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Abstract. The aim of this note is to establish the global regularity of classical solutions of the 3D micropolar
fluid equations for a family of large initial data with finite energy.

1. Introduction

In this paper, we consider the following Cauchy problem for the incompressible micropolar fluid
equations :

∂tu + (u · ∇) u − ∆u + ∇π − ∇ × ω = 0,
∂tω − ∆ω − ∇divω + 2ω + u · ∇ω − ∇ × u = 0,
∇ · u = 0,
u(x, 0) = u0(x), ω(x, 0) = ω0(x),

(1.1)

where u = u(x, t) ∈ R3, ω = ω(x, t) ∈ R3 and p = p (x, t) denote the unknown velocity vector field, the micro-
rotational velocity and the unknown scalar pressure of the fluid at the point (x, t) ∈ R3

× (0,T), respectively,
while u0, ω0 are given initial data with ∇ · u = 0 in the sense of distributions.

Micropolar fluid system was first proposed by Eringen [2] in 1966. Later on, Galdi and Rionero [3]
considered the weak solution in the year 1977. Using linearization and an almost fixed point theorem, in
1988, Lukaszewicz [4] established the global existence of weak solutions with sufficiently regular initial
data. In 1989, using the same technique, Lukaszewicz [5] proved the local and global existence and the
uniqueness of the strong solutions under asymmetric condition. In 2005, Yamaguchi [8] proved the existence
theorem of global in time solution for small initial data.

Inspired by the work of [6], for the 3D Navier-Stokes equations, the main purpose of this note is to study
the global existence of smooth solutions to (1.1) for a family of large initial data with finite energy.

Our result is the following.
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Theorem 1.1. Assume that u0,w0 ∈ M for some constant δ > 0. Then there exists a positive constant δ0 such that
(1.1) with the initial data (u0,w0) has a unique global classical solution (u, ω) if δ ≤ δ0. Here

M =


u0,w0 ∈ H1(R3) with ∇ · u0 = 0,

2∑
i=1
∥u0∥L2

∥∥∥∂xi u0

∥∥∥
L2 ≤ δ,

2∑
i=1
∥ω0∥L2

∥∥∥∂xiω0

∥∥∥
L2 ≤ δ,

2∑
i=1
∥u0∥L2

∥∥∥∂xiω0

∥∥∥
L2 ≤ δ,

2∑
i=1
∥ω0∥L2

∥∥∥∂xi u0

∥∥∥
L2 ≤ δ


.

We recall the following Serrin’s type non-blow up criterion [3].

Lemma 1.2. Assume that the initial data u0, ω0 ∈ H1(R3) with ∇ · u0 = 0. If

u ∈ Lq
(
(0,T); Lp(R3)

)
with

2
q
+

3
p
≤ 1 and 3 < p ≤ ∞,

then the solution (u, ω) remains smooth on [0,T].

In the following calculations, we use the following interpolation inequality due to [6] :∥∥∥ f
∥∥∥

L4 ≤ C
∥∥∥ f

∥∥∥ 1
2

L2

∥∥∥∂1 f
∥∥∥ 1

8

L2

∥∥∥∂1∂3 f
∥∥∥ 1

8

L2

∥∥∥∂2 f
∥∥∥ 1

8

L2

∥∥∥∂2∂3 f
∥∥∥ 1

8

L2 . (1.2)

2. Proof of Theorem 1.1

Proof: Assume that u0, ω0 belongs toM. The local existence theory is classical, see for instance [3, 8]. Hence
there exists a unique smooth solution (u, ω) of (1.1) on some time interval [0,T) with T > 0.

Taking the inner products of (1.1)1 with u and (1.1)2 with ω, adding the results and integrating by parts,
we obtain

∥u(·, t)∥2L2 + ∥ω(·, t)∥2L2 + 2
∫ t

0
∥∇u(·, s)∥2L2 ds + 2

∫ t

0
∥∇ω(·, s)∥2L2 ds

+2
∫ t

0
∥∇ · ω(·, s)∥2L2 ds + 2

∫ t

0
∥ω(·, s)∥2L2 ds ≤ ∥u0∥

2
L2 + ∥ω0∥

2
L2 ,

for all t ≥ 0.
Applying the derivatives ∂i =

∂
xi

(i = 1, 2) on either sides of the equations (1.1) yields to{
∂t∂iu + (u · ∇) ∂iu − ∆∂iu + ∇∂iπ − ∇ × ∂iω = 0,
∂t∂iω − ∆∂iω − ∇div∂iω + 2∂iω + (u · ∇)∂iω − ∇ × ∂iu = 0. (2.1)

Considering the scalar products with ∂iu, ∂iω, respectively, and adding them, we have

1
2

d
dt

(
∥∂iu∥

2
L2 + ∥∂iω∥

2
L2

)
+ ∥∇∂iu∥

2
L2 + ∥∇∂iω∥

2
L2 + ∥∇ · ∂iω∥

2
L2 + 2 ∥∂iω∥

2
L2

= −

∫
R3
∂iu · ∇u · ∂iudx +

∫
R3

(∇ × ∂iω) · ∂iudx +
∫
R3

(∇ × ∂iu) · ∂iωdx −
∫
R3
∂iu · ∇ω · ∂iωdx

= A1 + A2 + A3 + A4.

To bound A1, we integrate by parts and apply Hölder’s inequality to obtain by (1.2)

A1 = −

∫
R3
∂iu · ∇u · ∂iudx =

∫
R3
∂iu · u · ∇∂iudx

≤ ∥u∥L4 ∥∂iu∥L4 ∥∇∂iu∥L2

≤ C ∥u∥
1
2

L2 ∥∂1u∥
1
8

L2 ∥∂1∂3u∥
1
8

L2 ∥∂2u∥
1
8

L2 ∥∂2∂3u∥
1
8

L2 ∥∂iu∥
1
4

L2 ∥∇∂iu∥
7
4

L2

≤ C ∥u∥
1
2

L2 ∥∂iu∥
1
2

L2 ∥∇∂iu∥
2
L2 .
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Using the integration by parts and the Cauchy–Schwarz inequality, we estimate

A2 + A3 ≤ 2 ∥∂iω∥L2 ∥∇∂iu∥L2 ≤ ∥∂iω∥
2
L2 + ∥∇∂iu∥

2
L2 .

To bound A4, we integrate by parts and apply Hölder’s inequality to get by (1.2)

A4 = −

∫
R3
∂iu · ∇ω · ∂iωdx = −

3∑
j,k=1

∫
R3
∂iu jωk∂ j∂iωkdx

≤ ∥ω∥L4 ∥∂iu∥L4 ∥∇∂iω∥L2

≤ C ∥ω∥
1
2

L2 ∥∂1ω∥
1
8

L2 ∥∂1∂3ω∥
1
8

L2 ∥∂2ω∥
1
8

L2 ∥∂2∂3ω∥
1
8

L2 ∥∂iu∥
1
4

L2 ∥∇∂iu∥
3
4

L2 ∥∇∂iω∥L2

≤ C ∥ω∥
1
2

L2 ∥∂iω∥
1
4

L2 ∥∇∂iω∥
5
4

L2 ∥∂iu∥
1
4

L2 ∥∇∂iu∥
3
4

L2

≤ C ∥ω∥
1
2

L2 ∥∂iω∥
1
4

L2 ∥∂iu∥
1
4

L2

(
∥∇∂iω∥

2
L2 + ∥∇∂iu∥

2
L2

)
= C

(
∥ω∥

1
2

L2 ∥∂iω∥
1
2

L2 + ∥ω∥
1
2

L2 ∥∂iu∥
1
2

L2

) (
∥∇∂iω∥

2
L2 + ∥∇∂iu∥

2
L2

)
.

Combining the estimates for A1, A2, A3 and A4, we find

1
2

d
dt

2∑
i=1

(
∥∂iu∥

2
L2 + ∥∂iω∥

2
L2

)
+

2∑
i=1

(
∥∇∂iu∥

2
L2 + ∥∇∂iω∥

2
L2 + ∥∇ · ∂iω∥

2
L2 + 2 ∥∂iω∥

2
L2

)
≤ C

2∑
i=1

(
∥∇∂iω∥

2
L2 + ∥∇∂iu∥

2
L2

) (
∥u∥

1
2

L2 ∥∂iu∥
1
2

L2 + ∥ω∥
1
2

L2 ∥∂iω∥
1
2

L2 + ∥ω∥
1
2

L2 ∥∂iu∥
1
2

L2

)
.

Hence, if the initial data belongs toM and taking δ0 =
1

2C , we have

1
2

d
dt

2∑
i=1

(
∥∂iu∥

2
L2 + ∥∂iω∥

2
L2

)
+

2∑
i=1

(
∥∇∂iu∥

2
L2 + ∥∇∂iω∥

2
L2 + ∥∇ · ∂iω∥

2
L2 + 2 ∥∂iω∥

2
L2

)
≤ 0,

for all t ≥ 0. In particular, there holds

2∑
i=1

∥∂iu∥
2
L2 ≤

2∑
i=1

(
∥∂iu0∥

2
L2 + ∥∂iω0∥

2
L2

)
. (2.2)

By using (2.2), it yields∫ t

0
∥u(·, s)∥6L4 ds ≤ C

∫ t

0
∥∂1u(·, s)∥

4
3

L2 ∥∂2u(·, s)∥
4
3

L2 ∥∂3u(·, s)∥
4
3

L2 ds

≤ C
(
sup
0≤s≤t
∥∂1u(·, s)∥

4
3

L2 ∥∂2u(·, s)∥
2
3

L2

) ∫ t

0
∥∂2u(·, s)∥

2
3

L2 ∥∂3u(·, s)∥
4
3

L2 ds

≤ C

 2∑
i=1

∥∂iu∥
2
L2

 ∫ t

0
∥∇u(·, s)∥2L2 ds

≤ C
2∑

i=1

(
∥∂iu0∥

2
L2 + ∥∂iω0∥

2
L2

) (
∥u0∥

2
L2 + ∥ω0∥

2
L2

)
< ∞,

where we have used the following interpolation inequality [1] :∥∥∥ f
∥∥∥

L4 ≤ C
∥∥∥∂1 f

∥∥∥ 1
3

L2

∥∥∥∂2 f
∥∥∥ 1

3

L2

∥∥∥∂3 f
∥∥∥ 1

3

L2 .

Hence, by Lemma 1.2, we have proved that u, ω is a smooth solution. This completes the proof of Theorem
1.1. □
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Remark 2.1. It should be added that at the time the paper was accepted, the authors learnt that Y. Wang and L. Gu
[7] have also obtained a similar result for the three dimensional magneto-micropolar fluid equations for a family of
large initial data with finite energy.
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