zero eigenvalues and the rest of have the negative
real parts, this ensures, that we can apply the centre manifold theory to model of TB and malaria. To
proceed further, we need to obtain the right and left eigenvectors associated to the matrix G respectively,
we obtain,

w1 = −
Q1Q2w3

dτm
−

w9
(

Q4
(

Q5Q6 − γtbδtbηtb
)

− γtbδtb
(

1 − ηtb
)

ǫtb
)

dQ6ǫtb
,w2 =

Q2w3

τm
,

w3 = w3 > 0, w4 =
w3γm

d
+

w9αtbγtb

dQ6
,w5 = −

dw3σmβvΛv

Λd2
v

,w6 =
dw3σmβvΛv

ΛQ3dv
,

w7 =
dw3σmβvΛvτv

ΛQ3d2
v

,w8 = −
w9
(

γtbδtbηtb −Q5Q6
)

Q6ǫtb
,w10 =

w9γtb

Q6
, w11 = 0, w9 = w0 > 0,

and

v1 = v4 = v5 = v11 = 0, v2 = v2 > 0, v8 = v8 > 0, v3 =
Q1v2

τm
, v6 =

ΛQ1Q2v2dv

dσmτmβvΛv
,
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v7 =
ΛQ1Q2Q3v2dv

dσmτmβvΛvτv
, v9 =

Q4v8

ǫtb
, v10 = −

v8δtb
(

−Q4ηtb + ηtbǫtb − ǫtb
)

Q6ǫtb
.

Further step is the computations of the values of a and b. We follow [2], and obtain the value of a and b after
rigorous computations, we have

a = −
2

Λ2Q3Q6d2
vτ

2
mǫtb

[

d2Q6w3βmσ
2
mτmβvΛvτv (w9τm (Q5v2 +Q4v8) +Q2v2w3ǫtb)

+dv2w3βmσ
2
mτ

2
mβvΛvτv

(

Q6ǫtb
(

w3
(

d + γm
)

+ dw9
)

+ w9γtb
(

ǫtb (d + αtb) − dδtbηtb
))

+ΛQ3w9d2
vτm
(

w3
(

dQ6 (Q1v2 +Q2v8) βtbσtbǫtb +Q1Q2v2γtbδtbηtb (Q4 − ǫtb)
))

ΛQ3v8w9d2
vτ

2
mβtbσtb

(

Q6ǫtb
(

w3
(

d + γm
)

+ dw9
)

+ dQ5Q6w9 + w9γtb
(

ǫtb (d + αtb) − dδtbηtb
))

+ΛQ1Q2
2Q3Q6v2w2

3 (d −Q1) d2
vǫtb + ΛQ1Q2Q3v2w3d2

vτm

+ΛQ1Q2Q3v2w3d2
vτm(Q5Q6w9 (d −Q4) + w9γtb

(

ǫtb (d + αtb + δtb) − dδtbηtb
)

)
]

and

b = v8w9σtb > 0.

It is obvious that b > 0 and the value of a can determined the backward bifurcation in the coinfection model
(1) if a > 0.

6. Optimal control problem

The aims of this section to formulate an optimal control problem for the coinfection of TB and Malaria. We
use five controls ui for i = 1, 2, ....5 to minimize the coinfection in the model (13). In the given optimal control
problem the control u1 represents human mosquitos elimination by LLITNs (Long-Lasting Insecticide-
Treated Nets). The control variable u2 represents the treatment efforts used for malaria infected individuals.
The control variable u3 represents IRS(indoor residual spraying) which increase the death rate in mosquitos.
The control variables u4 and u5 respectively represent the prevention and treatment efforts for TB infected
individuals and the efforts of treatment for infected TB individuals. The parameters c1, κ, c2 and c3

respectively represent, mosquitoes death rate by LLITNs, death by IRS, recovery with treatment of malaria
infection of malaria-TB individuals, and recovery by the treatment of TB infection of malaria-TB individuals.
Keeping in mind the above assumptions we formulate the following optimal control problem:


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






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
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























d
dt S = Λ − (1 − u4)λtbS − (1 − u1)λmS − dS,

d
dt Em = (1 − u1)λmS − (τm + d)Em,

d
dt Im = τmEm − (d + dm + u2γm)Im − (1 − u4)λtbIm,

d
dt R = u2γmIm + αtbTtb + (ψmt + c2u2 + c3u3)Imt − dR,

d
dt Sv = Λv − λvSv − (dv + κu3 + c1u1)Sv,

d
dt Ev = λvSv − (dv + τv + κu3 + c1u1)Ev,

d
dt Iv = τvEv − (dv + κu3 + c1u1)Iv,

d
dt Etb = (1 − u4)λtbS − (d + ǫtb)Etb + (1 − ηtb)δtbTtb,

d
dt Itb = ǫtbE + ηtbδtbTtb − (d + u5γtb + σtb)Itb − (1 − u1)λmItb,

d
dt Ttb = u5γtbItb − (d + δtb + σtbt + αtb)Ttb,

d
dt Imt = (1 − u4)λtbIm + (1 − u1)λmItb − (ε + d + ψmt + c2u2 + c3u3)Imt.

(13)
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where λtb =
βtbσtbItb

N , λm =
βmσmIv

N and λv =
βvσmIm

N . The objective functional for the optimal control problem is
defined by

∆(u1, u2, u3, u4, u5) =

∫ T

0

[P1Em + P2Im + P3Nv + P4Etb + P5Itb + P6Imt

+
1

2
(A1u2

1 + A2u2
2 + A3u2

3 + A4u2
4 + A5u2

5)]dt, (14)

subject to the nonlinear system of coinfection model (13) with appropriate initial conditions. In the objective
functional (14), the weight constants Pi for i = 1, ...6 are used for state variables while Ai for i = 1, 2...5 are
used for the control variables. The cost function for P1 is used for exposed only malaria, P2 is for infected
only malaria, P3 for vector population, P4 for exposed only TB, P5 for infected only TB, and P6 is for the
dually infected individuals. The quadratic form is used for the controls, 1

2 A1u2
1
, 1

2 A2u2
2
, 1

2 A3u2
3
, 1

2 A4u2
4
, and

1
2 A5u2

5
show the expenditure on LLITNs, malaria treatment, IRS, treatment and prevention for TB, and

treatment of infected TB individuals. Hence using optimal controls u∗
i

for i = 1, 2, ...5 such that

∆(u∗i ) = min
ui∈Θ
∆(ui),

whereΘ = {u = (u1, u2, u3, u4, u5)
∣

∣

∣

∣

ui(t)} is lebesgue measurable, ui(t) ∈ [0, 1] for all t ∈ [0,T], where i = 1, 2, ...5.

is the control set associated to the coinfection control model (13). Further, we define the Lagrangian L and
Hamiltonian H for the optimal control problem (13), given by

L = P1Em + P2Im + P3Nv + P4Etb + P5Itb + P6Imt

+
1

2
(A1u2

1 + A2u2
2 + A3u2

3 + A4u2
4 + A5u2

5), (15)

and

H = L + λ1[Λ − (1 − u4)λtbS − (1 − u1)λmS − dS] + λ2[(1 − u1)λmS − (τm + d)Em]

+λ3[τmEm − (d + dm + u2γm)Im − (1 − u4)λtbIm]

+λ4[u2γmIm + αtbTtb + (ψmt + c2u2 + c3u3)Imt − dR]

+λ5[Λv − λvSv − (dv + κu3 + c1u1)Sv]

+λ6[λvSv − (dv + τv + κu3 + c1u1)Ev]

+λ7[τvEv − (dv + κu3 + c1u1)Iv]

+λ8[(1 − u4)λtbS − (d + ǫtb)Etb + (1 − ηtb)δtbTtb]

+λ9[ǫtbE + ηtbδtbTtb − (d + u5γtb + σtb)Itb − (1 − u1)λmItb]

+λ10[u5γtbItb − (d + δtb + σtbt + αtb)Ttb]

+λ11[(1 − u4)λtbIm + (1 − u1)λmItb − (ε + d + ψmt + c2u2 + c3u3)Imt]. (16)

This leads to the following statement.

Theorem 6.1. The optimal control coinfection model (13) with appropriate initial conditions then there exists an
optimal control u∗ = u∗

i
∈ Θ for i = 1, 2, , , 5 such that

∆(u∗i ) = min
ui∈Θ
∆(ui).
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The Lipschitz property of the control model with respect to the model variables are satisfied by the Theorem
6.1. So, then there exists some positive numbers ̟1 and ̟2 together with ν such that

∆(ui) ≥ ̟1(|u1|
2 + |u2|

2 + |u3|
2 + |u4|

2 + |u5|
2)ν/2 − ̟2.

This proves the optimal control problem existence. Next, we obtain the adjoint equations and the optimal
control characterizations. We have

Theorem 6.2. The adjoint variables λi for i = 1, ...11 exists for the optimal controls ui for i = 1, 2...5 with optimal
control model solutions (S∗,E∗m, I

∗
m,R

∗, S∗v,E
∗
v, I
∗
v,E

∗
tb
, I∗

tb
,T∗

tb
, I∗mt) satisfying:

dλ1

dt
= (λ1 − λ8)(1 − u4)λ∗tb

(N∗ − S∗)

N∗
+ (λ1 − λ2)(1 − u1)λ∗m

(N∗ − S∗)

N∗

+(λ11 − λ3)(1 − u4)λ∗tb
I∗m
N∗
+ (λ11 − λ9)(1 − u1)λ∗m

I∗
tb

N∗
+ dλ1

+(λ6 − λ5)λ∗v
S∗v
N∗
,

dλ2

dt
= (λ8 − λ1)(1 − u4)λ∗tb

S∗

N∗
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ11 − λ3)(1 − u4)λ∗tb

I∗m
N∗

+(λ11 − λ9)(1 − u1)λ∗m
I∗
tb

N∗
+ (λ6 − λ5)λ∗v

S∗v
N∗
+ (λ2 − λ3)τm + dλ2 − P1,

dλ3

dt
= (λ8 − λ1)(1 − u4)λ∗tb

S∗

N∗
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ5 − λ6)S∗vβvσm

(N∗ − I∗m)

N∗2

+(λ3 − λ11)(1 − u4)λ∗tb
(N∗ − I∗m)

N∗
+ (λ11 − λ9)(1 − u1)λ∗m

I∗
tb

N∗
+ (λ3 − λ4)u2γm

+(d + dm)λ3 − P2,

dλ4

dt
= (λ8 − λ1)(1 − u4)λ∗tb

S∗

N∗
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ11 − λ3)(1 − u4)λ∗tb

I∗m
N∗

+(λ11 − λ9)(1 − u1)λ∗m
I∗
tb

N∗
+ (λ6 − λ5)λ∗v

S∗v
N∗
+ dλ4,

dλ5

dt
= (λ5 − λ6)λ∗v + λ5(dv + κu3 + c1u1) − P3,

dλ6

dt
= (λ6 − λ7)τv + λ6(dv + κu3 + c1u3) − P3,

dλ7

dt
= (λ1 − λ2)(1 − u1)βmσm

S∗

N∗
+ (λ9 − λ11)(1 − u1)βmσm

I∗
tb

N∗
+ (dv + κu3 + c1u1)λ7 − P3,

dλ8

dt
= (λ8 − λ1)(1 − u4)λ∗tb

S∗

N∗
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ6 − λ5)λ∗v

S∗v
N∗

+(λ11 − λ3)(1 − u4)λ∗tb
I∗m
N∗
+ (λ11 − λ9)(1 − u1)λ∗m

I∗
tb

N∗
+ (λ8 − λ9)ǫtb + dλ8 − P4,

dλ9

dt
= (λ1 − λ8)(1 − u4)S∗βtbδtb

(N∗ − I∗
tb

)

N∗2
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ6 − λ5)λ∗v

S∗v
N∗

+(λ3 − λ11)(1 − u4)βtbδtbI∗m
(N∗ − I∗

tb
)

N∗2
+ (λ9 − λ11)(1 − u1)λ∗m

(N∗ − I∗
tb

)

N∗
+

(λ9 − λ10)u5γtb + (d + σtb)λ9 − P5,

dλ10

dt
= (λ8 − λ1)(1 − u4)

λ∗
tb

S∗

N∗
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ6 − λ5)λ∗v

S∗v
N∗
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+(λ11 − λ3)(1 − u4)λ∗tb
I∗m
N∗
+ (λ11 − λ9)λ∗m

I∗
tb

N∗
+ (λ10 − λ4)αtb

+λ10(σtbt + d) + (λ8 − λ9)ηtbδtb + δtb(λ10 − λ8),

dλ11

dt
= (λ8 − λ1)(1 − u4)λ∗tb

S∗

N∗
+ (λ2 − λ1)(1 − u1)λ∗m

S∗

N∗
+ (λ11 − λ3)λ∗tb

I∗m
N∗

(1 − u4)

+(λ11 − λ9)(1 − u1)λ∗m
I∗
tb

N∗
+ (λ6 − λ5)λ∗v

S∗v
N∗
+ (c2u2 + c3u3)(λ11 − λ4)

ψmt(λ11 − λ4) + (d + ε)λ11 − P6, (17)

with the transversality conditions λi(T) = 0 where i = 1, 2, 3, ..., 11. Furthermore, the optimality condition:

u∗1 = max
{

min
( (λ2 − λ1)λ∗mS∗ + (λ11 − λ9)λ∗mI∗

tb
+ c1(λ5S∗v + λ6E∗v + λ7I∗v)

A1
, 1
)

, 0
}

u∗2 = max
{

min
( (λ3 − λ4)γmI∗m + (λ11 − λ4)c2I∗mt

A2
, 1
)

, 0
}

,

u∗3 = max
{

min
( (λ11 − λ4)c3I∗mt + (λ5S∗v + λ6E∗v + λ7I∗v)κ

A3
, 1
)

, 0
}

,

u∗4 = max
{

min
( (λ8 − λ1)λ∗

tb
S∗ + (λ11 − λ3)λ∗

tb
I∗m

A4
, 1
)

, 0
}

,

u∗5 = max
{

min
( (λ9 − λ10)γtbI∗

tb

A5
, 1
)

, 0
}

, (18)

is satisfied by the optimal control u∗
i

for i = 1, 2...5 that minimizes ∆ over Θ.

Proof. The equations that govern the adjoint equations are utilized to obtain the system of adjoint equations.
Differentiating the Hamiltonian system, H, with time giving the system of adjoint equations (17). Further,

solving ∂H
∂ui
= 0 for i = 1, 2, ...5 on the interior of the control set and obtain

u∗1 = max
{

min
( (λ2 − λ1)λ∗mS∗ + (λ11 − λ9)λ∗mI∗

tb
+ c1(λ5S∗v + λ6E∗v + λ7I∗v)

A1
, 1
)

, 0
}

u∗2 = max
{

min
( (λ3 − λ4)γmI∗m + (λ11 − λ4)c2I∗mt

A2
, 1
)

, 0
}

,

u∗3 = max
{

min
( (λ11 − λ4)c3I∗mt + (λ5S∗v + λ6E∗v + λ7I∗v)κ

A3
, 1
)

, 0
}

,

u∗4 = max
{

min
( (λ8 − λ1)λ∗

tb
S∗ + (λ11 − λ3)λ∗

tb
I∗m

A4
, 1
)

, 0
}

,

u∗5 = max
{

min
( (λ9 − λ10)γtbI∗

tb

A5
, 1
)

, 0
}

. (19)

7. Numerical results

Here, we consider the numerical solution of the optimal control problem (13) and system without control
(2). The fourth order Runge-Kutta backward scheme is used to perform the simulations. In the optimal
control model we used five controls variables for the disease of TB and malaria coinfection control and
each control is defined in detailed in previous section. In this simulations, the parameters considered are
given in Table 2. The authors parameters that is the weight constants used in the objective functional are
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given as A1 = 200, A2 = 100, A3 = 100, A4 = 100, A5 = 100, P1 = 100, P2 = 200, P3 = 100, P4 = 100,
P5 = 100 and P6 = 100. The optimal control system together with adjoint equations and the optimal
control characterizations with comparison to the system without control is numerically solved and the
corresponding graphical results are presented in Figure 1 to 12. In the numerical simulation the time level
is chosen in days and keep it upto 100. We perform different simulations based on the controls selection
strategies and the respective graphical results for each strategy is provided. It is to be noted that these
strategies selected for possible eliminations of the disease in the community. To explain each strategy in
detail, we provide the following explanations.

Parameters Description value Ref

Λ Recruited rate of susceptible individuals 100 day−1 [12]
d Natural death rate of human 0.00004 day−1 [23]
dv Natural death rate of vector 0.1429 day−1 [3]
τm Humans individuals exposed to malaria infection rate 1/17 day−1 [1]
dm Disease death rate due to malaria 0.05 day−1 [5]
σtbt Disease death rate due to TB 0.01 [20]
γm Recovery from malaria 0.0005 [4]
Λv Recruitment rate of vector population 1000 day−1 [12]
τv Rate of flow from exposed vector to infected vector 1/18 day−1 [1]
ǫtb Rate of flow from exposed TB to infected TB 0.03 [20]
βm Contacts rate 0.8333 [3]
βv Contacts rate 0.09 [1]
σm Biting rate of mosquito 0.2 [1]
σtb Modification parameter 0.03 per day [8]
κ death rate of mosquitoes due to using of IRS 0.01 per day [11]
c1 death rate of mosquitoes due to using LLITNs 0.05 per day [11]
γtb Treatment rate of TB infected individuals 0.1 [7]
c2 recovery rate due to malaria treatment of malaria-TB individuals 0.25 per day [11]
c3 recovery rate due to TB treatment of malaria-TB individuals 0.25 per day [11]
αtb Recovery from TB 0.3968 [11]
βtb Contacts rate 0.05 per day [8]
ψmt Recovery from dual infection source Assumed
ε Disease death rate due to dual infection source Assumed
δtb Rate of flow of TB 1.1996 Assumed
ηtb Treatment failure 0.15 Assumed

Table 2: Parameters values used in TB-Malaria coinfection simulation (13).

7.1. Strategy 1: (u3 = u4 = u5 , 0)

In this strategy, we set the controls variables u1 = u2 = 0 and u3 = u4 = u5 , 0 and perform the
simulations by optimizing the objective functional ∆ and obtain the graphical results given by Figure 1
and 2. Here in this strategy the control variable u3 represents IRS which is used to increase the death
rate in mosquitos while the control variables u4 and u5 is respectively used to represent the prevention
and treatment efforts for TB infected individuals and the efforts of treatment for infected TB individuals.
The graphical results obtained through this strategy demonstrate that the population of susceptible vector,
exposed vector, infected vector and coinfeced individuals decreases while the individuals exposed only
with malaria, individuals only infected with malaria and individuals only infected with TB is decreases
sharply and the there is no effect on the exposed individuals due to only TB. This strategy is helpful for the
elimination of dual infections and the infections in vector populations while not much suitable for other
infected compartments.

7.2. Strategy 2: (u1 = u4 = u5 , 0)

This strategy is performed by using the controls variables u2 = u3 = 0 and u1 = u4 = u5 , 0 and optimize
the objective functional∆ to obtain the numerical results given in Figure 3 and 4. Using of the control u1, that
is the human mosquitos elimination by LLITNs, and the controls variables u4 and u5 is respectively used to
represent the prevention and treatment efforts for TB infected individuals and the efforts of treatment for
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infected TB individuals, one can see that this strategy is helpful for the individuals exposed and infected
with malaria only, individuals exposed and infected only with TB and the dually infected individuals. In
comparison to the strategy 1, one can see that the infected individuals due to TB and malaria are decreases
much while the decrease in the vector population occur at day 20 till day 100. The most important control
in this strategy is the u1 (the human mosquitos elimination by LLITNs), which greatly contributing in this
strategy by eliminating the infections in the infected compartments.

7.3. Strategy 3: (u1 = u3 = u5 , 0)

In this proposed strategy, we set the controls u2 = u4 = 0 and make active the controls u1 = u3 = u5 , 0
and optimize the objective functional∆. The graphical results obtained through this simulations is presented
in Figure 5 and 6. Using of the control u1, that is the human mosquitos elimination by LLITNs, the control
variable u3 represents IRS which increase the death rate in mosquitos and the control u5 the efforts of
treatment for infected TB only individuals and performed the simulations. One can see that this strategy
is also very helpful for the eliminations of individuals exposed and infected only with TB and malaria
and the coinfected individuals. In comparison to the strategy 2, there is a little decrease in individuals of
malaria exposed only, exposed vector, infected vector, exposed individuals with TB only and the individuals
infected only with TB while the rest have the same effect as previously strategy 2. This strategy could be
useful for the elimination of infection in vector, individuals exposed and infected with TB and malaria and
the coinfected individuals.

7.4. Strategy 4: (u1 = u2 = u5 , 0)

In the given strategy, we use u3 = u4 = 0 and u1 = u2 = u5 , 0 and performed the experiment by
optimizing the objective functional ∆. The graphical results associated to this strategy is depicted in Figure
7 and 8. Using the control u1 which represents human mosquitos elimination by LLITNs, the control
variable u2 which represents the treatment efforts used for malaria infected individuals and the control u5

which is the efforts of treatment for infected TB individuals to minimize the infections. One can see that this
strategy is also helpful for the infection minimizing in the individuals infected with malaria only, TB only,
vector population and the individuals dually infected. In comparison to the previous strategy 3, we can see
that the number of exposed and infected with malaria decreases and goes to steady state after day 60 and
day 80 respectively, which was not observed in the previous strategies. Similarly, the individuals infected
with TB only goes to steady states after day 55. The rest of the results are also good for the minimizing
infection in the infected and exposed classes.

7.5. Strategy 5: (u2 = u3 = u4 , 0)

In this proposed strategy, we make the controls u1 = u5 = 0 and u2 = u3 = u4 , 0 and performed
the simulation by optimizing the objective functional ∆. The graphical results obtained from this strategy
is given in Figure 9 and 10. Using The control variable u2 which represents the treatment efforts used
for malaria infected individuals, the control variable u3 represents IRS which increase the death rate
in mosquitos and the control u4 which represents the prevention and treatment efforts for TB infected
individuals to perform the experiment for infection elimination. One can see that the individuals exposed
only with malaria very sharply decreases, the population of susceptible vector increases rapidly after day
70, the individuals infected only with TB decreases little and goes to steady state after day 60 and there
is no change in the individuals exposed only with TB. The others exposed and infected compartments are
decreases little and some good decreases in the dual infections. In comparison to the strategies discussed
above this is not a useful strategy for minimizing infection.

7.6. Strategy 6: (u1 = u2 = u3 = u4 = u5 , 0)

Every strategy has its own importance for the disease eliminations, but we have observed especially in
strategy 1 and 5 that in some compartments of the infected and exposed individuals there occur a increase
and some may posses no change, but we always in search to find such suitable strategy in which the infection
in each strategy is the minimum, but this not the cases we presented above. Now, by using all the controls
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Figure 1: The graphical results for the strategy 1.

active and performing the experiments, one can see that the infection in each class of exposed and infected
with TB and malaria only and the dual infection decreases efficiently, see Figure 11 and 12. The use of human
mosquitos elimination by LLITNs, the treatment efforts used for malaria infected individuals, increase the
death rate in mosquitos by IRS and the prevention and treatment efforts for TB infected individuals and the
efforts of treatment for infected TB individuals is the best possible controls for elimination of individuals
exposed and infected with TB and malaria only and the dually infected individuals. If we compare the
results of strategy 6, with the previous strategies, then, we can say that this strategy is more suitable for the
coinfection of TB and malaria.
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Figure 2: The graphical results for the strategy 1.
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Figure 3: The graphical results for the strategy 2.
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Figure 4: The graphical results for the strategy 2.
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Figure 5: The graphical results for the strategy 3.
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Figure 6: The graphical results for the strategy 3.
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Figure 7: The graphical results for the strategy 4.
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Figure 8: The graphical results for the strategy 4.



A. K. Alzahrani, M. A. Khan / Filomat 36:6 (2022), 1789–1818 1813

Time (days)
0 20 40 60 80 100

E
m

  

200

250

300

350

400
Without Control
With Control

(a)

Time (days)
0 20 40 60 80 100

I m
 

200

400

600

800

1000

1200

1400

1600 Without Control
With Control

(b)

Time (days)
0 20 40 60 80 100

S
v

2000

3000

4000

5000

6000

Without Control
With Control

(c)

Time (days)
0 20 40 60 80 100

E
v 

400

600

800

1000

1200

1400
Without Control
With Control

(d)

Figure 9: The graphical results for the strategy 5.



A. K. Alzahrani, M. A. Khan / Filomat 36:6 (2022), 1789–1818 1814

Time (days)
0 20 40 60 80 100

I v 

0

1000

2000

3000

4000

5000
Without Control
With Control

(a)

Time (days)
0 20 40 60 80 100

E
tb

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Without Control
With Control

(b)

Time (days)
0 20 40 60 80 100

I tb
 

0

20

40

60

80

100

Without Control
With Control

(c)

Time (days)
0 20 40 60 80 100

I m
t 

20

40

60

80

100

120

140

160

Without Control
With Control

(d)

Figure 10: The graphical results for the strategy 5.
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Figure 11: The graphical results for the strategy 6.
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Figure 12: The graphical results for the strategy 6.
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8. Conclusion

In the present paper we investigated the coinfection dynamics of the TB and malaria. Both the diseases
are severe and causing deaths in the population. The occurring of both the diseases infection in an
individual may cause severe infections and its spread in the community is alarming. Therefore, we deeply
studied this issue and proposed a model and investigated each model in detailed. The TB infection only
model is studied and obtained its basic mathematical results. The TB model at the disease free case is locally
asymptotically stable when the basic reproduction number is less than unity. Further, the malaria only model
is obtained and discussed their stability analysis. The malaria only model is stable locally asymptotically
when the basic reproduction number less than unity. Further, we discussed that the coinfection model
is stable locally asymptotically when the basic reproduction number is less than unity. The existence of
the bifurcation analysis is studied for the coinfection model and concluded that the model may have a
backward bifurcation if the condition given is fulfilled. The model is further used to formulate the optimal
control characterization. Five different controls were chosen to optimize the objective functional and obtain
the adjoint equations and optimal control characterizations. The chosen controls were, human mosquitos
elimination by LLITNs, the treatment efforts used for malaria infected individuals, increase the death rate
in mosquitos by IRS, the prevention and treatment efforts for TB infected individuals and the efforts of
treatment for infected TB individuals. We performed different control strategies by selecting a set of control
variables. Every strategy is performed and the graphical results were discussed and also compared with
the previous strategies. Some of the strategies were found not suitable for disease elimination, but some
were found suitable for individuals infection elimination in TB only, with malaria only and coinfected
individuals. In all of these there is no good strategies in 1-5, which provided useful results for elimination
of infection, then, we finally utilized all the controls and obtained reasonable results and concluded that
the strategy 6 is the useful strategy for infection of TB and malaria and their coinfection. This is the pioneer
work to explore the dynamics of the TB and malaria and their coinfection and may lead to useful results
for public heath department and other health authorities.
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