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Abstract. The main purpose of the present paper is to investigate asymptotic properties of some neutral
delay differential equations by means of Lyapunov functions. The asymptotic stability of the solutions is
given in terms of delay-independent criteria. Two examples are given to illustrate the results.

1. Introduction

The asymptotic properties of solutions for functional differential equations have received considerable
attention in recent years. Despite the permanent application of this type of equation in the natural sciences,
technology and population dynamics [6, 8, 13, 14], there is an interest in obtaining sufficient new condi-
tions allowing to know the long-term behavior of these equations. Asymptotic properties of neutral type
differential equations of the form

d
dt

[x(t) + px(t − τ)] = −ax(t) + b tanh x(t − σ), t ≥ 0, (1)

have been investigated by several authors, see refs. [1, 2] and [3]. Delay differential equations of various
types that contain (1) with p = 0 as a special case have been proposed by many authors for the study of
characteristics of neural networks of Hopfield type. By constructing suitable Lyapunov functions, it was
shown that under certain conditions, the solutions of equation (1) are stable. The asymptotic stability was
proven in both the cases delay-dependent and delay-independent criteria. Here we are concerned with two
more general cases. In the first stage of this paper, we will study asymptotic properties of neutral delay
differential equations of the following form

d
dt

[x(t) + β(t)x(t − σ)] = −a(t)x(t) − b(t) f (x(t − r)), (2)

for all t ≥ t1 = t0 + ρ, where ρ = max {r, σ} and the functions a(t), b(t), β(t) and f (x(t)) are continuous in their
respective arguments, with |β(t)| < β1 < 1 and f (0) = 0. It is also supposed that the derivatives β′(t) and
f ′(x(t)) exist and are continuous. For each solution of (2), we assume the following initial condition :

x(t) = ϕ(t), t ∈ [−ρ, t0], ϕ ∈ C([−ρ, 0],R).
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It can be easily seen that if β(t) = p, a(t) = a, b(t) = −b, and f (x(t)) = tanh x(t), then equation (2) reduces
to the simpler case (1). We will in the next stage give results on boundedness of solutions for the forced
equation (2) of the form

d
dt

[x(t) + β(t)x(t − σ)] = −a(t)x(t) − b(t) f (x(t − r)) + e(t), (3)

where e(t) ∈ L1[t0,∞). In the third and last stage of this paper, we give asymptotic stability results for
solutions of the equation

d
dt

[x(t) + β(t)x(t − σ)] = −a(t)1(x(t)) − b(t) f (x(t − r)), (4)

where the function 1(x) is continuous and satisfies 1(0) = 0. Also, it is assumed that the derivative 1′(x)
exist and is continuous.

Remark 1.1. The reader is referred to [2, 3, 15] for general references related to delay and neutral differential equations.

2. Main Results

The present section is divided into three subsections. The first subsection contains assumptions and
hypothesis made on the functions appearing in the treated equations. The next subsection contains the
main theorems and results of this paper. In the third and last subsection, the proofs of the results are given.

2.1. Hypothesis
In the sequel we assume what follows hold. Suppose that there exist positive constants ai, bi, fi, and 1i

for i = 0, 1, such that

i) a0 ≤ a(t) ≤ a1, b0 ≤ b(t) ≤ b1;

ii) | f ′(x)| ≤ f1, and
f (x)
x
≥ f0 (x , 0), for all x;

iii) |1′(x)| ≤ 11, and
1(x)

x
≥ 10 (x , 0), for all x.

2.2. Results
Here, we will state our main theorems. The first theorem concerns the asymptotic properties of solutions

of equation (2) and is stated as follows

Theorem 2.1. Assume conditions (i) and (ii) satisfied. Suppose also that

a0 >
b1

2
[1 + 2a1 + β1(1 + f 2

1 ) + f 2
1 ],

then, the trivial solution of equation (2) is asymptoticaly stable. Moreover, each solution x of equation (2) is bounded
and is in L2[t1,∞).

The next theorem concerns the boundedness of solutions to equation (3).

Theorem 2.2. Suppose conditions of Theorem 2.1 beeing satisfied. Assume that there exists a positive constant e1
such that

iv)
∫ t

t1

|e(s)|ds < e1, for all t ≥ t1,

then, there exists a positive constant N, such that any solution of (3) satisfies

|x(t)| ≤ N, for all t ≥ t1.
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The last result of this paper is :

Theorem 2.3. Assume (i) − (iii) satisfied. Suppose also that

2a010 > b1 + β1(a1 + b1 + a11
2
1) + b1 f 2

1 (1 + β1),

then, the trivial solution of equation (4) is asymptoticaly stable.

2.3. Proofs
Before procceding to the proofs of the previous theorems, we rewrite equations (2), (3) and (4) in the

following equivalent descriptor system{
0 = −z(t) + x(t) + β(t)x(t − σ),

z′(t) = −a(t)1(x(t)) − b(t) f (x(t − r)) + e(t),
(5)

where 1(x) = x and e(t) = 0 for equation (2), 1(x) = x and e(t) , 0 for equation (3). In all of our proofs, we
make use of the Lyapunov function

V = V (t, x) =
1
2

z2 + λ

∫ t

t−σ
x2 (s) ds + µ

∫ t

t−r
x2 (s) ds, (6)

where λ and µ are positive constants to be determined later with respect to the appropriate case. It can be
easily seen that

V(t, x) ≥
1
2

z2, (7)

since λ
∫ t

t−σ
x2 (s) ds + µ

∫ t

t−r
x2 (s) ds ≥ 0. In addition, we have V(t, 0) = 0, for all t ≥ t1.

Proof. [Proof of Theorem 2.1] The time derivative of the Lyapunov function (6) along trajectories of equation
(2) is

V′(2) =
(
−a (t) + λ + µ

)
x2 (t) − λx2 (t − σ) − µx2 (t − r)

− b (t) f (x (t − r)) x (t) − β (t) a (t) x (t) x (t − σ)
− β (t) b (t) f (x (t − r)) x (t − σ) .

With the use of the conditions (i) and (ii) toghether with inequality 2 |uv| ≤ u2 + v2, one obtain

V′(2) ≤

(
−a0 + λ + µ +

b1

2
+

b1a1

2

)
x2 (t)

+

(
−λ +

b1

2
[
a1 + β1

])
x2 (t − σ)

+

−µ + b1 f 2
1

2
[
1 + β1

] x2 (t − r) .

Choose

λ =
b1

2
[
a1 + β1

]
,

and

µ =
b1 f 2

1

2
[
1 + β1

]
.
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With the previous choice of constants λ and µ, we get

V′(2) ≤

(
−a0 +

b1

2

[
1 + 2a1 + β1

(
1 + f 2

1

)
+ f 2

1

])
x2 (t) .

Using the fact

a0 >
b1

2

[
1 + 2a1 + β1

(
1 + f 2

1

)
+ f 2

1

]
,

we get

V′(2) ≤ −kx2, (8)

where k = a0 −
b1

2

[
1 + 2a1 + β1

(
1 + f 2

1

)
+ f 2

1

]
> 0. From properties of the Lyapunov function (6), namely (7)

and (8), we conclude that the trivial solution of equation (2) is asymptoticaly stable.
It follows from (8) that

V (t) + k
∫ t

t1

x2 (s) ds ≤ V (t1) , for t > t1.

Since V (t) ≥ 0, and k > 0, the above inequality lead to∫
∞

t1

x2 (s) ds ≤ ∞. (9)

Hence x ∈ L2[t1,∞). From (8), there exists a positive constant K such that[
x (t) + β (t) x (t − σ)

]2 < K2 for all t ≥ 0,

thus

|x (t)| ≤ β1 |x (t − σ)| + K, t ≥ 0. (10)

We claim that |x(t)| is bounded. Suppose not. Then there exists a subsequence {tn}, tn → ∞ as n→ ∞ such
that

|x (tn)| = sup {|x (t)| , t ≤ tn} ,n = 1, 2, ...

We have lim
n→∞
|x (tn)| = ∞ and |x (tn)| ≥ |x (tn − σ)| for n = 1, 2, .... Inequality (10) yields

|x (tn)| < β1 |x (tn − σ)| + K
< β1 |x (tn)| + K,n = 1, 2, ...

Then

|x (tn)| <
K

1 − β1
,

thus, as n→∞,we get∞ <
K

1 − β1
. This contradiction implies that |x (t)| is bounded. The proof of Theorem

(2.1) is over.
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Proof. [Proof of Theorem 2.2] Consider the Lyapunov function (6). In this case the time derivative along
trajectories of equation (3) is given by

V′(3) = V′(2) +
[
x (t) + β (t) x (t − σ)

]
e (t) .

From (8), we get

V′(3) ≤
∣∣∣x (t) + β (t) x (t − σ)

∣∣∣ |e (t)| .

Use inequality |u| ≤ 1 + u2, to obtain

V′(3) ≤
([

x (t) + β (t) x (t − σ)
]2 + 1

)
|e (t)| .

Using (7) and integrating from t1 to t, lead to

V (t) ≤ V (t1) +
∫ t

t1

|e (s)| ds +
∫ t

t1

2V (s) |e (s)| ds.

By Gronwall’s inequality, it follows that

V (t) ≤ K1 exp
(
2
∫ t

t1

|e (s)| ds
)
≤ K2,

where K1 = V (t1) + e1, and K2 = K1 exp (2e1) .This result implies the existance of a positive constant N, such
that ∣∣∣x (t) + β (t) x (t − σ)

∣∣∣ ≤ N,

and as our previous proof, we conclude that |x (t)| is bounded. This fact completes the proof of Theorem
(2.2).

Proof. [Proof of Theorem 2.3] The time derivative of (6) along trajectories of equation (4) is given by

V′(4) =
(
λ + µ

)
x2 (t) − λx2 (t − σ) − µx2 (t − r)

−a (t) 1 (x (t)) x (t) − b (t) f (x (t − r)) x (t)
−β (t) a (t) 1 (x (t)) x (t − σ) − β (t) b (t) f (x (t − r)) x (t − σ)

With the use of the conditions (i) − (iii) toghether with inequality 2 |uv| ≤ u2 + v2, one obtain

V′(4) ≤
1
2

(
−2a010 + b1 + β1a11

2
1 + 2λ + 2µ

)
x2 (t)

+
1
2
(
−2λ + β1 (a1 + b1)

)
x2 (t − σ)

+
1
2

(
−2µ + b1 f 2

1
(
1 + β1

))
x2 (t − r) .

Put

2λ = β1 (a1 + b1) ,

and

2µ = b1 f 2
1
(
1 + β1

)
,

to get

V′(4) ≤
1
2

(
−2a010 + b1 + β1

(
a1 + b1 + a11

2
1

)
+ b1 f 2

1
(
1 + β1

))
x2 (t) .
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Hence

V′(4) ≤ −k0x2,

where k0 = 2a010−b1−β1

(
a1 + b1 + a11

2
1

)
−b1 f 2

1
(
1 + β1

)
> 0.We conclude that the trivial solution of equation

(4) is asymptoticaly stable. This fact completes the proof.

Remark 2.4. It is also possible to show that for equation (4), the solutions are bounded and square integrable. The
proofs are the same in this case and hence being ommited.

3. Examples

In this section, we give two examples illustrating the obtained results.

3.1. Example 1
As a special case of equation (3) (respectively eq. (2) for e(t) = 0), consider the following equation

d
dt

[
x(t) +

1
10 + t2 x(t − σ)

]
= −

(
4.5 +

1
4 + t2

)
x(t) −

(
0.4 +

4
10 + t2

)
×

(
0.1x(t − r) +

x(t − r)
10+ | x(t − r) |

)
+

1
1 + t2 ,

(11)

Observing the functions over the equation (11), one can deduce the following

a0 = 4.5 ≤ a (t) = 4.5 +
1

4 + t2 ≤ 4.75 = a1,

b0 = 0.4 ≤ b (t) = 0.4 +
4

10 + t2 ≤ 0.8 = b1,

|β(t)| =
∣∣∣∣∣ 1
10 + t2

∣∣∣∣∣ ≤ 1
10
= β1,

and

f (x) = 0.1x +
x

10+ | x |
.

It is clear, from the relation of f (x), that f (0) = 0, besides, since 0 ≤
1

10+ | x |
≤ 1, for all x, we have that

f (x)
x
≥ 0.1 = f0, for all x , 0.

Moreover

| f ′(x)| =
∣∣∣∣∣0.1 + 1

(10+ | x |)2

∣∣∣∣∣ ≤ 0.2 = f1.

A simple calculation give

−a0 +
b1

2
[1 + 2a1 + β1(1 + f 2

1 ) + f 2
1 ] = −0.24 = −k < 0.

Hence the trivial solution of (11) is asymptotically stable by assumptions of Theorem (2.1) with respect to
e(t) = 0. On the other side, observe also that

e(t) =
1

1 + t2 ,
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then ∫ t

t1

|e(s)|ds < ∞, for all t ≥ t1.

All assumptions of Theorem (2.2) are satisfied, so every solution of (11) is bounded and belong to L2[t1,+∞).

t

2 4 6 8 10 12 14

0.05

0.10

0.15

Figure 1: Numerical simulation for example (11). x(t) = t2 for t ≤ 0.

3.2. Example 2

As a special case of equation (4), consider the following equation

d
dt

[
x(t) +

1
10 + t2 x(t − σ)

]
= −

(
4 +

1
2 + t2

)
×

(
x(t) +

2x(t)
10+ | x(t) |

)
−

(
0.2 +

2
10 + t2

)
×

(
0.5x(t − r) +

x(t − r)
10+ | x(t − r) |

)
,

(12)

Observing the functions over the equation (11), one can deduce the following

a0 = 4 ≤ a (t) = 4 +
1

2 + t2 ≤ 4.5 = a1,

b0 = 0.2 ≤ b (t) = 0.2 +
2

10 + t2 ≤ 0.4 = b1,

|β(t)| =
∣∣∣∣∣ 1
10 + t2

∣∣∣∣∣ ≤ 1
10
= β1,

1(x) = x +
2x

10+ | x |
,

and

f (x) = 0.5x +
x

10+ | x |
.
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It is clear, from the relation of f (x) and 1(x), that f (0) = 1(0) = 0, besides, since 0 ≤
1

10+ | x |
≤ 1, for all x, we

have that

1(x)
x
≥ 1 = 10, for all x , 0,

and

f (x)
x
≥ 0.5 = f0, for all x , 0.

Moreover

|1′(x)| =
∣∣∣∣∣1 + 2

(10+ | x |)2

∣∣∣∣∣ ≤ 1.2 = 11.

| f ′(x)| =
∣∣∣∣∣0.5 + 1

(10+ | x |)2

∣∣∣∣∣ ≤ 0.6 = f1.

A simple calculation give

−2a010 + b1 + β1

(
a1 + b1 + a11

2
1

)
+ b1 f 2

1
(
1 + β1

)
= −6.1 = −k0 < 0.

Hence the trivial solution of (12) is asymptotically stable by assumptions of Theorem (2.3).

t

0.5 1.0 1.5 2.0

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

Figure 2: Numerical simulation for example (12). x(t) = t2 for t ≤ 0.

4. Conclusion

The asymptotic properties of certain classes of neutral delay differential equations have been investigated
by constructing a suitable Lyapunov function. Delay-independent criteria have been obtained to guarantee
the asymptotic stability, boundedness and square integrability of the considered classes of equations. Joint
numerical simulations confirm the validity of the results.
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